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Cosmology
Universal expansion:   v  =  Ho d

(Hubble, ~1929)

v = c z

z = redshift =

Ho “Hubble constant”

Today’s value:  Ho ~ 72 km/s Mpc

(to ~ 13,7 Gy)
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Cosmological principle

ds2 =  c2 dt2 - a(t)2 dx2

dx2 =  dr2 (1-Kr2)-1  + r2 dω2

K =  +1, -1, 0
dω2 =  d2θ+  sin2 dφ2

1 + z  =  a(to) / a(t)

Hubble parameter:  H  =  a&  / a  =  - z&  / (1 + z),  
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deceleration parameter:    q  =  -  a a&&  / a& 2  

qo  ≈ - 0,6   ⇒  accelerating universe! 
Observations:
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light :        ds  =  0   ⇒      dr  =  ±  c dt / a(t) 
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(Luminosity)  distance:   l =  L / (4π d2 )  -> 

->   [L / 4π a(to)2 re
2] x [1/(1 + z)] x  [1/(1 + z)]



(Angular) distance:  angle  =  (object size) / (distance to object)

dA(t)  =  a(te)  re =  dL / (1 + z)2



Cosmodynamics

Gµν  -  Λ gµν  = 
2

8
c

Gπ  Tµν Einstein Field Equations  (EFE)

Field:      Action  S  = ∫ 4d x  g−   L 

 

Fluid:
Tµν  =  (ρ + p/c2) uµ uν - p/c2 gµν 

Too  = ρ c2 
 T11 = ( p/c2 ) a2 

L  =  ½ ϕϕ µ
µ ∂∂   -  V(ϕ )  gµν 

Spatially homogeneous:  k∂   =   0 

Too  =  2
22

1
ϕ&

c
 + V(ϕ )  =  ρfield c2 

T11 = a2  [ 2ϕ& /2   -   c2 V(ϕ ) ]  = ( pfield/c2 ) a2 
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   “Friedmann equation” 
⇒  
 

H2  =   
3

8 Gπ   [ρ   +  ρΛ  +  ρK ] 

 

ρK =  -  2a
K   / ( 23
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Gπ )                  ρΛ  =  Λ / (
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ρ =  ργ  +  ρν  + ρm ……. 

 
ρm  = ρD   +  ρB   



Energy conservation

a
a&&   = - 

3
8 Gπ   (ρ  +  3  p/c2)  +  Λ c2 / 3 

 
dt
dIn combination with       (Friedmann):

dt
d (ρ a3)  =  - (p/c2) 

dt
d a3 

Equation of state:  p/c2 =  w  ρ

w  = 0   for non-relativistic matter (ρm , ρD , ρB) 

=  1/3  for relativistic matter (ργ , ρν , ….)

= - 1    for ρΛ

=  -1/3  for ρK

“acceleration equation”



dt
d (ρ a3)  =  - (p/c2) 
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d a3 
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 Same for  ρD , ρB 
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ρΛ  =  ρΛ,o    constant! 
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p/c2 =  w  ρ ;  w  constant



Introduce ρcrit  =  H2 / (
3

8 Gπ )  ~  0,97 x 10-26  kg/m3 

 
Ω =  ρ / ρcrit 

 
Friedmann:    1  =  Ωγ  +  Ων +  Ωm  +  ΩΛ  +  ΩK 

 
Present values: Ωγ  ~  Ων  ~ 10-5 ~ 0 
 Ωm ~ 0,27 
  ΩD ~ 0,24 
  ΩB ~ 0,04 
 ΩΛ ~ 0,73  [Λ ~ 1,5 x 10-54 m-2,     
                  ρΛ  ~ (2 x 10-3 eV)4    (c = h  = 1)]  
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                    =  - 0,5 x [0,27  - 2 x 0,73]  =   + 0,6 



Hubble Diagram of Type Ia Supernovae

ΩΛ >   0    “dark energy”

ΩΛ ~  Ωm “coincidence problem”
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H2(z)  =  Ho

2 [Ωm (1 + z)3 + ΩΛ] 
 



Thermal evolution

Temperatur  T  ~   a(t)-1  ~ (1 + z )



CMB  = 
Cosmic Microwave background

380 000 years !!

z ~ 1090



∆ T( nr )  =  [T( nr ) - < T >] / < T > 
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C l   =  ( ) ∫
∞

0

.... q2 dq  P (q)  jl2(q rL) 

P (q) is the spectral function and represents the intensity of the temperatur differences, 
(Fourier transform in comoving coordinates of correlation function), which in turn 
depend on the photon density irregularities, which in its turn are coupled to the baryon 
(but not dark matter) irregularities.

So we expect P (q) to peak at 

baryon mass concentrations

C l peáks at q rL ~  l ,

i e „projects out“ P (q) at q  ~ l / rL

C l

(and  l ~ π / angle)



Peaks at distances given by “acoustic oscillations” (= gravity <-> baryonic 
matter density oscillations)  in baryon-photon plasma, given by 
 
dsound = “sound horizon” , which depends on  
 

vsound
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So we expect peaks at   
 
l  ~ lsound  ~ dsound / dA  ~ 1 

o 

 
 
Observations: lsound   ~ 200  =>  1 o 



Baryon acoustic oscillations
Seen in galaxy correlations



Explaining cosmic accelerationExplaining cosmic acceleration

•• Cosmological constant ~ vacuum energyCosmological constant ~ vacuum energy
•• Exotic matterExotic matter

–– QuintessenceQuintessence
–– Phantom matterPhantom matter
–– kk--essenceessence
–– BraneworldBraneworld modelsmodels
–– ………………

•• Revise basic assumptionsRevise basic assumptions
–– NonNon--homogenous matter/energy distributionhomogenous matter/energy distribution
–– Modified GRModified GR



Cosmological constant ~ vacuum energ y:

Gµν  -  Λ gµν  = 
2

8

c
Gπ  Tµν          ⇒         Gµν  =  

2
8

c
Gπ  [Tµν  +  gµν  Λ / (

2
8

c
Gπ )] 

GR: Absolute value of energy important  

QFT (or even Heisenberg): zero-point energy Eo

Each mode has  Eo = ½ h ω   = ½ h 22 m  p +
r   
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Remember observations: ρvac  ~  (2 x 10-3 eV)4     
 
Also: Coincidence: 
 ρvac    ~  ρm   today 
 

Anthropic reasoning ??



Quintessence (~ à la inflation but without reheating)

Suppose  Λ = 0 

Scalar field  Q L  =  ½ QQ µ
µ ∂∂   -  V(Q)  gµν 

2
22
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c

&  + V( Q )  =  ρQc2 

2Q& /2   -   c2 V(Q )   =  pQ/c2  
(put c = 1) 

 wQ =  pQ / ρQ  =  
V(Q    Q½

  V(Q)  -  Q½
2

2
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so 1  ≥  wQ ≥   - 1 
  
 wQ ~ - 1  requires  Q&  ~ 0 
 
Field equation: 
 
 Q&&   +  3 H  Q&   +  V,Q  =  0 

”Hubble friction”



For large  H ( early time, i e near big bang) , the Hubble friction 
  terms implies “slow roll”  
so that 
 
Q&&   ~ 0  and  Q&   ~ - V,Q  / 3 H   , which should be   <<  (V(Q))½ 

This requires a shallow  V(Q) , i e a very low (effective) mass  
  
 mQ  ~  V,QQ  <  Ho  ~ 10-32 eV 
 

and for  ρQ to give a contribution to  ρ  requires  Q ~ MPlanck  = 
G
c

π8
h  

Q&&   +  3 H  Q&   +  V,Q  =  0 

Quintessence (cont)



Example 1:

Axion   V(Q)  =  µ4 [ 1  +  cos (Q/f)]

µ ~ 0,002 eV,  f  ~ 1018 GeV

More generally a potential with a (local) minimum

V(Q)

Q

Scenario: 

Hubble friction freezes the field for most of cosmic history.

As Hubble friction relaxes, the field oscillates at the bottom of the potential.

“Thawing” scenario

wQ

time

- 1



Example 2:

V(Q)  =  µ4 (Q/ MPlanck )-n  (Peebles & Ratra 1988 !)

V(Q)  =  µ4 exp ( - λ Q/ MPlanck )
V(Q)

Q

Scenario: 

Freezing at early times, when ρQ is subdominant, 
followed by gradual overtaking, resulting in dominance 
and (essentially) an exponential growth of a(t).

“Tracker solution”: The “coincidence 
problem” can be solved with clever 
adjustment of constants

wQ

time

- 1

”Freezing” scenario



“Phantom models”:

For quintessence:  wQ >  - 1 (or possibly  = - 1)

What if  observation should imply w < - 1?

Friedmann:        H2 =  Ho
2 Ω (1 + z )3(1+w)

=>   a(t)  =  a(tp) [ - w  +  (1 + w) (t/tp) ] 2/ 3(1+w)

a

t  
(time)

“Big rip”

With  w  = - 1,1 , the big rip occurs after  ~ 100 Gy



Phantom model:   
Field theory with negative kinetic energy , -  2Q½ &  ! 

Remark: This is roughly the same idea as  F red Hoyle had in his “c-
field” to explain the steady-state theory.

wph =  pph / ρph  =  
V(Q)    Q½-

  V(Q) -  Q½ -
2

2
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V(Q)    Q½
  Q

2
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But unstable as a quantum field theory!



K-essence
Field theory Lagrangian density

L  =  K ( ½ QQ µ
µ ∂∂ ) -  V(Q)   

K is “any function” of   X  =  ½ QQ µ
µ ∂∂  
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Chaplygin gas

(Michael Blomqvist’s master thesis 2004)

Postulate:  Fluid with  p  =  - A / ρ   ,   A = constant

Friedmann =>  ρ  =  ( )( )6/ aBA +  ,   B = integration constant 
So 

For early times, the Chaplygin gas behaves as a pressureless dust, 

while

For later times,  ρ ~ constant => acceleration

1. The Chaplygin gas is related to the so called ghost field approach where 

Action  Sghost  = ∫ 4d x  V(φ) ( )ϕϕ νµµν ∂∂+− gdet  

 with a potential   V(φ)  =  Vo / cosh (φ / φo) 

2. There are grave instability problems attached to these approaches

Remarks



Varying neutrino mass

Is  Λ1/4 ~  2 x 10-3 eV ~ mν a clue?

Try usual field but with potential  V(Q)  =  nν mν (Q)  +  Vο(Q)

Neglecting       one obtains 

w  =  p / ρ =  

=  ( - Vo ) / [ nν mν (Q)  +  Vο(Q) ] =

=  - 1  +  nν mν (Q) / Vo(Q)

Q& ,  



Constraints:

*  GR very good, at least up to solar system scale, ~100 µm  to  ~ 1012 m

*  GR must be recovered also for early times

One approach:

“f(R) gravity”

Action     S  =  ½ (h / lPlanck
2 ) ∫ 4d x  g−   R  +  S non grav 

 

where R  = the Ricci scalar, and   lPlanck
  = 3

8
c

G hπ  , 

is generalized to 
  Sf  = - (h / lPlanck

2) ∫ 4d x  g−   R  [ 1 + f(R ) ] +  S non grav 

 
where  f(R )  is “any” non-constant function. 

Modified gravit y



“f(R) gravity” (cont)

Sf  = - ( h / lPlanck
2) ∫ 4d x  g−   R  [ 1 + f(R ) ] +  S non grav 

R = 6 H2 [ - q  + 1 ]  +  6 K / a2  =  - 24 π G ( ρ +  p )

R

early late

f(R)

Remark: For theoretical reasons,  R is the only higher order ( in gmn) 
scalar that can appear (otherwise higher derivatives than 2nd in field 
equations)



“f(R) gravity” (cont)

Two further remarks:

(i) wf =  - 1  +  A / B

[A,B explicit (non-positive definite) functions of 
H, f and derivatives of f.]

So essentially any value of  wf is possible

(ii) One can show that the new action is equivalent to introducing a new, 
scalar field degree of freedom. In fact, f(R) is a “scalaron” field. One 
may then use the freedom to transform the metric so that one recovers 
essentially the quintessence model

As usual, a not-negligible amount of fine-tuning is needed to get a viable model



Another approach to modified gravity: 

Scalar-tensor theories (c f  Brans-Dicke)

involving what amounts to a φ -dependent gravitational 
constant.

(Recall: Possible observation of time-varying fundamental 
constants.)

Ss-t  =  ½ ( h / lPlanck
2) ∫ 4d x  g−  [ b(φ)  R  +  

  +  ½  h(φ) φφ µ
µ ∂∂   -  U(φ) ] +  S non grav 



A third approach to modified gravity : 

“Degravitation”

Modify E F E  

    Gµν  = 
2

8

c
Gπ  Tµν 

 

to    [1 + F(L2 µ
µ ∂∂ ) ] Gµν  = 

2
8

c
Gπ  Tµν    

where  L  is some (large) length and 

where F is a “filtering function” obeying

F(x) -> 0 for  x  ->  oo (small scales agree with GR)

F(x) >> 1  for  x -> 0  (reducing the strength of 
gravity – “degravitationing” - at large 
distances)



Brane-world models:

Dvali-Gabadadze-Porrati’s “DGP-model”

A 3 + 1 dimensional brane (= our world)  imbedded in a 4 + 1 
dimensional bulk

For small distances, gravity stays on the brane, so 

gravitational potential  ~ r-1 ,  r  <<   rc =   l5
3/ lPlanck

2 

For large distances, gravity can “escape” into the 5th dimension, so

gravitational potential  ~ r-2 ,  r  >>   rc =   l5
3/ lPlanck

2 

so again, gravity is weakened on larger scales.

Action  SDGP  =  ½ ( h / l5
3 ∫ 5d x  5g−   R5  +  

     +  ½ ( h / lPlanck
2) ∫ 4d x  g−   R  +  S non grav 



Action  SDGP  =  ½ ( h / l5
3 ∫ 5d x  5g−   R5  +  ½ (h / lPlanck

2) ∫ 4d x  g−   R  +  S non grav 

H2 ±   H/ rc  =  
3

8 Gπ   ρ 

The DGP-model in more details

=> DGP  Friedmann equation: 

Early times means large H means  ~ ordinary Friedmann

Later times :

minus sign =>  H  ~  1 / rc so constant  H,

meaning a ~ exp (α t ) ó acc expansion.

Also: coincidence problem “solved” with   rc ~ Ho

plus-sign  (&  H  <<  1 / rc )   =>   H/ rc  ~  
3

8 Gπ   ρ ,  

   meaning no acceleration 



Interim summary
1.  With some fine-tuning, essentially all models are able 

to reproduce current observations

2.  The cosmological constant gives a good over-all fit:  

ΛCDM “concordance” model

3.  Since the ΛCDM model gives so good an understanding of the early universe –
inflation, primordial nucleosyntheses, CMB, BAO –any other model must be 
required not to interfere too much in the description of these phenomena. In 
other words, they should make themselves felt only after last scattering at  z  ~ 
1090.

How might one differenti ate between models?
It is obviously important to study the period after z ~ 1090, in particular after z ~ 
10 by

- improving on present observation : CMB, SNe, BAO, etc 

- polarization in CMB

- more detailed studies of galaxy correlations, galaxy-CMB-correlations 

- growth of structure after last scattering 



Growth of structure after last scattering

*  Initial conditions are known from CMB

*  Study evolution of small structures from then until now:
Linear perturbation GR-theory

ds2 =  c2 dt2 - a(t)2 dx2 ->  ds2 =  c2 [ 1 +  2 Ψ(x,t) ] dt2 - a(t)2 [ 1 – 2  Φ(x,t) ] dx2

ρ ->ρ (1 + δ)

p   ->    p  +  δ p           etc

and then cancel all terms higher than linear in  δ, Ψ, Φ, etc, in the EFE and energy-
conservation equation, followed by Fourier transforming the linear quantities.

[ But: Beware of gauge ambiguities! ]

E g

describes the growth of density perturbations.

Ways to study such phenomena observationally are, besides those already mentioned,,  e g,
Weak gravitational lensing

(Integrated) Sachs- Wolfe effect

Using gamma ray burst as standard candles

??

qδ&&   +  2 H qδ&   + [ vsound
2  q2  -  4 π G  ρ ]  δq  =  0  



Our future ”Big rip”

w ~ - 1, e g ,  Λ or ”freezing”
quintessence

w ~ 0, e g, ”thawing”
quintessence

”Big crunch”, e g, K = +1 ,or  Λ <  0

Not (only) geometry
that decides fate, 
but (also, and more) 
the equation of state.


