An
 Accelerating Universe

Bengt E Y Svensson
3 March, 2010

Cosmology

Universal expansion: $\mathrm{v}=\mathrm{H}_{\mathrm{o}} \mathrm{d}$ (Hubble, ~1929)

$$
\mathrm{V}=\mathrm{c} \mathrm{Z}
$$

$$
\mathrm{z}=\text { redshift }=\frac{\lambda_{\mathrm{r}}-\lambda_{e}}{\lambda_{e}}
$$

H_{o} ñHubble constantò
Today \hat{Q} value: $\mathrm{H}_{\mathrm{o}} \sim 72 \mathrm{~km} / \mathrm{s} \mathrm{Mpc}$

$$
\left(\mathrm{t}_{\mathrm{o}} \sim 13,7 \mathrm{~Gy}\right)
$$

Cosmological principle

$$
\begin{aligned}
& \mathrm{ds}^{2}=\mathrm{c}^{2} \mathrm{dt}^{2}-\mathrm{a}(\mathrm{t})^{2} \mathrm{~d} \mathbf{x}^{2} \\
& \mathrm{~d} \mathbf{x}^{2}=\mathrm{dr}^{2}\left(1-\mathrm{Kr}^{2}\right)^{-1}+\mathrm{r}^{2} \mathrm{~d} \omega^{2} \\
& \mathrm{~K}=+1,-1,0 \\
& \mathrm{~d} \omega^{2}=\mathrm{d}^{2} \theta+\sin ^{2} \mathrm{~d} \phi^{2} \\
& 1+\mathrm{z}=\mathrm{a}\left(\mathrm{t}_{0}\right) / \mathrm{a}(\mathrm{t})
\end{aligned}
$$

Hubble parameter: $\mathrm{H}=\dot{a} / a=-\dot{z} /(1+z)$,

$$
\mathrm{dt}=\frac{1}{H} \frac{d a}{a}=-\frac{1}{H} \frac{d z}{1+z} \quad \text { Age of universe: } \mathrm{t}_{\mathrm{o}}=\int_{0}^{\infty} \frac{1}{H} \frac{d z}{1+z}
$$

deceleration parameter: $\quad q=-a \ddot{a} / \dot{a}^{2}$

Observations:

$$
\mathrm{q}_{\mathrm{o}} \approx-0,6 \Rightarrow \text { accelerating universe! }
$$

light: $\quad \mathrm{ds}=0 \Rightarrow \mathrm{dr}= \pm \mathrm{cdt} / \mathrm{a}(\mathrm{t})$
(Luminosity) distance: $l=L /\left(4 \pi \mathrm{~d}^{2}\right)$->

$$
\begin{aligned}
& \text {-> }\left[L / 4 \pi \mathrm{a}\left(\mathrm{t}_{\mathrm{o}}\right)^{2} \mathrm{r}_{\mathrm{e}_{\mathrm{e}}^{2}}\right] \times[1 /(1+\mathrm{z})] \mathrm{x}[1 /(1+\mathrm{z})] \\
& =\mathrm{c}_{\mathrm{L}}=\mathrm{a}\left(\mathrm{t}_{\mathrm{o}}\right)(1+\mathrm{z})\left(\mathrm{c} \int_{t_{e}}^{t_{0}}\left[\frac{d t^{\prime}}{a\left(t^{\prime}\right)}\right)=\right.
\end{aligned}
$$

$($ Angular $)$ distance: angle $=($ object size $) /($ distance to object $)$

$$
d_{A}(t)=a\left(t_{e}\right) r_{e}=d_{L} /(1+z)^{2}
$$

Cosmodynamics

Einstein Field Equations (EFE)

$$
\mathrm{G}_{\mu \nu}-\Lambda \mathrm{g}_{\mu \nu}=\frac{8 \pi G}{c^{2}} \mathrm{~T}_{\mu \nu}
$$

Fluid:

$$
\begin{aligned}
& \mathrm{T}_{\mu \nu}=\left(\rho+\mathrm{p} / \mathrm{c}^{2}\right) \mathrm{u}_{\mu} \mathrm{u}_{v}-\mathrm{p} / \mathrm{c}^{2} \mathrm{~g}_{\mu v} \\
& \text { Too }=\rho \mathrm{c}^{2} \\
& \mathrm{~T}_{11}=\left(\mathrm{p} / \mathrm{c}^{2}\right) \mathrm{a}^{2}
\end{aligned}
$$

Field: Action $S=\int d^{4} \times \sqrt{-g} L$

$$
\mathcal{L}=1 / 2 \partial_{\mu} \varphi \partial^{\mu} \varphi-\mathrm{V}(\varphi) \mathrm{g}_{\mu \nu}
$$

Spatially homogeneous: $\partial_{k}=0$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{oo}}=\frac{1}{2 c^{2}} \dot{\varphi}^{2}+\mathrm{V}(\varphi)=\rho_{\text {field }} \mathrm{c}^{2} \\
& \mathrm{~T}_{11}=\mathrm{a}^{2}\left[\dot{\varphi}^{2} / 2-\mathrm{c}^{2} \mathrm{~V}(\varphi)\right]=\left(\mathrm{p}_{\text {field }} / \mathrm{c}^{2}\right) \mathrm{a}^{2}
\end{aligned}
$$

$\mathrm{EFE} \quad \Rightarrow$

$$
\begin{aligned}
& \left(\frac{\dot{a}}{a}\right)^{2}+\frac{K c^{2}}{a^{2}}-\frac{\Lambda c^{2}}{3}=\frac{8 \pi G}{3 c^{2}} \rho c^{2} \\
& \Rightarrow \\
& \mathrm{H}^{2}=\frac{8 \pi G}{3}\left[\rho+\rho_{\Lambda}+\rho_{\mathrm{K}}\right] \\
& \rho_{\mathrm{K}}=-\frac{K}{a^{2}} /\left(\frac{8 \pi G}{3 c^{2}}\right) \quad \rho_{\Lambda}=\Lambda /\left(\frac{8 \pi G}{c^{2}}\right) \\
& \rho=\rho_{\gamma}+\rho_{\nu}+\rho_{\mathrm{m}} \text { é é } . \\
& \quad \rho_{\mathrm{m}}=\rho_{\mathrm{D}}+\rho_{\mathrm{B}}
\end{aligned}
$$

Energy conservation $\frac{d}{d t}\left(\rho \mathrm{a}^{3}\right)=-\left(\mathrm{p} / \mathrm{c}^{2}\right) \frac{d}{d t} \mathrm{a}^{3}$
In combination with $\frac{d}{d t}$ (Friedmann):

$$
\frac{\ddot{a}}{a}=-\frac{8 \pi G}{3}\left(\rho+3 \mathrm{p} / \mathrm{c}^{2}\right)+\Lambda \mathrm{c}^{2} / 3
$$

ñacceleration equationò

Equation of state: $\mathrm{p} / \mathrm{c}^{2}=\mathrm{w} \rho$

$$
\begin{aligned}
\mathrm{w} & =0 \text { for non-relativistic matter }\left(\rho_{\mathrm{m}}, \rho_{\mathrm{D}}, \rho_{\mathrm{B}}\right) \\
& =1 / 3 \text { for relativistic matter }\left(\rho_{\gamma}, \rho_{v},\right. \text { é .) } \\
& =-1 \text { for } \rho_{\Lambda} \\
& =-1 / 3 \text { for } \rho_{\mathrm{K}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left(\rho \mathrm{a}^{3}\right)=-\left(\mathrm{p} / \mathrm{c}^{2}\right) \frac{d}{d t} \mathrm{a}^{3} \\
& \mathrm{p} / \mathrm{c}^{2}=\mathrm{w} \rho ; \mathrm{w} \text { constant }
\end{aligned} \quad \downarrow \rho \rho=\rho_{\mathrm{o}}\left(\frac{a}{a_{o}}\right)^{-3(1+w)}
$$

$$
\rho_{\mathrm{m}}=\rho_{\mathrm{m}, \mathrm{o}}\left(\frac{a_{o}}{a}\right)^{3}=\rho_{\mathrm{m}, \mathrm{o}}(1+\mathrm{z})^{3}
$$

Same for ρ_{D}, ρ_{B}

$$
\rho_{\gamma}=\rho_{\gamma, \mathrm{o}}\left(\frac{a_{o}}{a}\right)^{4}=\rho_{\gamma, \mathrm{o}}(1+\mathrm{z})^{4}
$$

$$
\rho_{\Lambda}=\rho_{\Lambda, o} \text { constant! }
$$

$$
\rho_{\mathrm{K}}=\rho_{\mathrm{K}, \mathrm{o}}\left(\frac{a_{o}}{a}\right)^{2}=\rho_{\mathrm{K}, \mathrm{o}}(1+\mathrm{z})^{2}
$$

Introduce

$$
\rho_{\text {crit }}=\mathrm{H}^{2} /\left(\frac{8 \pi G}{3}\right) \sim 0,97 \times 10^{-26} \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\Omega=\rho / \rho_{\text {crit }}
$$

Friedmann:

$$
1=\Omega_{\gamma}+\Omega_{v}+\Omega_{\mathrm{m}}+\Omega_{\Lambda}+\Omega_{\mathrm{K}}
$$

Present values:

$$
\begin{aligned}
\quad \Omega_{\gamma} & \sim \Omega_{v} \sim 10^{-5} \sim 0 \\
\Omega_{\mathrm{m}} & \sim 0,27 \\
\Omega_{\mathrm{D}} & \sim 0,24 \\
\Omega_{\mathrm{B}} & \sim 0,04 \\
\Omega_{\Lambda} & \sim 0,73\left[\Lambda \sim 1,5 \times 10^{-54} \mathrm{~m}^{-2},\right. \\
& \left.\rho_{\Lambda} \sim\left(2 \times 10^{-3} \mathrm{eV}\right)^{4} \quad(\mathrm{c}=\hbar=1)\right] \\
\mathrm{q}=-\frac{\ddot{a} a}{\dot{a}^{2}} & =-1 / 2 \sum_{i} \Omega_{i}\left(1+3 w_{i}\right)= \\
& =-0,5 \times[0,27-2 \times 0,73]=+0,6
\end{aligned}
$$

Hubble Diagram of Type la Supernovae

Thermal evolution

WMAP 5 year ILC

Temperatur $\mathrm{T} \sim \mathrm{a}(\mathrm{t})^{-1} \sim(1+\mathrm{z})$

CMB =
Cosmic Microwave background

380000 years !
z ~ 1090

$$
\begin{aligned}
& \Delta \mathrm{T}(\vec{n})=[\mathrm{T}(\vec{n})-\langle\mathrm{T}\rangle] /\langle\mathrm{T}\rangle \\
& \left\langle\Delta \mathrm{T}(\vec{n}) \Delta \mathrm{T}\left(\vec{n}^{\prime}\right)\right\rangle=\sum_{l}\left(\frac{2 l+1}{4 \pi}\right) \mathrm{C}_{l} \mathrm{P}_{l}\left(\vec{n} \vec{n}^{\prime}\right) \\
& \mathrm{C}_{l}=(\ldots) \int_{0}^{\infty} \mathrm{q}^{2} \mathrm{dq} P(\mathrm{q}) \mathrm{j}_{l}^{2}\left(\mathrm{q}_{\mathrm{L}}\right)
\end{aligned}
$$

$P(\mathrm{q})$ is the spectral function and represents the intensity of the temperatur differences, (Fourier transform in comoving coordinates of correlation function), which in turn depend on the photon density irregularities, which in its turn are coupled to the baryon (but not dark matter) irregularities.

So we expect $P(\mathrm{q})$ to peak at baryon mass concentrations
C_{l} peáks at $\mathrm{q}_{\mathrm{L}} \sim l$, ie Ăprojects outñ $P(\mathrm{q})$ at $\mathrm{q} \sim / / \mathrm{r}_{\mathrm{L}}$

$$
\text { (and } l \sim \pi / \text { angle) }
$$

Peaks at distances given by ñacoustic oscillationsò (= gravity <-> baryonic matter density oscillations) in baryon-photon plasma, given by
$\mathrm{d}_{\text {sound }}=\tilde{\text { ñ }}$ sound horizonò, which depends on
$\mathrm{v}_{\text {sound }}{ }^{2}=\frac{1}{3\left(1+3 \rho_{\mathrm{B}} / 4 \rho_{\mathrm{g}}\right)}$
$\mathrm{d}_{\text {sound }}=\mathrm{a}\left(\mathrm{t}_{\mathrm{L}}\right) \int_{0}^{t_{1}} \frac{d t v_{\text {sound }}}{a(t)}$
So we expect peaks at
$l \sim l_{\text {sound }} \sim \mathrm{d}_{\text {sound }} / \mathrm{d}_{\mathrm{A}} \sim 1^{\mathrm{o}}$

Observations: $l_{\text {sound }} \sim 200=>1^{\circ}$

Baryon acoustic oscillations

Seen in galaxy correlations

Explaining cosmic acceleration

, Cosmological constant ~ vacuum energy
, Exotic matter

- Quintessence
- Phantom matter
- k-essence
- Braneworld models
-

Revise basic assumptions

- Non-homogenous matter/energy distribution
- Modified GR

Cosmological constant ~ vacuum energ y:

$$
\mathrm{G}_{\mu \nu}-\Lambda \mathrm{g}_{\mu \nu}=\frac{8 \pi G}{c^{2}} \mathrm{~T}_{\mu \nu} \Rightarrow \mathrm{G}_{\mu \nu}=\frac{8 \pi G}{c^{2}}\left[\mathrm{~T}_{\mu \nu}+\mathrm{g}_{\mu \nu} \Lambda /\left(\frac{8 \pi G}{c^{2}}\right)\right]
$$

GR: Absolute value of energy important
QFT (or even Heisenberg): zero-point energy E_{o}

Each mode has $\mathrm{E}_{0}=1 / 2 \hbar \omega=1 / 2 \hbar \sqrt{\overrightarrow{\mathrm{p}}^{2}+\mathrm{m}^{2}}$
$\Rightarrow \rho_{\mathrm{vac}}=\mathrm{E} / \mathrm{V}=\frac{\hbar}{2 V} \sum_{\text {all feilds }}\left[g_{i} \sum_{\text {all } \overline{\bar{p}}} \sqrt{\overrightarrow{\mathrm{p}}^{2}+\mathrm{m}_{\mathrm{i}}{ }^{2}}\right] \propto p_{\max }{ }^{4}$
Remember observations: $\rho_{\mathrm{vac}} \sim\left(2 \times 10^{-3} \mathrm{eV}\right)^{4}$
Also: Coincidence:

$$
\rho_{\mathrm{vac}} \sim \rho_{\mathrm{m}} \text { today }
$$

Anthropic reasoning ??

Quintessence (~ à la inflation but without reheating)
Suppose $\Lambda=0$

$$
\begin{aligned}
& \text { Scalar field } \mathrm{Q} \quad \mathcal{L}=1 / 2 \partial_{\mu} Q \partial^{\mu} Q-\mathrm{V}(Q) \mathrm{g}_{\mu \nu} \\
& \\
& \text { (put } \mathrm{c}=1) \\
& \frac{1}{2 c^{2}} \dot{Q}^{2}+\mathrm{V}(Q)=\rho_{\mathrm{Q}} \mathrm{c}^{2} \\
& \dot{Q}^{2} / 2-\mathrm{c}^{2} \mathrm{~V}(Q)=\mathrm{p}_{\mathrm{Q}} / \mathrm{c}^{2} \\
& \\
& \mathrm{w}_{\mathrm{Q}}=\mathrm{p}_{\mathrm{Q}} / \rho_{\mathrm{Q}}=\frac{1 / 2 \dot{\mathrm{Q}}^{2}-\mathrm{V}(\mathrm{Q})}{1 / 2 \dot{\mathrm{Q}}^{2}+\mathrm{V}(\mathrm{Q}} \\
& \text { so } \\
& 1 \geq \mathrm{w}_{\mathrm{Q}} \geq-1 \\
& \\
& \mathrm{w}_{\mathrm{Q}} \sim-1 \text { requires } \dot{Q} \sim 0
\end{aligned}
$$

Field equation:

$$
\ddot{Q}+3 \mathrm{H} \underbrace{\dot{Q}+\mathrm{V}_{, \mathrm{Q}}=0}_{\text {đHubble frictionò }}
$$

Quintessence (cont)
$\ddot{Q}+3 \mathrm{H} \dot{Q}+\mathrm{V}_{, \mathrm{Q}}=0$

For large H (early time, i e near big bang), the Hubble friction terms implies ñslow rollò
so that
$\ddot{Q} \sim 0$ and $\dot{Q} \sim-\mathrm{V}_{, \mathrm{Q}} / 3 \mathrm{H}$, which should be $\ll(\mathrm{V}(\mathrm{Q}))^{1 / 2}$

This requires a shallow $\mathrm{V}(\mathrm{Q})$, i e a very low (effective) mass

$$
\mathrm{m}_{\mathrm{Q}} \sim \mathrm{~V}_{, \mathrm{QQ}}<\mathrm{H}_{\mathrm{o}} \sim 10^{-32} \mathrm{eV}
$$

and for ρ_{Q} to give a contribution to ρ requires $\mathrm{Q} \sim \mathrm{M}_{\text {Planck }}=\sqrt{\frac{\hbar c}{8 \pi G}}$

Example 1:

$$
\begin{aligned}
& \text { Axion } \mathrm{V}(\mathrm{Q})=\mu^{4}[1+\cos (\mathrm{Q} / \mathrm{f})] \\
& \mu \sim 0,002 \mathrm{eV}, \mathrm{f} \sim 10^{18} \mathrm{GeV}
\end{aligned}
$$

More generally a potential with a (local) minimum
Scenario:
Hubble friction freezes the field for most of cosmic history.
As Hubble friction relaxes, the field oscillates at the bottom of the potential.

ñThawingòscenario

Example 2:

$$
\mathrm{V}(\mathrm{Q})=\mu^{4}\left(\mathrm{Q} / \mathrm{M}_{\text {Planck }}\right)^{-\mathrm{n}} \quad(\text { Peebles \& Ratra } 1988!)
$$

$$
\mathrm{V}(\mathrm{Q})=\mu^{4} \exp \left(-\lambda \mathrm{Q} / \mathrm{M}_{\text {Planck }}\right)
$$

Scenario:
Freezing at early times, when ρ_{Q} is subdominant, followed by gradual overtaking, resulting in dominance and (essentially) an exponential growth of $a(t)$.

ñTracker solutionò: The ñcoincidence problemò can be solved with clever adjustment of constants

ñPhantom modelsờ

For quintessence: $\mathrm{w}_{\mathrm{Q}}>-1($ or possibly $=-1)$
What if observation should imply $\mathrm{w}<-1$?

Friedmann: $\begin{aligned} & H^{2}=H_{o}{ }^{2} \Omega(1+z)^{3(1+w)} \\ & \Rightarrow a(t)=a\left(t_{p}\right)\left[-w+(1+w)\left(t / t_{p}\right)\right]^{2 / 3(1+w)}\end{aligned}$

ñBig ripò
With $w=-1,1$, the big rip occurs after ~ 100 Gy

Phantom model:
Field theory with negative kinetic energy , $-1 / 2 \dot{\mathrm{Q}}^{2}$!

$$
\mathrm{w}_{\mathrm{ph}}=\mathrm{p}_{\mathrm{ph}} / \rho_{\mathrm{ph}}=\frac{-1 / 2 \dot{\mathrm{Q}}^{2}-\mathrm{V}(\mathrm{Q})}{-1 / 2 \dot{\mathrm{Q}}^{2}+\mathrm{V}(\mathrm{Q})}=-1+\frac{\dot{\mathrm{Q}}^{2}}{1 / 2 \dot{\mathrm{Q}}^{2}-\mathrm{V}(\mathrm{Q})}
$$

But unstable as a quantum field theory!

Remark: This is roughly the same idea as F red Hoyle had in his $\tilde{\mathrm{n}}$ fieldòto explain the steady-state theory.

K-essence

Field theory Lagrangian density

$$
\mathcal{L}=\mathrm{K}_{\ell}\left(1 / 2 \partial_{\mu} Q \partial^{\mu} Q\right)-\mathrm{V}(Q)
$$

K is ñany functionò of $\mathrm{X}=1 / 2 \partial_{\mu} Q \partial^{\mu} Q$

$$
\mathrm{w}_{\mathrm{K}}=\frac{K(X)-V(Q)}{2 X K_{, X}(X)-K(X)+V(Q)}=-1+\frac{2 X K_{, X}(X)}{2 X K_{, X}(X)-K(X)+V(Q)}
$$

Chaplygin gas

(Michael Blomqvistôs master thesis 2004)
Postulate: Fluid with $\mathrm{p}=-\mathrm{A} / \rho, \mathrm{A}=\mathrm{constant}$
Friedmann $\Rightarrow \rho=\left(\sqrt{\left(A+B / a^{6}\right)}\right), \quad B=$ integration constant So

For early times, the Chaplygin gas behaves as a pressureless dust,
while
For later times, $\rho \sim$ constant $=>$ acceleration
Remarks

1. The Chaplygin gas is related to the so called ghost field approach where

Action $\mathrm{S}_{\text {ghost }}=\int d^{4} \mathrm{x} \mathrm{V}(\phi) \sqrt{-\operatorname{det}\left(g_{\mu \nu}+\partial_{\mu} \varphi \partial_{v} \varphi\right)}$
with a potential $\mathrm{V}(\phi)=\mathrm{Vo}_{\mathrm{o}} / \cosh \left(\phi / \phi_{0}\right)$
2. There are grave instability problems attached to these approaches

Varying neutrino mass

Is $\Lambda^{1 / 4} \sim 2 \times 10^{-3} \mathrm{eV} \sim \mathrm{m}_{\mathrm{v}}$ a clue?
Try usual field but with potential $\mathrm{V}(Q)=\mathrm{n}_{\mathrm{v}} \mathrm{m}_{\mathrm{v}}(Q)+\mathrm{V}_{\mathrm{o}}(Q)$
Neglecting \dot{Q}, one obtains

$$
\begin{aligned}
& \mathrm{w}=\mathrm{p} / \rho= \\
& =\left(-\mathrm{V}_{\mathrm{o}}\right) /\left[\mathrm{n}_{\mathrm{v}} \mathrm{~m}_{\mathrm{v}}(Q)+\mathrm{V}_{\mathrm{o}}(Q)\right]= \\
& =-1+\mathrm{n}_{\mathrm{v}} \mathrm{~m}_{\mathrm{v}}(Q) / \mathrm{V}_{\mathrm{o}}(Q)
\end{aligned}
$$

Modified gravit y

Constraints:

* GR very good, at least up to solar system scale, $\sim 100 \mu \mathrm{~m}$ to $\sim 10^{12} \mathrm{~m}$
* GR must be recovered also for early times

One approach:

$\tilde{\mathbf{n}}(\mathcal{R})$ gravityò

Action $\quad \mathrm{S}=1 / 2\left(\hbar / l_{\text {Planck }}{ }^{2}\right) \int d^{4} \mathrm{x} \sqrt{-g} R+\mathrm{S}_{\text {non grav }}$
where $R=$ the Ricci scalar, and $l_{\text {Planck }}=\sqrt{\frac{8 \pi G \hbar}{c^{3}}}$,
is generalized to

$$
\mathrm{S}_{\mathrm{f}}=-\left(\hbar / l_{\text {Planck }}{ }^{2}\right) \int d^{4} \mathrm{x} \sqrt{-g} R[1+\mathrm{f}(R)]+\mathrm{S}_{\text {non grav }}
$$

where $f(\mathbb{R})$ is ñanyò non-constant function.

$\tilde{\mathbf{n}}(\mathbb{R})$ gravityò (cont)

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{f}}=-\left(\hbar / l_{\text {Planck }}^{2}\right) \int d^{4} \mathrm{x} \sqrt{-g} R[1+\mathrm{f}(\mathcal{R})]+\mathrm{S}_{\text {non grav }} \\
& \mathcal{R}=6 \mathrm{H}^{2}[-\mathrm{q}+1]+6 \mathrm{~K} / \mathrm{a}^{2}=-24 \pi G(\rho+\mathrm{p})
\end{aligned}
$$

Remark: For theoretical reasons, \mathbb{R} is the only higher order (in $g_{m n}$) scalar that can appear (otherwise higher derivatives than 2 nd in field equations)

óf(\mathbb{R}) gravityô (cont)

Two further remarks:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{f}}=-1+\mathrm{A} / \mathrm{B} \tag{i}
\end{equation*}
$$

[A,B explicit (non-positive definite) functions of
H, f and derivatives of f.$]$
So essentially any value of w_{f} is possible
(ii) One can show that the new action is equivalent to introducing a new, scalar field degree of freedom. In fact, $\mathrm{f}(\mathbb{R})$ is a ñscalaronò field. One may then use the freedom to transform the metric so that one recovers essentially the quintessence model

As usual, a not-negligible amount of fine-tuning is needed to get a viable model

Another approach to modified gravity:

Scalar-tensor theories (c f Brans-Dicke)

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{s}-\mathrm{t}}=1 / 2\left(\hbar / l_{\text {Planck }}^{2}\right) \int d^{4} \mathrm{x} \sqrt{-g}[\mathrm{~b}(\phi) R+ \\
&\left.+1 / 2 \mathrm{~h}(\phi) \partial_{\mu} \phi \partial^{\mu} \phi-\mathrm{U}(\phi)\right]+\mathrm{S}_{\text {non grav }}
\end{aligned}
$$

involving what amounts to a ϕ-dependent gravitational constant.
(Recall: Possible observation of time-varying fundamental constants.)

A third approach to modified gravity :

ñDegravitationÒ

Modify E F E

$$
\mathrm{G}_{\mu \nu}=\frac{8 \pi G}{c^{2}} \mathrm{~T}_{\mu \nu}
$$

to $\left[1+\mathrm{F}\left(\mathrm{L}^{2} \partial_{\mu} \partial^{\mu}\right)\right] \mathrm{G}_{\mu \nu}=\frac{8 \pi G}{c^{2}} \mathrm{~T}_{\mu \nu}$
where L is some (large) length and
where F is a ñfiltering functionò obeying

$$
\begin{aligned}
& \mathrm{F}(\mathrm{x})->0 \text { for } \mathrm{x}->\text { oo (small scales agree with GR) } \\
& \mathrm{F}(\mathrm{x}) \gg 1 \text { for } \mathrm{x}->0 \text { (reducing the strength of } \\
& \text { gravity ï ñdegravitationingò- at large } \\
& \text { distances) }
\end{aligned}
$$

Brane-world models:

Dvali-Gabadadze-Porratiố ñDGP-modelò

A $3+1$ dimensional brane (= our world) imbedded in a $4+1$ dimensional bulk

$$
\text { Action } \begin{aligned}
\mathrm{S}_{\mathrm{DGP}}=1 / 2(& \hbar / l_{5}^{3} \int d^{5} \mathrm{x} \sqrt{-g}_{5} \mathrm{R}_{5}+ \\
& +1 / 2\left(\hbar / l_{\text {Planck }}^{2}\right) \int d^{4} \mathrm{x} \sqrt{-g} R+\mathrm{S}_{\text {non grav }}
\end{aligned}
$$

For small distances, gravity stays on the brane, so

$$
\text { gravitational potential } \sim \mathrm{r}^{-1}, \mathrm{r} \ll \mathrm{r}_{\mathrm{c}}=l_{5}^{3} / l_{\text {Planck }}{ }^{2}
$$

For large distances, gravity can ñescapeò into the 5th dimension, so

$$
\text { gravitational potential } \sim \mathrm{r}^{-2}, \mathrm{r} \gg \mathrm{r}_{\mathrm{c}}=l_{5}^{3} / l_{\text {Planck }}{ }^{2}
$$

so again, gravity is weakened on larger scales.

The DGP-model in more details
Action $\mathrm{S}_{\mathrm{DGP}}=1 / 2\left(\hbar / l_{5}^{3} \int d^{5} \mathrm{x} \sqrt{-g} \mathrm{R}_{5}+1 / 2\left(\hbar / l_{\text {Planck }}{ }^{2}\right) \int d^{4} \mathrm{x} \sqrt{-g} \mathrm{R}+\mathrm{S}_{\text {non grav }}\right.$
=> DGP Friedmann equation:

$$
\mathrm{H}^{2} \pm \mathrm{H} / \mathrm{r}_{\mathrm{c}}=\frac{8 \pi G}{3} \rho
$$

Early times means large H means ~ ordinary Friedmann
Later times :

$$
\begin{aligned}
\text { minus sign } \Rightarrow H & \sim 1 / r_{c} \text { so constant } H, \\
& \text { meaning } a \sim \exp (\alpha t) \Leftrightarrow \text { acc expansion. }
\end{aligned}
$$

Also: coincidence problem ñsolvedò with $\mathrm{r}_{\mathrm{c}} \sim \mathrm{H}_{\mathrm{o}}$

$$
\begin{array}{r}
\text { plus-sign }\left(\& \mathrm{H} \ll 1 / \mathrm{r}_{\mathrm{c}}\right) \Rightarrow \mathrm{H} / \mathrm{r}_{\mathrm{c}} \sim \frac{8 \pi G}{3} \rho, \\
\text { meaning no acceleration }
\end{array}
$$

INTERIM SUMMARY

1. With some fine-tuning, essentially all models are able to reproduce current observations
2. The cosmological constant gives a good over-all fit: $\Lambda \mathrm{CDM}$ ñconcordanceò model

3. Since the Λ CDM model gives so good an understanding of the early universe \ddot{i} inflation, primordial nucleosyntheses, $\mathrm{CMB}, \mathrm{BAO}$ Ï any other model must be required not to interfere too much in the description of these phenomena. In * other words, they should make themselves felt only after last scattering at z ~ 1090.

How might one differenti ate between models?
It is obviously important to study the period after $\mathrm{z} \sim 1090$, in particular after $\mathrm{z} \sim$ 10 by

- improving on present observation : CMB, SNe, BAO, etc
- polarization in CMB
- more detailed studies of galaxy correlations, galaxy-CMB-correlations
- growth of structure after last scattering

Growth of structure after Cast scattering

* Initial conditions are known from CMB
* Study evolution of small structures from then until now:

Linear perturbation GR-theory

```
\(\mathrm{ds}^{2}=\mathrm{c}^{2} \mathrm{dt}^{2}-\mathrm{a}(\mathrm{t})^{2} \mathrm{~d} \mathbf{x}^{2}->\mathrm{ds}^{2}=\mathrm{c}^{2}[1+2 \Psi(\mathbf{x}, \mathrm{t})] \mathrm{dt}^{2}-\mathrm{a}(\mathrm{t})^{2}[1 \mathrm{i} 2 \Phi(\mathbf{x}, \mathrm{t})] \mathrm{dx}^{2}\)
    \(\rho->\rho(1+\delta)\)
    \(\mathrm{p}->\mathrm{p}+\delta \mathrm{p} \quad\) etc
```

and then cancel all terms higher than linear in δ, Ψ, Φ, etc, in the EFE and energyconservation equation, followed by Fourier transforming the linear quantities.
[But: Beware of gauge ambiguities!]
$\mathrm{Eg} \quad \ddot{\delta_{q}}+2 \mathrm{H} \dot{\delta_{q}}+\left[\mathrm{v}_{\text {sound }}{ }^{2} \mathrm{q}^{2}-4 \pi \mathrm{G} \rho\right] \delta_{\mathrm{q}}=0$ describes the growth of density perturbations.

Ways to study such phenomena observationally are, besides those already mentioned,, e g, Weak gravitational lensing
(Integrated) Sachs- Wolfe effect
Using gamma ray burst as standard candles

Dur fature
ôBig ripô
$w \sim-1$, e g, Λ or ôfreezingô

