Quasiperiodic Patterns in Biology and Elsewhere

Bo Söderberg
CBBP
Dept. of Astronomy and Theoretical Physics

LUND
UNIVERSITY

Talk plan

- Background
- Continuous RD systems
- Multiple species, D dim.
- Single species, one dim.
- Patterns and Newton
- Stability and Schrödinger - nogo
- Discrete RD systems
- Cellular networks
- One species, one dim. lattice
- Discrete Newton!
- Alternative dynamics: Active transport
- Auxin example - simple model
- Same patterns, better stability
- Quasi-periodic patterns from discrete spatial Newton eq.
- Area-preserving maps
- Auxin patterns, quasi-periodicity and conservative maps
- Conclusions

Continuous RD - dynamics

- Multispecies, D dim: general RD eqs. for $\left\{u_{i}(\mathbf{r}, t)\right\}$:

$$
\dot{u}_{i}=D_{i} \nabla^{2} u_{i}+f_{i}\left(u_{1}, \ldots, u_{n}\right)
$$

Continuous RD - dynamics

- Multispecies, D dim: general RD eqs. for $\left\{u_{i}(\mathbf{r}, t)\right\}$:

$$
\dot{u}_{i}=D_{i} \nabla^{2} u_{i}+f_{i}\left(u_{1}, \ldots, u_{n}\right)
$$

- Focus on single species, one dim: $u(x, t)$: RD eq:

$$
\dot{u}=u^{\prime \prime}+U^{\prime}(u)
$$

Continuous RD - dynamics

- Multispecies, D dim: general RD eqs. for $\left\{u_{i}(\mathbf{r}, t)\right\}$:

$$
\dot{u}_{i}=D_{i} \nabla^{2} u_{i}+f_{i}\left(u_{1}, \ldots, u_{n}\right)
$$

- Focus on single species, one dim: $u(x, t)$: RD eq:

$$
\dot{u}=u^{\prime \prime}+U^{\prime}(u)
$$

- Has a Lyapunov function $S=$ Lagrange action, decreases!

$$
\begin{aligned}
& S=\int\left(\frac{1}{2} u^{\prime 2}-U(u)\right) d x \\
& \Rightarrow \dot{S}=-\int \dot{u}^{2} d x \leq 0
\end{aligned}
$$

Continuous RD (1 sp, 1 dim) - stationary solutions

- Stable iff local min of Lyapunov S!

Continuous RD (1 sp, 1 dim) - stationary solutions

- Stable iff local min of Lyapunov S!
- Newton's eq:

$$
u^{\prime \prime}=-U^{\prime}(u)
$$

Continuous RD (1 sp, 1 dim) - stationary solutions

- Stable iff local min of Lyapunov S!
- Newton's eq:

$$
u^{\prime \prime}=-U^{\prime}(u)
$$

- Case 1 - Homogeneous state (no pattern): $u(x)=u_{0}$
- u_{0} must be (local extremum of $U(u)$)
- Stable if u_{0} local max (not min!)

Continuous RD (1 sp, 1 dim) - stationary solutions

- Stable iff local min of Lyapunov S!
- Newton's eq:

$$
u^{\prime \prime}=-U^{\prime}(u)
$$

- Case 1 - Homogeneous state (no pattern): $u(x)=u_{0}$
- u_{0} must be (local extremum of $U(u)$)
- Stable if u_{0} local max (not min!)
- Case 2 - Nontrivial pattern:
- Hamiltonian conserved (spatially - in x):

$$
u^{\prime 2} / 2+U(u)=E
$$

Continuous RD (1 sp, 1 dim) - stationary solutions

- Stable iff local min of Lyapunov S!
- Newton's eq:

$$
u^{\prime \prime}=-U^{\prime}(u)
$$

- Case 1 - Homogeneous state (no pattern): $u(x)=u_{0}$
- u_{0} must be (local extremum of $U(u)$)
- Stable if u_{0} local max (not min!)
- Case 2 - Nontrivial pattern:
- Hamiltonian conserved (spatially - in x):

$$
u^{\prime 2} / 2+U(u)=E
$$

- Pattern $u(x)$ defined by level curve of H in phase space u, u^{\prime} : \Rightarrow typically periodic patterns:

Continuous RD - stable patterns?

- Pattern $u(x)$ stable? Iff local min. of S ! How know?

Continuous RD - stable patterns?

- Pattern $u(x)$ stable? Iff local min. of S! How know?
- Linear stability analysis \Rightarrow Schrödinger eqn.!

$$
\begin{aligned}
& \dot{\epsilon}=-\mathbf{H} \epsilon \\
& \mathbf{H}=-\partial_{x}^{2}+V(x) \\
& V(x)=-U^{\prime \prime}(u(x))
\end{aligned}
$$

Continuous RD - stable patterns?

- Pattern $u(x)$ stable? Iff local min. of S ! How know?
- Linear stability analysis \Rightarrow Schrödinger eqn.!

$$
\begin{aligned}
& \dot{\epsilon}=-\mathbf{H} \epsilon \\
& \mathbf{H}=-\partial_{x}^{2}+V(x) \\
& V(x)=-U^{\prime \prime}(u(x))
\end{aligned}
$$

- Pattern $u_{0}(x)$ stable if \mathbf{H} positive semidef. (i.e. all eigenvalues $\lambda \geq 0$)

Continuous RD - stable patterns?

- Pattern $u(x)$ stable? Iff local min. of S! How know?
- Linear stability analysis \Rightarrow Schrödinger eqn.!

$$
\begin{aligned}
& \dot{\epsilon}=-\mathbf{H} \epsilon \\
& \mathbf{H}=-\partial_{x}^{2}+V(x) \\
& V(x)=-U^{\prime \prime}(u(x))
\end{aligned}
$$

- Pattern $u_{0}(x)$ stable if \mathbf{H} positive semidef. (i.e. all eigenvalues $\lambda \geq 0$)
- Zero mode: $\epsilon \propto u^{\prime}$ (sliding mode) has $\lambda=0$! Better be ground state! u^{\prime} cannot have zeros...

Continuous RD - stable patterns?

- Pattern $u(x)$ stable? Iff local min. of S! How know?
- Linear stability analysis \Rightarrow Schrödinger eqn.!

$$
\begin{aligned}
& \dot{\epsilon}=-\mathbf{H} \epsilon \\
& \mathbf{H}=-\partial_{x}^{2}+V(x) \\
& V(x)=-U^{\prime \prime}(u(x))
\end{aligned}
$$

- Pattern $u_{0}(x)$ stable if \mathbf{H} positive semidef. (i.e. all eigenvalues $\lambda \geq 0$)
- Zero mode: $\epsilon \propto u^{\prime}$ (sliding mode) has $\lambda=0$! Better be ground state! u^{\prime} cannot have zeros...
- Only chance if u monotonously interpolates between two deg. max of $U(u)$!

So no stable oscillatory patterns!

Discrete RD - general case

- In many biological applications: discrete units (e.g. cells)

Discrete RD - general case

- In many biological applications: discrete units (e.g. cells)
- Need discrete space version of RD dynamics

Discrete RD - general case

- In many biological applications: discrete units (e.g. cells)
- Need discrete space version of RD dynamics
- Most general case: consider RD version for multiple species on arbitrary graph G :

$$
\dot{\mathbf{u}}_{i}=\mathbf{D} \sum_{j \in \mathcal{N}(i)}\left(\mathbf{u}_{j}-\mathbf{u}_{i}\right)-\mathbf{f}(\mathbf{u})
$$

where $\mathcal{N}(i)$ defines the set of neighbor nodes of node i.

Discrete RD - one species, one dimension

- Again, focus on one species on a linear one-dim. lattice, described by $\left\{u_{i}(t)\right\}$.

Discrete RD - one species, one dimension

- Again, focus on one species on a linear one-dim. lattice, described by $\left\{u_{i}(t)\right\}$.
- Dynamics: one-dim. discrete RD (rescaled units):

$$
\dot{u}=u_{+}+u_{-}-f(u)
$$

in simplified notation, where u_{-}, u, u_{+}are short for u_{i-1}, u_{i}, u_{i+1}.

Discrete RD - one species, one dimension

- Again, focus on one species on a linear one-dim. lattice, described by $\left\{u_{i}(t)\right\}$.
- Dynamics: one-dim. discrete RD (rescaled units):

$$
\dot{u}=u_{+}+u_{-}-f(u)
$$

in simplified notation, where u_{-}, u, u_{+}are short for u_{i-1}, u_{i}, u_{i+1}.

- Properties similar to continuous case:
- Lyapunov: $S=\sum\left(-u u_{+}+F(u)\right)$, with $F^{\prime}=f$
- Stat. sol's, patterns stable if local minima of S.

Discrete RD - stable patterns?

- Homogeneous fixed points? Must obey $2 u_{0}=f\left(u_{0}\right)$

Discrete RD - stable patterns?

- Homogeneous fixed points? Must obey $2 u_{0}=f\left(u_{0}\right)$
- Nontrivial static patterns? Must obey Discrete Newton!:

$$
u_{+}+u_{-}=f(u)
$$

Discrete RD - stable patterns?

- Homogeneous fixed points? Must obey $2 u_{0}=f\left(u_{0}\right)$
- Nontrivial static patterns? Must obey Discrete Newton!:

$$
u_{+}+u_{-}=f(u)
$$

- Linear stability analysis leads to discrete space version of Schrödinger eq.:

$$
\dot{\epsilon}=-\mathbf{H} \epsilon=\epsilon_{+}+\epsilon_{-}-f^{\prime}(u) \epsilon
$$

with a positive-semidef. H required to have stable pattern

Discrete RD - stable patterns?

- Homogeneous fixed points? Must obey $2 u_{0}=f\left(u_{0}\right)$
- Nontrivial static patterns? Must obey Discrete Newton!:

$$
u_{+}+u_{-}=f(u)
$$

- Linear stability analysis leads to discrete space version of Schrödinger eq.:

$$
\dot{\epsilon}=-\mathbf{H} \epsilon=\epsilon_{+}+\epsilon_{-}-f^{\prime}(u) \epsilon
$$

with a positive-semidef. H required to have stable pattern

- No obvious sliding mode on a lattice, but still difficult to get stable non-tivial patterns.

Discrete RD - stable patterns?

- Homogeneous fixed points? Must obey $2 u_{0}=f\left(u_{0}\right)$
- Nontrivial static patterns? Must obey Discrete Newton!:

$$
u_{+}+u_{-}=f(u)
$$

- Linear stability analysis leads to discrete space version of Schrödinger eq.:

$$
\dot{\epsilon}=-\mathbf{H} \epsilon=\epsilon_{+}+\epsilon_{-}-f^{\prime}(u) \epsilon
$$

with a positive-semidef. H required to have stable pattern

- No obvious sliding mode on a lattice, but still difficult to get stable non-tivial patterns.
- So no-go?

Active transport - different dynamics, same patterns

- Can get similar static eqs., with an improved stability!

Active transport - different dynamics, same patterns

- Can get similar static eqs., with an improved stability!
- Ex.: Auxin (plant growth hormone governing various types of pattern-forming) see e.g. [Sahlin, BS, Jönsson 2009 and refs. therein]

Active transport - different dynamics, same patterns

- Can get similar static eqs., with an improved stability!
- Ex.: Auxin (plant growth hormone governing various types of pattern-forming) see e.g. [Sahlin, BS, Jönsson 2009 and refs. therein]
- Discrete space dynamics modelled with
- more complicated dynamics
- with passive diffusion as in RD, but with
- active transport replacing the local reaction term,
- feat. (dep. on version) e.g. matter conservation, scaling, and other nice properties.

Active transport - different dynamics, same patterns

- Can get similar static eqs., with an improved stability!
- Ex.: Auxin (plant growth hormone governing various types of pattern-forming) see e.g. [Sahlin, BS, Jönsson 2009 and refs. therein]
- Discrete space dynamics modelled with
- more complicated dynamics
- with passive diffusion as in RD, but with
- active transport replacing the local reaction term,
- feat. (dep. on version) e.g. matter conservation, scaling, and other nice properties.
- Written out in its full glory, the simplest auxin model dynamics reads:

$$
\dot{u}=D\left(u_{+}-2 u+u_{-}\right)+T\left(\frac{u u_{+}}{u_{++}+u}-u+\frac{u u_{-}}{u+u_{--}}\right)
$$

where D and T are parameters governing the rate of diffusive and active transport, respectively.

Auxin model - continued

- More compactly, the auxin dynamics can be written as a continuity eqn.:

$$
\dot{u}=-\Delta_{+} I=-\Delta_{+} u u_{-} \Delta_{-}\left(\frac{D}{u}-\frac{T}{u_{+}+u_{-}}\right),
$$

where $\Delta_{ \pm}$are the local difference operators, while I is the flux between neighbor cells.

Auxin model - continued

- More compactly, the auxin dynamics can be written as a continuity eqn.:

$$
\dot{u}=-\Delta_{+} I=-\Delta_{+} u u_{-} \Delta_{-}\left(\frac{D}{u}-\frac{T}{u_{+}+u_{-}}\right),
$$

where $\Delta_{ \pm}$are the local difference operators, while I is the flux between neighbor cells.

- Note linearity of eqs. \Rightarrow can rescale solutions.

Auxin model - continued

- More compactly, the auxin dynamics can be written as a continuity eqn.:

$$
\dot{u}=-\Delta_{+} I=-\Delta_{+} u u_{-} \Delta_{-}\left(\frac{D}{u}-\frac{T}{u_{+}+u_{-}}\right),
$$

where $\Delta_{ \pm}$are the local difference operators, while I is the flux between neighbor cells.

- Note linearity of eqs. \Rightarrow can rescale solutions.
- Pattern eqs. follow from $I=0$:

$$
\frac{D}{u}-\frac{T}{u_{+}+u_{-}}=-C
$$

where C is a positive integration constant.

Example - auxin model

- Miracle 1: the auxin pattern eq. can be turned around to yield a discrete Newton type pattern eq. with a simple, rational $f(u)$, here given by:

$$
f(u)=\frac{2 u}{\mu+K u}
$$

where $\mu \in[0,1]=2 D / T$ gives the relative balance between passive and active transport, while $K>0$ is a mere rescaling of C.

Example - auxin model

- Miracle 1: the auxin pattern eq. can be turned around to yield a discrete Newton type pattern eq. with a simple, rational $f(u)$, here given by:

$$
f(u)=\frac{2 u}{\mu+K u}
$$

where $\mu \in[0,1]=2 D / T$ gives the relative balance between passive and active transport, while $K>0$ is a mere rescaling of C.

- By rescaling u, K can be rescaled to an arbitrary number, suitably chosen as $1-\mu$, yielding the auxin pattern eqs. in the standard version:

$$
u_{+}+u_{-}=f(u)=\frac{2 u}{\mu+(1-\mu) u}
$$

with fixed points at $u_{0}=0,1$.

Example - auxin model

- Miracle 1: the auxin pattern eq. can be turned around to yield a discrete Newton type pattern eq. with a simple, rational $f(u)$, here given by:

$$
f(u)=\frac{2 u}{\mu+K u}
$$

where $\mu \in[0,1]=2 D / T$ gives the relative balance between passive and active transport, while $K>0$ is a mere rescaling of C.

- By rescaling u, K can be rescaled to an arbitrary number, suitably chosen as $1-\mu$, yielding the auxin pattern eqs. in the standard version:

$$
u_{+}+u_{-}=f(u)=\frac{2 u}{\mu+(1-\mu) u}
$$

with fixed points at $u_{0}=0,1$.

- This eq. will turn out to have some unusual properties!

Continuous vs. discrete Newton patterns

- Continuous Newton eqs. define area-preserving flows in phase space $u(x), u^{\prime}(x)$.

Continuous vs. discrete Newton patterns

- Continuous Newton eqs. define area-preserving flows in phase space $u(x), u^{\prime}(x)$.
- Discrete Newton eqs. sim. define area-preserving maps: with $v=u_{-}$we get

$$
\left\{\begin{array}{l}
u_{+}=f(u)-v, \\
v_{+}=u,
\end{array}\right.
$$

with a Jacobian \mathbf{J} having a unit determinant, $\operatorname{det} \mathbf{J}=1$!

Continuous vs. discrete Newton patterns

- Continuous Newton eqs. define area-preserving flows in phase space $u(x), u^{\prime}(x)$.
- Discrete Newton eqs. sim. define area-preserving maps: with $v=u_{-}$we get

$$
\left\{\begin{array}{l}
u_{+}=f(u)-v, \\
v_{+}=u,
\end{array}\right.
$$

with a Jacobian \mathbf{J} having a unit determinant, $\operatorname{det} \mathbf{J}=1$!

- Natural to study discrete Newton patterns in the u, v "phase" plane!

Continuous vs. discrete Newton patterns

- Continuous Newton eqs. define area-preserving flows in phase space $u(x), u^{\prime}(x)$.
- Discrete Newton eqs. sim. define area-preserving maps: with $v=u_{-}$we get

$$
\left\{\begin{array}{l}
u_{+}=f(u)-v, \\
v_{+}=u,
\end{array}\right.
$$

with a Jacobian \mathbf{J} having a unit determinant, $\operatorname{det} \mathbf{J}=1$!

- Natural to study discrete Newton patterns in the u, v "phase" plane!
- Continuous Newton flows are conservative: $H\left(u, u^{\prime}\right)=$ const.

Continuous vs. discrete Newton patterns

- Continuous Newton eqs. define area-preserving flows in phase space $u(x), u^{\prime}(x)$.
- Discrete Newton eqs. sim. define area-preserving maps: with $v=u_{-}$we get

$$
\left\{\begin{array}{l}
u_{+}=f(u)-v, \\
v_{+}=u,
\end{array}\right.
$$

with a Jacobian \mathbf{J} having a unit determinant, $\operatorname{det} \mathbf{J}=1$!

- Natural to study discrete Newton patterns in the u, v "phase" plane!
- Continuous Newton flows are conservative: $H\left(u, u^{\prime}\right)=$ const.
- Discrete Newtonian patterns normally are not conservative!

Discrete auxin patterns in the u, v plane

Typical auxin model patterns in the first quadrant of the u, v plane rotate around the $(1,1)$ fixed point (a center), and bounce off the $(0,0)$ one (a saddle).

Discrete auxin patterns in the u, v plane

Typical auxin model patterns in the first quadrant of the u, v plane rotate around the $(1,1)$ fixed point (a center), and bounce off the $(0,0)$ one (a saddle).

- Q: Why so smooth curves? Appear surprisingly quasiperiodic!

Discrete auxin patterns in the u, v plane

Typical auxin model patterns in the first quadrant of the u, v plane rotate around the $(1,1)$ fixed point (a center), and bounce off the $(0,0)$ one (a saddle).

- Q: Why so smooth curves? Appear surprisingly quasiperiodic!
- Maybe auxin map conservative, a.k.a. integrable?

Discrete auxin patterns in the u, v plane

Typical auxin model patterns in the first quadrant of the u, v plane rotate around the $(1,1)$ fixed point (a center), and bounce off the $(0,0)$ one (a saddle).

- Q: Why so smooth curves? Appear surprisingly quasiperiodic!
- Maybe auxin map conservative, a.k.a. integrable?

Compare to the chaotic trajectories of a generic, nonintegrable Newton eqs. in u, v plane:

Conservative discrete Newton patterns?

- Suspect conserved quantity $H(u, v)$ in u, v plane,

$$
H\left(u_{+}, u\right)=H\left(u, u_{-}\right)
$$

Conservative discrete Newton patterns?

- Suspect conserved quantity $H(u, v)$ in u, v plane,

$$
H\left(u_{+}, u\right)=H\left(u, u_{-}\right)
$$

- Expect H spatially mirror symmetric: $H\left(u, u_{-}\right)=H\left(u_{-}, u\right)$, so get:

$$
H\left(u_{+}, u\right)=H\left(u_{-}, u\right)=0
$$

Conservative discrete Newton patterns?

- Suspect conserved quantity $H(u, v)$ in u, v plane,

$$
H\left(u_{+}, u\right)=H\left(u, u_{-}\right)
$$

- Expect H spatially mirror symmetric: $H\left(u, u_{-}\right)=H\left(u_{-}, u\right)$, so get:

$$
H\left(u_{+}, u\right)=H\left(u_{-}, u\right)=0
$$

- Should follow from Newton eq. - rewrite this as

$$
u_{+}^{2} g(u)-u_{+} f(u) g(u)+h(u)=u_{-}^{2} g(u)-u_{-} f(u) g(u)+h(u)
$$ with arbitrary g, h - and identify:

$$
H\left(u_{+}, u\right)=u_{+}^{2} g(u)-u_{+} f(u) g(u)+h(u)
$$

Conservative discrete Newton patterns?

- Suspect conserved quantity $H(u, v)$ in u, v plane,

$$
H\left(u_{+}, u\right)=H\left(u, u_{-}\right)
$$

- Expect H spatially mirror symmetric: $H\left(u, u_{-}\right)=H\left(u_{-}, u\right)$, so get:

$$
H\left(u_{+}, u\right)=H\left(u_{-}, u\right)=0
$$

- Should follow from Newton eq. - rewrite this as

$$
u_{+}^{2} g(u)-u_{+} f(u) g(u)+h(u)=u_{-}^{2} g(u)-u_{-} f(u) g(u)+h(u)
$$ with arbitrary g, h - and identify:

$$
H\left(u_{+}, u\right)=u_{+}^{2} g(u)-u_{+} f(u) g(u)+h(u)
$$

- H symmetric, finally $\Rightarrow H$ must be biquadratic:

$$
H(u, v)=A u^{2} v^{2}-B u v(u+v)+C\left(u^{2}+v^{2}\right)+D u v-E(u+v)+F
$$

Auxin map conservative?

- Working backwards from general conserved $H(u, v)$: f must be broken quadratic:

$$
f(u)=\frac{B u^{2}-D u+E}{A u^{2}-B u+C}
$$

(with same B in both places!)

Auxin map conservative?

- Working backwards from general conserved $H(u, v)$: f must be broken quadratic:

$$
f(u)=\frac{B u^{2}-D u+E}{A u^{2}-B u+C}
$$

(with same B in both places!)

- What with auxin map? Not promising...

$$
f(u)=\frac{2 u}{\mu+(1-\mu) u}
$$

Auxin map conservative?

- Working backwards from general conserved $H(u, v)$: f must be broken quadratic:

$$
f(u)=\frac{B u^{2}-D u+E}{A u^{2}-B u+C}
$$

(with same B in both places!)

- What with auxin map? Not promising...

$$
f(u)=\frac{2 u}{\mu+(1-\mu) u}
$$

- ... but multiplying upstairs/downstairs by $(1-\mu) u-(2+\mu)$ helps! (Miracle nr 2!)

$$
f(u)=\frac{2(1-\mu) u^{2}-2(2+\mu) u}{(1-\mu)^{2} u^{2}-2(1-\mu) u-\mu(2+\mu)}
$$

Auxin map conservative!

- So, the auxin map is indeed conservative, with a biquadratic conserved $H(u, v)$, explaining the quasiperiodic-looking trajectories!

Auxin map conservative!

- So, the auxin map is indeed conservative, with a biquadratic conserved $H(u, v)$, explaining the quasiperiodic-looking trajectories!

The restriction of trajectories to the level curves of H gives. . .

Auxin map conservative!

- So, the auxin map is indeed conservative, with a biquadratic conserved $H(u, v)$, explaining the quasiperiodic-looking trajectories!

The restriction of trajectories to the level curves of H gives. . .

- ...smooth, non-chaotic patterns!

Conclusions

- Discrete Newtonian systems: rich structure, lots of well-known eqs. (Newton, Schrödinger,...) - can reuse old intuition.

Conclusions

- Discrete Newtonian systems: rich structure, lots of well-known eqs. (Newton, Schrödinger,...) - can reuse old intuition.
- Active transport helps stability of Newtonian patterns.

Conclusions

- Discrete Newtonian systems: rich structure, lots of well-known eqs. (Newton, Schrödinger,...) - can reuse old intuition.
- Active transport helps stability of Newtonian patterns.
- Unexpected spatial conservation law in auxin system.

Conclusions

- Discrete Newtonian systems: rich structure, lots of well-known eqs. (Newton, Schrödinger,...) - can reuse old intuition.
- Active transport helps stability of Newtonian patterns.
- Unexpected spatial conservation law in auxin system.
- Q: What with higher dim.? Similar special properties for certain choices of reaction term? Applications in astronomy?

Conclusions

- Discrete Newtonian systems: rich structure, lots of well-known eqs. (Newton, Schrödinger,...) - can reuse old intuition.
- Active transport helps stability of Newtonian patterns.
- Unexpected spatial conservation law in auxin system.
- Q: What with higher dim.? Similar special properties for certain choices of reaction term? Applications in astronomy?
- Extra take-home lesson: Be careful when simulating one-dim. Newton eqs: conservation law spoilt, except for a special integrable class of f !

That's all, folks!

THANK YOU!

