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Overview

Hadronic Physics

Flavour Physics

Effective (Field) Theories

Some recent applications of EFT: not representative,
just two of my recent papers
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Overview

Hadronic Physics

Flavour Physics

Effective (Field) Theories

Some recent applications of EFT: not representative,
just two of my recent papers

Hard Pion Chiral Perturbation Theory
JB+ Alejandro Celis, arXiv:0906.0302 and JB + Ilaria Jemos
coming

Leading Logarithms to five loop order and large N
JB + Lisa Carloni, arXiv:0909.5086 and coming
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Hadrons

Hadron: αδρoς (hadros: stout, thick)

Lepton: λǫπτoς (leptos: small, thin, delicate) (ς = σ 6= ζ)

In those days we had n, p, π, ρ, K, ∆ and e, µ.

Hadrons: those particles that feel the strong force

Leptons: those that don’t
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Hadrons

Hadron: αδρoς (hadros: stout, thick)

Lepton: λǫπτoς (leptos: small, thin, delicate) (ς = σ 6= ζ)

In those days we had n, p, π, ρ, K, ∆ and e, µ.

Hadrons: those particles that feel the strong force

Leptons: those that don’t

But they are fundamentally different in other ways too:

Leptons are known point particles up to about
10−19m ∼ ~c/(1 TeV)

Hadrons have a typical size of 10−15m, proton charge
radius is 0.875 fm
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Hadrons

Hadrons come in two types:
Fermions or half-integer spin: baryons (βαρυς barys,
heavy)
Bosons or integer spin: mesons (µǫςoς mesos,
intermediate)
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Hadrons

Hadrons come in two types:
Fermions or half-integer spin: baryons (βαρυς barys,
heavy)
Bosons or integer spin: mesons (µǫςoς mesos,
intermediate)

Main constituents:
Baryons: three quarks or three anti-quarks
Mesons: quark and anti-quark
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Hadrons

Hadrons come in two types:
Fermions or half-integer spin: baryons (βαρυς barys,
heavy)
Bosons or integer spin: mesons (µǫςoς mesos,
intermediate)

Main constituents:
Baryons: three quarks or three anti-quarks
Mesons: quark and anti-quark

Comments:
Quarks are as pointlike as leptons
Hadrons with different main constituents:
glueballs (no quarks), hybrids (with a basic gluon)
(probably) exist (mixing is the problem)
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Hadron(ic) Physics

The study of the structure and interactions of hadrons
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Flavour Physics

There are six types (Flavours) of quarks in three
generations or families

up, down; strange, charm; bottom and top

The only (known) interaction that changes quarks into
each other (violates the separate quark numbers) is the
weak interaction

Violates also discrete symmetries: Charge conjugation,
P arity and T ime reversal.
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Flavour Physics

There are six types (Flavours) of quarks in three
generations or families

up, down; strange, charm; bottom and top

The only (known) interaction that changes quarks into
each other (violates the separate quark numbers) is the
weak interaction

Violates also discrete symmetries: Charge conjugation,
P arity and T ime reversal.

The study of quarks changing flavours (mainly) in decays
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Flavour Physics

There are six types (Flavours) of quarks in three
generations or families

up, down; strange, charm; bottom and top

The only (known) interaction that changes quarks into
each other (violates the separate quark numbers) is the
weak interaction

Violates also discrete symmetries: Charge conjugation,
P arity and T ime reversal.

The study of quarks changing flavours (mainly) in decays

Experimental research typically done at flavour factories
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Flavour Physics: DAΦNE in Frascati
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Flavour Physics: KEK B in Tsukuba
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Flavour Physics: NA48/62 at CERN
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Flavour Physics

The Standard Model Lagrangian has four parts:

LH(φ)
︸ ︷︷ ︸

Higgs

+LG(W,Z,G)
︸ ︷︷ ︸

Gauge

∑

ψ=fermions
ψ̄iD/ ψ

︸ ︷︷ ︸

gauge-fermion

+
∑

ψ,ψ′=fermions
gψψ′ψ̄φψ′

︸ ︷︷ ︸

Yukawa

Last piece: weak interaction and mass eigenstates
different

Many extensions: much more complicated flavour
changing sector
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Flavour Physics

Experiments in flavour physics often very precise

New effects start competing with the weak scale: can
be very visible

If it changes flavour: limits often very good
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Flavour Physics

Experiments in flavour physics often very precise

New effects start competing with the weak scale: can
be very visible

If it changes flavour: limits often very good
s d

u, c

t

W

γ, g, Z

Heavy particles can
contribute in loop
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Flavour Physics

Experiments in flavour physics often very precise

New effects start competing with the weak scale: can
be very visible

If it changes flavour: limits often very good
s d

u, c

t

W

γ, g, Z

Heavy particles can
contribute in loop

Sometimes need a precise prediction for the standard
model effect
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Flavour Physics

A weak decay:

Hadron: 1 fm
W -boson: 10−3 fm

s

f

u

d
u
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Flavour Physics

A weak decay:

Hadron: 1 fm
W -boson: 10−3 fm

s

f

u

d
u
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Flavour Physics

Flavour and Hadron Physics: need structure of hadrons

Why is this so difficult?

Lund 14/4/2010 Hadrons, Flavours and Effective Theories Johan Bijnens p.13/75



Flavour Physics

Flavour and Hadron Physics: need structure of hadrons

Why is this so difficult?

QED L = ψγµ (∂µ − ieAµ) ψ − 1
4FµνF

µν

QCD: qγµ

(
∂µ − ig

2Gµ
)
q − 1

8tr (GµνG
µν)

Gµ = Ga
µλa is a matrix
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Flavour Physics

Flavour and Hadron Physics: need structure of hadrons

Why is this so difficult?

QED L = ψγµ (∂µ − ieAµ) ψ − 1
4FµνF

µν

QCD: qγµ

(
∂µ − ig

2Gµ
)
q − 1

8tr (GµνG
µν)

Gµ = Ga
µλa is a matrix

Fµν = ∂µAν − ∂νAµ

Gµν = ∂µGν − ∂νGµ − ig (GµGν − GνGµ)

gluons interact with themselves

e(µ) smaller for smaller µ, g(µ) larger for smaller µ

QCD: low scales no perturbation theory possible
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Comments

Same problem appears for other strongly interacting
theories

What to do:
Give up: well not really what we want to do
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Comments

Same problem appears for other strongly interacting
theories

What to do:
Give up: well not really what we want to do
Brute force: do full functional integral numerically
Lattice Gauge Theory:

discretize space-time
quarks and gluons: 8 × 2 + 3 × 4 d.o.f. per point
Do the resulting (very high dimensional) integral
numerically
Large field with many successes
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Comments

Same problem appears for other strongly interacting
theories

What to do:
Give up: well not really what we want to do
Brute force: do full functional integral numerically
Lattice Gauge Theory:

discretize space-time
quarks and gluons: 8 × 2 + 3 × 4 d.o.f. per point
Do the resulting (very high dimensional) integral
numerically
Large field with many successes
Not applicable to all observables
Need to extrapolate to small enough quark masses
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Comments

Same problem appears for other strongly interacting
theories

What to do:
Give up: well not really what we want to do
Brute force: do full functional integral numerically
Lattice Gauge Theory:

discretize space-time
quarks and gluons: 8 × 2 + 3 × 4 d.o.f. per point
Do the resulting (very high dimensional) integral
numerically
Large field with many successes
Not applicable to all observables
Need to extrapolate to small enough quark masses

Be less ambitious: try to solve some parts only: EFT
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Wikipedia

http://en.wikipedia.org/wiki/
Effective_field_theory

In physics, an effective field theory is an approximate theory
(usually a quantum field theory) that contains the
appropriate degrees of freedom to describe physical
phenomena occurring at a chosen length scale, but ignores
the substructure and the degrees of freedom at shorter
distances (or, equivalently, higher energies).
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Effective Field Theory (EFT)

Main Ideas:

Use right degrees of freedom : essence of (most)
physics

If mass-gap in the excitation spectrum: neglect degrees
of freedom above the gap.

Examples:







Solid state physics: conductors: neglect
the empty bands above the partially filled
one
Atomic physics: Blue sky: neglect atomic
structure
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EFT: Power Counting

➠ gap in the spectrum =⇒ separation of scales
➠ with the lower degrees of freedom, build the most
general effective Lagrangian
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EFT: Power Counting

➠ gap in the spectrum =⇒ separation of scales
➠ with the lower degrees of freedom, build the most
general effective Lagrangian

➠ ∞# parameters
➠ Where did my predictivity go ?
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EFT: Power Counting

➠ gap in the spectrum =⇒ separation of scales
➠ with the lower degrees of freedom, build the most
general effective Lagrangian

➠ ∞# parameters
➠ Where did my predictivity go ?

=⇒ Need some ordering principle: power counting
Higher orders suppressed by powers of 1/Λ
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EFT: Power Counting

➠ gap in the spectrum =⇒ separation of scales
➠ with the lower degrees of freedom, build the most
general effective Lagrangian

➠ ∞# parameters
➠ Where did my predictivity go ?

=⇒ Need some ordering principle: power counting
Higher orders suppressed by powers of 1/Λ

➠ Taylor series expansion does not work (convergence
radius is zero when massless modes are present)
➠ Continuum of excitation states need to be taken into
account
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Example: Why is the sky blue ?

System: Photons of visible light and neutral atoms
Length scales: a few 1000 Å versus 1 Å
Atomic excitations suppressed by ≈ 10−3
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Example: Why is the sky blue ?

System: Photons of visible light and neutral atoms
Length scales: a few 1000 Å versus 1 Å
Atomic excitations suppressed by ≈ 10−3

LA = Φ†
v∂tΦv + . . . LγA = GF 2

µνΦ†
vΦv + . . .

Units with h/ = c = 1: G energy dimension −3:
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Example: Why is the sky blue ?

System: Photons of visible light and neutral atoms
Length scales: a few 1000 Å versus 1 Å
Atomic excitations suppressed by ≈ 10−3

LA = Φ†
v∂tΦv + . . . LγA = GF 2

µνΦ†
vΦv + . . .

Units with h/ = c = 1: G energy dimension −3:

σ ≈ G2E4
γ
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Example: Why is the sky blue ?

System: Photons of visible light and neutral atoms
Length scales: a few 1000 Å versus 1 Å
Atomic excitations suppressed by ≈ 10−3

LA = Φ†
v∂tΦv + . . . LγA = GF 2

µνΦ†
vΦv + . . .

Units with h/ = c = 1: G energy dimension −3:

σ ≈ G2E4
γ

blue light scatters a lot more than red
{

=⇒ red sunsets
=⇒ blue sky

Higher orders suppressed by 1 Å/λγ.
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EFT: Why Field Theory ?

➠ Only known way to combine QM and special relativity
➠ Off-shell effects: there as new free parameters
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EFT: Why Field Theory ?

➠ Only known way to combine QM and special relativity
➠ Off-shell effects: there as new free parameters

Drawbacks
• Many parameters (but finite number at any order)

any model has few parameters but model-space is large
• expansion: it might not converge or only badly
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EFT: Why Field Theory ?

➠ Only known way to combine QM and special relativity
➠ Off-shell effects: there as new free parameters

Drawbacks
• Many parameters (but finite number at any order)

any model has few parameters but model-space is large
• expansion: it might not converge or only badly

Advantages
• Calculations are (relatively) simple
• It is general: model-independent
• Theory =⇒ errors can be estimated

• Systematic: ALL effects at a given order can be included
• Even if no convergence: classification of models often
useful
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Examples of EFT

Fermi theory of the weak interaction

Chiral Perturbation Theory: hadronic physics

NRQCD

SCET

General relativity as an EFT

2,3,4 nucleon systems from EFT point of view

Magnons and spin waves
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Chiral Perturbation Theory

Exploring the consequences of the chiral symmetry of QCD
and its spontaneous breaking using effective field theory
techniques
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Chiral Perturbation Theory

Exploring the consequences of the chiral symmetry of QCD
and its spontaneous breaking using effective field theory
techniques

Derivation from QCD:
H. Leutwyler, On The Foundations Of Chiral Perturbation Theory,
Ann. Phys. 235 (1994) 165 [hep-ph/9311274]
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The mass gap: Goldstone Modes

UNBROKEN: V (φ)

Only massive modes
around lowest energy
state (=vacuum)

BROKEN: V (φ)

Need to pick a vacuum
〈φ〉 6= 0: Breaks symmetry
No parity doublets
Massless mode along bottom

For more complicated symmetries: need to describe the
bottom mathematically: G → H =⇒ G/H

Lund 14/4/2010 Hadrons, Flavours and Effective Theories Johan Bijnens p.23/75



The two symmetry modes compared

Wigner-Eckart mode Nambu-Goldstone mode

Symmetry group G G spontaneously broken to subgroup H

Vacuum state unique Vacuum state degenerate

Massive Excitations Existence of a massless mode

States fall in multiplets of G States fall in multiplets of H

Wigner Eckart theorem for G Wigner Eckart theorem for H

Broken part leads to low-energy theorems

Symmetry linearly realized Full Symmetry, G, nonlinearly realized

unbroken part, H, linearly realized
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Some clarifications

φ(x): orientation of vacuum in every space-time point

Examples: spin waves, phonons

Nonlinear: acting by a broken symmetry operator
changes the vacuum, φ(x) → φ(x) + α

The precise form of φ is not important but it must
describe the space of vacua (field transformations
possible)

In gauge theories: the local symmetry allows the vacua
to be different in every point, hence the Goldstone
Boson might not be observable as a massless degree
of freedom.

Lund 14/4/2010 Hadrons, Flavours and Effective Theories Johan Bijnens p.25/75



The power counting

Very important:

Low energy theorems: Goldstone bosons do not
interact at zero momentum

Heuristic proof:

Which vacuum does not matter, choices related by
symmetry

φ(x) → φ(x) + α should not matter

Each term in L must contain at least one ∂µφ
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Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral
Symmetry Spontaneous Breakdown

Power counting: Dimensional counting
Expected breakdown scale: Resonances, so Mρ or higher

depending on the channel
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Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral
Symmetry Spontaneous Breakdown

Power counting: Dimensional counting
Expected breakdown scale: Resonances, so Mρ or higher

depending on the channel

Chiral Symmetry

QCD: 3 light quarks: equal mass: interchange: SU(3)V

But LQCD =
∑

q=u,d,s

[iq̄LD/ qL + iq̄RD/ qR − mq (q̄RqL + q̄LqR)]

So if mq = 0 then SU(3)L × SU(3)R.

Lund 14/4/2010 Hadrons, Flavours and Effective Theories Johan Bijnens p.27/75



Chiral Perturbation Theory

Degrees of freedom: Goldstone Bosons from Chiral
Symmetry Spontaneous Breakdown

Power counting: Dimensional counting
Expected breakdown scale: Resonances, so Mρ or higher

depending on the channel

Chiral Symmetry

QCD: 3 light quarks: equal mass: interchange: SU(3)V

But LQCD =
∑

q=u,d,s

[iq̄LD/ qL + iq̄RD/ qR − mq (q̄RqL + q̄LqR)]

So if mq = 0 then SU(3)L × SU(3)R.

Can also see that via v < c, mq 6= 0 =⇒
v = c, mq = 0 =⇒/
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Chiral Perturbation Theory

〈q̄q〉 = 〈q̄LqR + q̄RqL〉 6= 0
SU(3)L × SU(3)R broken spontaneously to SU(3)V

8 generators broken =⇒ 8 massless degrees of freedom
and interaction vanishes at zero momentum

We have 8 candidates that are light compared to hte other
hadrons: π0, π+, π−, K+, K−, K0, K0, η
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Chiral Perturbation Theory

〈q̄q〉 = 〈q̄LqR + q̄RqL〉 6= 0
SU(3)L × SU(3)R broken spontaneously to SU(3)V

8 generators broken =⇒ 8 massless degrees of freedom
and interaction vanishes at zero momentum

Power counting in momenta (all lines soft):

p2

1/p2

∫
d4p p4

(p2)2 (1/p2)2 p4 = p4

(p2) (1/p2) p4 = p4

Lund 14/4/2010 Hadrons, Flavours and Effective Theories Johan Bijnens p.28/75



Chiral Perturbation Theor ies

Baryons

Heavy Quarks

Vector Mesons (and other resonances)

Structure Functions and Related Quantities

Light Pseudoscalar Mesons
Two or Three (or even more) Flavours
Strong interaction and couplings to external
currents/densities
Including electromagnetism
Including weak nonleptonic interactions
Treating kaon as heavy

Many similarities with strongly interacting Higgs
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Hard pion ChPT?

In Meson ChPT: the powercounting is from all lines in
Feynman diagrams having soft momenta

thus powercounting = (naive) dimensional counting
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Hard pion ChPT?

In Meson ChPT: the powercounting is from all lines in
Feynman diagrams having soft momenta

thus powercounting = (naive) dimensional counting

Baryon and Heavy Meson ChPT: p, n, . . . B,B∗ or D,D∗

p = MBv + k

Everything else soft
Works because baryon or b or c number conserved
so the non soft line is continuous

p
π
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Hard pion ChPT?

In Meson ChPT: the powercounting is from all lines in
Feynman diagrams having soft momenta

thus powercounting = (naive) dimensional counting

Baryon and Heavy Meson ChPT: p, n, . . . B,B∗ or D,D∗

p = MBv + k

Everything else soft
Works because baryon or b or c number conserved
so the non soft line is continuous
Decay constant works: takes away all heavy
momentum
General idea: Mp dependence can always be
reabsorbed in LECs, is analytic in the other parts k.
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Hard pion ChPT?

(Heavy) (Vector or other) Meson ChPT:
(Vector) Meson: p = MV v + k

Everyone else soft or p = MV + k
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Hard pion ChPT?

(Heavy) (Vector or other) Meson ChPT:
(Vector) Meson: p = MV v + k

Everyone else soft or p = MV + k

But (Heavy) (Vector) Meson ChPT decays strongly

ρ ρ
π

π
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Hard pion ChPT?

(Heavy) (Vector or other) Meson ChPT:
(Vector) Meson: p = MV v + k

Everyone else soft or p = MV + k

But (Heavy) (Vector) Meson ChPT decays strongly
First: keep diagrams where vectors always present
Applied to masses and decay constants
Decay constant works: takes away all heavy
momentum

It was argued that this could be done, the
nonanalytic parts of diagrams with pions at large
momenta are reproduced correctly
Done both in relativistic and heavy meson formalism
General idea: MV dependence can always be
reabsorbed in LECs, is analytic in the other parts k.
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Hard pion ChPT?

Heavy Kaon ChPT:
p = MKv + k

First: only keep diagrams where Kaon always goes
through
Applied to masses and πK scattering and decay
constant Roessl,Allton et al.,. . .

Applied to Kℓ3 at q2
max Flynn-Sachrajda

Works like all the previous heavy ChPT
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Hard pion ChPT?

Heavy Kaon ChPT:
p = MKv + k

First: only keep diagrams where Kaon always goes
through
Applied to masses and πK scattering and decay
constant Roessl,Allton et al.,. . .

Applied to Kℓ3 at q2
max Flynn-Sachrajda

Flynn-Sachrajda also argued that Kℓ3 could be done for q2

away from q2
max.

JB-Celis Argument generalizes to other processes with
hard/fast pions and applied to K → ππ

General idea: heavy/fast dependence can always be
reabsorbed in LECs, is analytic in the other parts k.
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Hard pion ChPT?

nonanalyticities in the light masses come from soft lines

soft pion couplings are constrained by current algebra

lim
q→0

〈πk(q)α|O|β〉 = − i

Fπ
〈α|

[

Qk
5, O

]

|β〉 ,
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Hard pion ChPT?

nonanalyticities in the light masses come from soft lines

soft pion couplings are constrained by current algebra

lim
q→0

〈πk(q)α|O|β〉 = − i

Fπ
〈α|

[

Qk
5, O

]

|β〉 ,

Nothing prevents hard pions to be in the states α or β

So by heavily using current algebra I should be able to
get the light quark mass nonanalytic dependence
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Hard pion ChPT?

Field Theory: a process at given external momenta

Take a diagram with a particular internal momentum
configuration

Identify the soft lines and cut them

The result part is analytic in the soft stuff

So should be describably by an effective Lagrangian
with coupling constants dependent on the external
given momenta

If symmetries present, Lagrangian should respect them

Lagrangian should be complete in neighbourhood

Loop diagrams with this effective Lagrangian should
reproduce the nonanalyticities in the light masses
Crucial part of the argument
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Hard pion ChPT?

⇒ ⇒ ⇒

This procedure works at one loop level, matching at tree
level, nonanalytic dependence at one loop:

Toy models and vector meson ChPT JB, Gosdzinsky, Talavera

Recent work on relativistic meson ChPT Gegelia, Scherer et al.

Extra terms kept in K → 2π: a one-loop check

Some preliminary two-loop checks
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K → ππ: Tree level

(a) (b)

ALO
0 =

√
3i

2F 2

[

−1

2
E1 + (E2 − 4E3) M

2
K + 2E8M

4
K + A1E1

]

ALO
2 =

√

3

2

i

F 2

[

(−2D1 + D2) M
2
K

]
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K → ππ: One loop

(a) (b) (c) (d)

(e) (f)

Lund 14/4/2010 Hadrons, Flavours and Effective Theories Johan Bijnens p.37/75



K → ππ: One loop

Diagram A0 A2

Z −
2F2

3
ALO

0 −
2F2

3
ALO

2

(a)
√

3i
“

−
1
3
E1 + 2

3
E2M

2
K

”
q

3
2
i

“

−
2
3
D2M

2
K

”

(b)
√

3i
“

−
5
96

E1 −

`

7
48

E2 + 25
12

E3

´

M
2
K + 25

24
E8M

4
K

”
q

3
2
i

`

−
61
12

D1 + 77
24

D2

´

M
2
K

(e)
√

3i 3
16

A1E1

(f)
√

3i
`

1
8
E1 + 1

3
A1E1

´

The coefficients of A(M2)/F 4 in the contributions to A0 and A2. Z denotes the part from

wave-function renormalization.

A(M2) = − M2

16π2 log M2

µ2

Kπ intermediate state does not contribute, but did for
Flynn-Sachrajda
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K → ππ: One-loop

ANLO
0 = ALO

0

(

1 +
3

8F 2
A(M2)

)

+ λ0M
2 + O(M4) ,

ANLO
2 = ALO

2

(

1 +
15

8F 2
A(M2)

)

+ λ2M
2 + O(M4) .
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K → ππ: One-loop

ANLO
0 = ALO

0

(

1 +
3

8F 2
A(M2)

)

+ λ0M
2 + O(M4) ,

ANLO
2 = ALO

2

(

1 +
15

8F 2
A(M2)

)

+ λ2M
2 + O(M4) .

Match with three flavour SU(3) calculation Kambor, Missimer,
Wyler; JB, Pallante, Prades

A
(3)LO
0 = −

i
√

6CF 4
0

F KF 2

„

G8 +
1

9
G27

«

M
2
K , A

(3)LO
2 = −

i10
√

3CF 4
0

9F KF 2
G27M

2
K ,

When using Fπ = F
“

1 + 1
F2

A(M2) + M2

F2
lr4

”

, FK = F K

“

1 + 3
8F2

A(M2) + · · ·

”

,

logarithms at one-loop agree with above
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Hard Pion ChPT: A two-loop check

Similar arguments to JB-Celis, Flynn-Sachrajda work for the
pion vector and scalar formfactor

Therefore at any t the chiral log correction must go like
the one-loop calculation.

But note the one-loop log chiral log is with t >> m2
π

Predicts
FV (t,M2) = FV (t, 0)

(

1 − M2

16π2F 2 ln M2

µ2 + O(M2)
)

FS(t,M2) = FS(t, 0)
(

1 − 5
2

M2

16π2F 2 ln M2

µ2 + O(M2)
)

Note that FV,S(t, 0) is now a coupling constant and can
be complex
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Hard Pion ChPT: A two-loop check

Similar arguments to JB-Celis, Flynn-Sachrajda work for the
pion vector and scalar formfactor

Therefore at any t the chiral log correction must go like
the one-loop calculation.

But note the one-loop log chiral log is with t >> m2
π

Predicts
FV (t,M2) = FV (t, 0)

(

1 − M2

16π2F 2 ln M2

µ2 + O(M2)
)

FS(t,M2) = FS(t, 0)
(

1 − 5
2

M2

16π2F 2 ln M2

µ2 + O(M2)
)

Note that FV,S(t, 0) is now a coupling constant and can
be complex

Take the full two-loop ChPT calculation
JB,Colangelo,Talavera and expand in t >> m2

π.
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A two-loop check

Full two-loop ChPT JB,Colangelo,Talavera, expand in t >> m2
π:

FV (t,M2) = FV (t, 0)
(

1 − M2

16π2F 2 ln M2

µ2 + O(M2)
)

FS(t,M2) = FS(t, 0)
(

1 − 5
2

M2

16π2F 2 ln M2

µ2 + O(M2)
)

with

FV (t, 0) = 1 + t
16π2F 2

(
5
18 − 16π2lr6 + iπ

6 − 1
6 ln t

µ2

)

FS(t, 0) = 1 + t
16π2F 2

(

1 − 16π2lr4 + iπ − ln t
µ2

)

The needed coupling constants are complex

Both calculations have two-loop diagrams with
overlapping divergences

The chiral logs should be valid for any t where a
pointlike interaction is a valid approximation
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Hard Pion ChPT

Why is this useful:

Lattice works actually around the strange quark mass

need only extrapolate in mu and md.

Applicable in momentum regimes where usual ChPT
might not work

In progress: B → π semileptonic decays
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Leading Logarithms

Take a quantity with a single scale: F (M)

The dependence on the scale in field theory is typically
logarithmic

L = log (µ/M)

F = F0 + F 1
1 L + F 1

0 + F 2
2 L2 + F 2

1 L + F 2
0 + F 3

3 L3 + · · ·
Leading Logarithms: The terms Fm

m Lm

The Fm
m can be more easily calculated than the full result

µ (dF/dµ) ≡ 0

Ultraviolet divergences in Quantum Field Theory are
always local
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Renormalizable theories

Loop expansion ≡ α expansion

F = α+f1
1 α2L+f1

0 α2+f2
2 α3L2+f2

1 α3L+f2
0 α3+f3

3 α4L3+· · ·

f j
i are pure numbers
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Renormalizable theories

Loop expansion ≡ α expansion

F = α+f1
1 α2L+f1

0 α2+f2
2 α3L2+f2

1 α3L+f2
0 α3+f3

3 α4L3+· · ·

f j
i are pure numbers

µ
dF

dµ
≡ F ′, µ

dα

dµ
≡ α′, µ

dL

dµ
= 1

F ′ = α′ + f1
1 α2 + f1

1 2α′αL + f2
2 α32L + f2

2 3α′α2L2

+f2
1 α3+f2

1 3α′α2L+f2
0 3α′α2+f3

3 α33L2+f3
3 4α′α3L3+ · · ·
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Renormalizable theories

Loop expansion ≡ α expansion

F = α+f1
1 α2L+f1

0 α2+f2
2 α3L2+f2

1 α3L+f2
0 α3+f3

3 α4L3+· · ·

f j
i are pure numbers

µ
dF

dµ
≡ F ′, µ

dα

dµ
≡ α′, µ

dL

dµ
= 1

F ′ = α′ + f1
1 α2 + f1

1 2α′αL + f2
2 α32L + f2

2 3α′α2L2

+f2
1 α3+f2

1 3α′α2L+f2
0 3α′α2+f3

3 α33L2+f3
3 4α′α3L3+ · · ·

α′ = β0α
2 + β1α

3 + · · ·
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Renormalizable theories

Loop expansion ≡ α expansion

F = α+f1
1 α2L+f1

0 α2+f2
2 α3L2+f2

1 α3L+f2
0 α3+f3

3 α4L3+· · ·

f j
i are pure numbers

µ
dF

dµ
≡ F ′, µ

dα

dµ
≡ α′, µ

dL

dµ
= 1

F ′ = α′ + f1
1 α2 + f1

1 2α′αL + f2
2 α32L + f2

2 3α′α2L2

+f2
1 α3+f2

1 3α′α2L+f2
0 3α′α2+f3

3 α33L2+f3
3 4α′α3L3+ · · ·

α′ = β0α
2 + β1α

3 + · · ·
0 = F ′ =

(
β0 + f1

1

)
α2 +

(
2β0f

1
1 + 2f2

2

)
α3L +

(
β1 + 2β0f

1
0 + f2

1

)
α3 +

(
3β0f

2
2 + 3f3

3

)
α4L2 + · · ·
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Renormalizable theories

Loop expansion ≡ α expansion

F = α+f1
1 α2L+f1

0 α2+f2
2 α3L2+f2

1 α3L+f2
0 α3+f3

3 α4L3+· · ·

f j
i are pure numbers

µ
dF

dµ
≡ F ′, µ

dα

dµ
≡ α′, µ

dL

dµ
= 1

F ′ = α′ + f1
1 α2 + f1

1 2α′αL + f2
2 α32L + f2

2 3α′α2L2

+f2
1 α3+f2

1 3α′α2L+f2
0 3α′α2+f3

3 α33L2+f3
3 4α′α3L3+ · · ·

α′ = β0α
2 + β1α

3 + · · ·
0 = F ′ =

(
β0 + f1

1

)
α2 +

(
2β0f

1
1 + 2f2

2

)
α3L +

(
β1 + 2β0f

1
0 + f2

1

)
α3 +

(
3β0f

2
2 + 3f3

3

)
α4L2 + · · ·

β0 = −f1
1 = f2

2 = −f3
3 = · · ·
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Renormalization Group

Can be extended to other operators as well

Underlying argument always µ
dF

dµ
= 0.

Gell-Mann–Low, Callan–Symanzik, Weinberg–’t Hooft

In great detail: J.C. Collins, Renormalization

Relies on the α the same in all orders

LL one-loop β0

NLL two-loop β1, f1
0
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Renormalization Group

Can be extended to other operators as well

Underlying argument always µ
dF

dµ
= 0.

Gell-Mann–Low, Callan–Symanzik, Weinberg–’t Hooft

In great detail: J.C. Collins, Renormalization

Relies on the α the same in all orders

LL one-loop β0

NLL two-loop β1, f1
0

In effective field theories: different Lagrangian at each
order

The recursive argument does not work
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Weinberg’s argument

Weinberg, Physica A96 (1979) 327

Two-loop leading logarithms can be calculated using
only one-loop

Weinberg consistency conditions

ππ at 2-loop: Colangelo, hep-ph/9502285

General at 2 loop: JB, Colangelo, Ecker, hep-ph/9808421

Proof at all orders using β-functions
Büchler, Colangelo, hep-ph/0309049

Proof with diagrams: present work
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Weinberg’s argument

µ: dimensional regularization scale

d = 4 − w

loop-expansion ≡ ~-expansion

Lbare =
∑

n≥0

~
nµ−nwL(n)

L(n) =
∑

i




∑

k=0,n

c
(n)
ki

wk



O(n)
i

c
(n)
0i have a direct µ-dependence

c
(n)
ki k ≥ 1 only depend on µ through c

(m<n)
0i
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Weinberg’s argument

Ln
l l-loop contribution at order ~

n

Expand in divergences from the loops (not from the
counterterms) Ln

l =
∑

k=0,l
1

wk Ln
kl

Neglected positive powers: not relevant here, but
should be kept in general

{c}n
l all combinations c

(m1)
k1j1

c
(m2)
k2j2

. . . c
(mr)
krjr

with mi ≥ 1,
such that

∑

i=1,r mi = n and
∑

i=1,r ki = l.

{cn
n} ≡ {c(n)

ni }, {c}2
2 = {c(2)

2i , c
(1)
1i c

(1)
1k }

L(n) = n
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Weinberg’s argument

Mass = 0 + 0 1

+ 0 0 0 1 0

1

2 + 2 1

1

· · ·
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Weinberg’s argument

~
0: L0

0

~
1:

1

w

(
µ−wL1

00({c}1
1) + L1

11

)
+ µ−wL1

00({c}1
0) + L1

10
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Weinberg’s argument

~
0: L0

0

~
1:

1

w

(
µ−wL1

00({c}1
1) + L1

11

)
+ µ−wL1

00({c}1
0) + L1

10

Expand µ−w = 1 − w log µ +
1

2
w2 log2 µ + · · ·

1/w must cancel: L1
00({c}1

1) + L1
11 = 0

this determines the c1
1i

Explicit log µ: − log µ L1
00({c}1

0) ≡ log µ L1
11
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Weinberg’s argument

~
2:
1

w2

(
µ−2wL2

00({c}2
2) + µ−wL2

11({c}1
1) + L2

22

)

+
1

w

(
µ−2wL2

00({c}2
1) + µ−wL2

11({c}1
0) + µ−wL2

10({c}1
1) + L2

21

)

+
(
µ−2wL2

00({c}2
0) + µ−wL2

10({c}1
0) + L2

20

)

1/w2 and log µ/w must cancel
L2

00({c}2
2) + L2

11({c}1
1) + L2

22 = 0

2L2
00({c}2

2) + L2
11({c}1

1) = 0
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Weinberg’s argument

~
2:
1

w2

(
µ−2wL2

00({c}2
2) + µ−wL2

11({c}1
1) + L2

22

)

+
1

w

(
µ−2wL2

00({c}2
1) + µ−wL2

11({c}1
0) + µ−wL2

10({c}1
1) + L2

21

)

+
(
µ−2wL2

00({c}2
0) + µ−wL2

10({c}1
0) + L2

20

)

1/w2 and log µ/w must cancel
L2

00({c}2
2) + L2

11({c}1
1) + L2

22 = 0

2L2
00({c}2

2) + L2
11({c}1

1) = 0

Solution: L2
00({c}2

2) = −1

2
L2

11({c}1
1) L2

11({c}1
1) = −2L2

22
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Weinberg’s argument

~
2:
1

w2

(
µ−2wL2

00({c}2
2) + µ−wL2

11({c}1
1) + L2

22

)

+
1

w

(
µ−2wL2

00({c}2
1) + µ−wL2

11({c}1
0) + µ−wL2

10({c}1
1) + L2

21

)

+
(
µ−2wL2

00({c}2
0) + µ−wL2

10({c}1
0) + L2

20

)

1/w2 and log µ/w must cancel
L2

00({c}2
2) + L2

11({c}1
1) + L2

22 = 0

2L2
00({c}2

2) + L2
11({c}1

1) = 0

Solution: L2
00({c}2

2) = −1

2
L2

11({c}1
1) L2

11({c}1
1) = −2L2

22

Explicit log µ dependence (one-loop is enough)
1

2
log2 µ

(
4L2

00({c}2
2) + L2

11({c}1
1)

)
= −1

2
L2

11({c}1
1) log2 µ .
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All orders

~
n:
1

wn

(

µ−nwLn
00({c}n

n) + µ−(n−1)wLn
11({c}n−1

n−1) + · · ·

+µ−wLn
n−1 n−1({c}1

1) + Ln
nn

)

+
1

wn−1
· · ·
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All orders

~
n:
1

wn

(

µ−nwLn
00({c}n

n) + µ−(n−1)wLn
11({c}n−1

n−1) + · · ·

+µ−wLn
n−1 n−1({c}1

1) + Ln
nn

)

+
1

wn−1
· · ·

1/wn, log µ/wn−1, . . . , logn−1 µ/w cancel:
n∑

i=0

ijLn
n−i n−i({c}i

i) = 0 j = 0, .., n − 1.
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All orders

~
n:
1

wn

(

µ−nwLn
00({c}n

n) + µ−(n−1)wLn
11({c}n−1

n−1) + · · ·

+µ−wLn
n−1 n−1({c}1

1) + Ln
nn

)

+
1

wn−1
· · ·

1/wn, log µ/wn−1, . . . , logn−1 µ/w cancel:
n∑

i=0

ijLn
n−i n−i({c}i

i) = 0 j = 0, .., n − 1.

Solution: Ln
n−i n−i({c}i

i) = (−1)i

(

n

i

)

Ln
nn

explicit leading log µ dependence and divergence

logn µ
(−1)n−1

n
Ln

11({c}n−1
n−1) Ln

00({c}n
n) = − 1

n
Ln

11({c}n−1
n−1)
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Mass to~
2

~
1: 0 =⇒ 1
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Mass to~
2

~
1: 0 =⇒ 1

~
2: 1 0

1

=⇒ 2
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Mass to~
2

~
1: 0 =⇒ 1

~
2: 1 0

1

=⇒ 2

but also needs ~
1: 0 0

0

=⇒ 1
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Mass to order~
3

0 0 0

0

0 0

0

0

0 0

1 0

1

1 0

1

1

0

0

0

1

2 0

2

1

1

0

11
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Mass+decay to~5

~
1: 18 + 27

~
2: 26 + 45

~
3: 33 + 51

~
4: 26 + 33

~
5: 13 + 13

Calculate the divergence

rewrite it in terms of a local Lagrangian

Luckily: symmetry kept: we know result will be
symmetrical, hence do not need to explicitly rewrite the
Lagrangians in a nice form

We keep all terms to have all 1PI (one particle
irreducible) diagrams finite
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MassiveO(N) sigma model

O(N + 1)/O(N) nonlinear sigma model

Lnσ =
F 2

2
∂µΦT ∂µΦ + F 2χT Φ .

Φ is a real N + 1 vector; Φ → OΦ; ΦT Φ = 1.

Vacuum expectation value 〈ΦT 〉 = (1 0 . . . 0)

Explicit symmetry breaking: χT =
(
M2 0 . . . 0

)

Both spontaneous and explicit symmetry breaking

N -vector φ

N (pseudo-)Nambu-Goldstone Bosons

N = 3 is two-flavour Chiral Perturbation Theory
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MassiveO(N) sigma model:Φ vsφ

Φ1 =










√

1 − φT φ
F 2

φ1

F
...

φN

F










=

( √

1 − φT φ
F 2

φ
F

)

Gasser, Leutwyler

Φ2 =
1

√

1 + φT φ
F 2

(

1
φ
F

)

Φ3 =





1 − 1
2

φT φ
F 2

√

1 − 1
4

φT φ
F 2

φ
F





Weinberg only mass term

Φ4 =






cos
√

φT φ
F 2

sin
√

φT φ
F 2

φ√
φT φ




CCWZ
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MassiveO(N) sigma model: Checks

Need (many) checks:

use the four different parametrizations

compare with known results:

M2
phys = M2

(

1 − 1

2
LM +

17

8
L2

M + · · ·
)

,

LM =
M2

16π2F 2
log

µ2

M2

Usual choice M = M .

large N (but known results only for massless case)
Coleman, Jackiw, Politzer 1974
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Results

M2
phys = M2(1 + a1LM + a2L

2
M + a3L

3
M + ...)

LM = M2

16π2F 2 log µ2

M2

i ai, N = 3 ai for general N

1 − 1

2
1 − N

2

2 17

8

7

4
− 7N

4
+ 5 N

2

8

3 − 103

24

37

12
− 113N

24
+ 15 N

2

4
− N

3

4 24367

1152

839

144
− 1601 N

144
+ 695 N

2

48
− 135 N

3

16
+ 231 N

4

128

5 − 8821

144

33661

2400
− 1151407 N

43200
+ 197587 N

2

4320
− 12709 N

3

300
+ 6271 N

4

320
− 7 N

5

2
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Results

Fphys = F (1 + b1LM + b2L
2
M + b3L

3
M + ...)

i bi for N = 3 bi for general N

1 1 − 1

2
+ N

2

2 − 5

4
− 1

2
+ 7N

8
− 3N

2

8

3 83

24
− 7

24
+ 21N

16
− 73N

2

48
+ 1N

3

2

4 − 3013

288

47

576
+ 1345N

864
− 14077N

2

3456
+ 625N

3

192
− 105N

4

128

5 2060147

51840
− 23087

64800
+ 459413N

172800
− 189875N

2

20736
+ 546941 N

3

43200
− 1169 N

4

160
+ 3 N

5

2
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Results

〈q̄iqi〉 = −BF 2(1 + c1LM + c2L
2
M + c3L

3
M + ...)

M2 = 2Bm̂ χT = 2B(s 0 . . . 0)

s corresponds to ūu + d̄d current

i ci for N = 3 ci for general N

1 3

2

N

2

2 − 9

8

3N

4
− 3N

2

8

3 9

2

3N

2
− 3N

2

2
+ N

3

2

4 − 1285

128

145N

48
− 55N

2

12
+ 105N

3

32
− 105N

4

128

5 46 3007N

480
− 1471N

2

120
+ 557 N

3

40
− 1191 N

4

160
+ 3 N

5

2

Anyone recognize any funny functions?
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Large N

Power counting: pick L extensive in N ⇒ F 2 ∼ N , M2 ∼ 1

︸ ︷︷ ︸

2n legs
⇔ F 2−2n ∼ 1

Nn−1

⇔ N

1PI diagrams:

NL = NI −
∑

n
N2n + 1

2NI + NE =
∑

n
2nN2n






⇒ NL =

∑

n
(n − 1)N2n − 1

2
NE + 1

diagram suppression factor:
NNL

NNE/2−1
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Large N

diagrams with shared lines are suppressed

each new loop needs also a new flavour loop

in the large N limit only “cactus” diagrams survive:
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large N: propagator

Generate recursively via a Gap equation

( )−1= ( )−1+ + + + + · · ·

⇒ resum the series and look for the pole

M2 = M2
phys

√

1 + N
F 2 A(M2

phys)

A(m2) = m2

16π2 log µ2

m2 .

Solve recursively, agrees with other result

Note: can be done for all parametrizations
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large N: Decay constant

= + + + + + · · ·

⇒ and include wave-function renormalization

Fphys = F
√

1 + N
F 2 A(M2

phys)

Solve recursively, agrees with other result

Note: can be done for all parametrizations
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large N: Vacuum Expectation Value

= + + + + + · · ·

〈q̄q〉phys = 〈q̄q〉0
√

1 + N
F 2 A(M2

phys)

Comments:

These are the full∗ leading N results, not just leading log

But depends on the choice of N -dependence of higher
order coefficients

Assumes higher LECs zero ( < Nn+1 for ~
n)

Large N as in O(N) not large Nc
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Large N: Checking expansions

M2 = M2
phys

√

1 + N
F 2 A(M2

phys)

much smaller expansion coefficients than the table, try

M2 = M2
phys(1 + d1LMphys

+ d2L
2
Mphys

+ d3L
3
Mphys

+ ...)
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Large N: Checking expansions
i di, N = 3 di for general N

1 1

2
−1 + 1

2
N

2 − 13

8

1

4
− 1

4
N − 1

8
N

2

3 − 19

48

2

3
− 11

12
N + 1

16
N

3

4 − 5773

1152
− 8

9
+ 107

144
N − 1

6
N

2 − 1

16
N

3 − 5

128
N

4

5 − 3343

768
− 18383

7200
+ 130807

43200
N − 2771

2160
N

2 − 527

1600
N

3 + 23

640
N

4 + 7

256
N

5

i ai, N = 3 ai for general N

1 − 1

2
1 − N

2

2 17

8

7

4
− 7N

4
+ 5 N

2

8

3 − 103

24

37

12
− 113N

24
+ 15 N

2

4
− N

3

4 24367

1152

839

144
− 1601 N

144
+ 695 N

2

48
− 135 N

3

16
+ 231 N

4

128

5 − 8821

144

33661

2400
− 1151407 N

43200
+ 197587 N

2

4320
− 12709 N

3

300
+ 6271 N

4

320
− 7 N

5

2
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Numerical results
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3
M + · · ·

F = 90 MeV, µ = 1 GeV
Lund 14/4/2010 Hadrons, Flavours and Effective Theories Johan Bijnens p.69/75



Numerical results
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Other results

JB,Carloni to be published
massive case: ππ, FV and FS to 4-loop order
large N for these cases also for massive O(N).
done using bubble resummations or recursion
eqation which can be solved analytically (extension
similar to gap equation)
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Large N : ππ-scattering

Semiclassical methods Coleman, Jackiw, Politzer 1974

Diagram resummation Dobado, Pelaez 1992

A(φiφj → φkφl) =

A(s, t, u)δijδkl + A(t, u, s)δikδjl + A(u, s, t)δilδjk

A(s, t, u) = A(s, u, t)

Proof same as Weinberg’s for O(4)/O(3), group theory
and crossing
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Large N : ππ-scattering

Cactus diagrams for A(s, t, u)

Branch with no momentum: resummed by

Branch starting at vertex: resum by

= + + + + + · · ·

The full result is then

+ + + · · ·

Can be summarized by a recursive equation

= +
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Large N : ππ scattering

y = N
F 2 A(M2

phys)

A(s, t, u) =

s
F 2(1+y) −

M2

F 2(1+y)3/2

1 − 1
2

(
s

F 2(1+y) −
M2

F 2(1+y)3/2

)

B(M2
phys,M

2
phys, s)

or

A(s, t, u) =

s−M2
phys

Fphys

1 − 1
2

s−M2
phys

F 2
phys

B(M2
phys,M

2
phys, s)

M2 → 0 agrees with the known results

Agrees with our 4-loop results
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Conclusions Leading Logs

Several quantities in massive O(N) LL known to high
loop order

Large N in massive O(N) model solved

Had hoped: recognize the series also for general N

Limited essentially by CPU time and size of
intermediate files

Some first studies on convergence etc.

In progress: ππ, FV and FS to four-loop order

The technique can be generalized to other
models/theories

SU(N) × SU(N)/SU(N)

One nucleon sector
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Conclusions

A general introduction to Effective Field Theory

Two applications:
Hard Pion ChPT: a new application domain for EFT
and a first result
Leading Logarithms and large N : some progress in
getting results at high loop orders
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