Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

How migrating geese and falling pens inspire planet formation

Anders Johansen

Common Seminar, Department of Astronomy and Theoretical Physics Lund University, November 2010

About me

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

- Biträdande universitetslektor (associate senior lecturer) since May 2010
- Theorist working on planet formation and the dynamics of Keplerian discs
- Main scientific interests are exoplanets, hydrodynamics, turbulence, and supercomputing
- Master's programme coordinator in astrophysics

Formation of stars and discs

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

• The four stages of star formation:

(Lada & Wilking 1984; Adams, Lada, & Shu 1987)

- a Dense regions of molecular clouds collapse under their own gravity
- b Star forms in the centre, gaining material from the collapse
- c A several hundred AU circumstellar disc forms around the star because of angular momentum conservation and cooling
- d Envelope is emptied and the Keplerian accretion disc feeds gas to the star

Protoplanetary discs

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

- Strong infrared flux evidence of the presence of cold dust in orbit around the star
- Discs in the Orion nebula, as seen by the Hubble space telescope
- Disc masses from $0.001 M_{\odot}$ to $1 M_{\odot}$ (Beckwith et al. 1990)
- Typical sizes of hundreds of AU
- Life-times of approximately 1–5 million years (Haisch et al. 2001)

Protoplanetary discs

Planet formation

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

Planetesimal hypothesis of Safronov 1969:

Planets form in protoplanetary discs around young stars from dust and ice grains that stick together to form ever larger bodies

Dust to planetesimals

 $\mu m \rightarrow cm:$ contact forces during collision lead to sticking cm \rightarrow km: \ref{min}

Planetesimals to protoplanets $km \rightarrow 1,000 \ km$: gravity (run-away accretion)

Protoplanets to planets

 $\begin{array}{ll} \mbox{Gas giants:} & 10 \ \mbox{M}_\oplus \ \mbox{core accretes gas} \ (< 10^7 \ \mbox{years}) \\ \mbox{Terrestrial planets:} \ \mbox{protoplanetes collide} \ (10^7 - 10^8 \ \mbox{years}) \\ \end{array}$

Recipe for making planets?

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

- Hydrogen and Helium (98,5%)
- Dust and ice (1,5%)
- Coagulation (dust growth)
- \Rightarrow Planets?

(Paszun & Dominik)

⁽Blum & Wurm 2008)

Recipe for making planets?

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

- Hydrogen and Helium (98,5%)
- Dust and ice (1,5%)
- Coagulation (dust growth)
- \Rightarrow Planets? No

"Meter barrier"

- Growth to mm or cm, but not larger
- The problem: *small dust grains stick readily with each other – sand, pebbles, and rocks do not*

(Paszun & Dominik)

(Blum & Wurm 2008)

Overview of planets

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

Protoplanetary discs

Dust grains

Pebbles

Terrestrial planets

Gas giants and

ice giants

Countless asteroids and Kuiper belt objects

- + Moons of giant planets
- + More than 500 exoplanets

Dwarf planets

Sedimentation

Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

- Pebbles and rocks *sediment* to the mid-plane of the disc
- Further growth frustrated by high-speed collisions (>1-10 m/s) which lead to erosion and bouncing
- Layer not dense enough for gravitational instability
- ⇒ Need some way for particle layer to get dense enough to initiate gravitational collapse

Particle dynamics

Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

Gas accelerates solid particles through drag force:

(valid for particles smaller than the mean free path)

Important nondimensional parameter in protoplanetary discs:

 $\Omega_{\rm K} au_{
m f}$ ("Stokes" number)

At r=5 AU in MMSN we have $a_{ullet}/\mathrm{m}\sim0.3arOmega_{\mathrm{K}} au_{\mathrm{f}}.$

Terminal velocity approximation

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

• Equation of motion of particles (v) and gas (u)

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\nabla\Phi - \frac{1}{\tau_{\mathrm{f}}}(\mathbf{v} - \mathbf{u})$$

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = -\nabla\Phi - \frac{1}{\rho}\nabla P$$

- Particles do not care about the gas pressure gradient since they are very dense
- Subtract the two equations from each other and look for equilibrium $\frac{\mathrm{d}(\mathbf{v} - \mathbf{u})}{\mathrm{d}t} = -\frac{1}{\tau_{\mathrm{f}}}(\mathbf{v} - \mathbf{u}) + \frac{1}{\rho}\nabla P = 0$
- In equilibrium between drag force and pressure gradient force the particles have their *terminal velocity* relative to the gas

$$\delta \mathbf{v} = au_{\mathrm{f}} \frac{1}{
ho} \mathbf{\nabla} P$$

⇒ Particles move towards the direction of higher presure

Object falling in Earth's atmosphere

- Laser pen falls to the ground because of gravity
- But we can reinterpret this as the pen seeking higher gas pressure
- Obviously this analogy is more useful in protoplanetary discs...

Radial pressure gradient

Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

- The disc is hotter and denser close to the star
- Particles drift through the disc with up to 100 m/s (seeking the higher pressure)
- Ice particles sublimate when temperatures rise above freezing (a few AU from the star)

Pressure bumps

Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

(Figure from Whipple 1972)

- Particles seek the point of highest pressure
- \Rightarrow Particles get trapped in *pressure bumps*
 - Achieve high enough density for gravitational instability and planetesimal formation

Magnetorotational instability

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

• Magnetorotational instability likely source of turbulence and accretion in protoplanetary discs (Balbus & Hawley 1991)

- Pencil Code an international open-source numerical code for grid magnetohydrodynamics and dust particles
- \Rightarrow http://www.nordita.org/software/pencil-code/

High-pressure regions

Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability Outlook

(Johansen, Youdin, & Klahr 2009)

- Gas density shows the expected vertical stratification
- Gas column density shows presence of large-scale pressure fluctuations with variation only in the radial direction
- Pressure fluctuations of order 10%

Particle trapping

0.97

0.6

Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability Outlook

0.4 0.4 0.2 0.2 $y/(c, \Omega_0^{-1})$ //(c^{*}D⁰ 0.0 -0.2 -0.2 -0.4 -0.4 -0.6.0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 $x/(c_{0}\Omega_{0}^{-1})$ $x/(c_*\Omega_0^{-1})$ $<\Sigma>/\Sigma_{o}$ $<\Sigma_{n}>/(\epsilon_{n}\Sigma_{n})$ 0.98 1.02 0.0 3.0 100 100 80 80 $t^{(2\pi\Omega_{0}^{-1})}$ t 09 #(2πΩ₀⁻¹) 60 40 20 20 $-0.6 -0.4 -0.2 0.0 x/(c_{,}\Omega_{0}^{-1})$ 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 $x/(c_{n}\Omega_{0}^{-1})$

1.03 0.0

 $\Sigma_d / (\varepsilon_0 \Sigma_0)$

5.0

 $\Sigma \Sigma_0$

• Strong correlation between high gas density and high particle density (Johansen, Klahr, & Henning 2006)

Forming protoplanets in pressure bumps

(Johansen et al. 2007, Nature) (Johansen et al. 2010, A&A submitted)

0.6

Streaming instability

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

- Gas orbits slightly slower than Keplerian
- Particles lose angular momentum due to headwind
- Particle clumps locally reduce headwind and are fed by isolated particles

Johansen, Henning, & Klahr (2006); Youdin & Johansen (2007); Johansen & Youdin (2007)
 Youdin & Goodman (2005): "Streaming instability"

Clumping

Strong clumping in non-linear state of the streaming instability (Youdin & Johansen 2007, Johansen & Youdin 2007)

Why clump?

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Dependence on pebble abundance

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

Particles sizes 3–12 cm at 5 AU, 1–4 cm at 10 AU
 Increase pebble abundance Σ_{par}/Σ_{gas} from 0.01 to 0.03

Why is "metallicity" important?

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

- Gas orbits slightly slower than Keplerian
- Particles lose angular momentum due to headwind
- Particle clumps locally reduce headwind and are fed by isolated particles

• Clumping relies on particles being able to accelerate the gas towards Keplerian speed

Planetesimal formation movie

Johansen, Youdin, & Mac Low (2009)

Planetesimal formation movie

Johansen, Youdin, & Mac Low (2009)

Metallicity of host star

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

- First planet around solar-type star discovered in 1995 (Mayor & Queloz 1995)
- Today more than 500 exoplanets known
- Exoplanet probability increases sharply with metallicity of host star

- ⇒ Planetesimal formation shows similarly strong dependence on metallicity (Johansen et al. 2009)
- ⇒ Planetesimal formation stage may hold important clues to why the solar system formed when it did

The "clumping scenario" for planetesimal formation

Geese, pens, and planet formation

> Anders Johansen

Planet formation

Pressuregradient trapping

Streaming instability

Outlook

Dust growth by coagulation to a few cm

Spontaneous clumping in high-pressure regions and through streaming instabilities

 Gravitational collapse to 100-1000 km radius planetesimals

