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Talk plan

◮ Background

◮ Continuous RD systems
◮ Multiple species, D dim.
◮ Single species, one dim.
◮ Patterns and Newton
◮ Stability and Schrödinger - nogo

◮ Discrete RD systems
◮ Cellular networks
◮ One species, one dim. lattice
◮ Discrete Newton!

◮ Alternative dynamics: Active transport
◮ Auxin example - simple model
◮ Same patterns, better stability

◮ Quasi-periodic patterns from discrete spatial Newton eq.
◮ Area-preserving maps
◮ Auxin patterns, quasi-periodicity and conservative maps

◮ Conclusions
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Continuous RD – dynamics

◮ Multispecies, D dim: general RD eqs. for {ui (r, t)}:

u̇i = Di∇
2ui + fi (u1, . . . , un)

◮ Focus on single species, one dim: u(x , t):
RD eq:

u̇ = u′′ + U ′(u)

◮ Has a Lyapunov function S = Lagrange action, decreases!

S =
∫ (

1
2u

′2 − U(u)
)

dx

⇒ Ṡ = −
∫

u̇2dx ≤ 0
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Continuous RD (1 sp, 1 dim) – stationary solutions

◮ Stable iff local min of Lyapunov S!

◮ Newton’s eq:
u′′ = −U ′(u)

◮ Case 1 – Homogeneous state (no pattern): u(x) = u0
– u0 must be (local extremum of U(u))
– Stable if u0 local max (not min!)

◮ Case 2 – Nontrivial pattern:
– Hamiltonian conserved (spatially – in x):

u′2/2 + U(u) = E
◮ Pattern u(x) defined by level curve of H in phase space u, u′:

⇒ typically periodic patterns:
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Continuous RD - stable patterns?

◮ Pattern u(x) stable? Iff local min. of S! How know?

◮ Linear stability analysis ⇒ Schrödinger eqn.!

ǫ̇ = −Hǫ
H = −∂2

x + V (x)
V (x) = −U ′′(u(x))

◮ Pattern u0(x) stable if H positive semidef. (i.e. all
eigenvalues λ ≥ 0)

◮ Zero mode: ǫ ∝ u′ (sliding mode) has λ = 0!
Better be ground state! u′ cannot have zeros. . .

◮ Only chance if u monotonously interpolates between two deg.
max of U(u)!

So no stable oscillatory patterns!
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Discrete RD – general case

◮ In many biological applications: discrete units (e.g. cells)

◮ Need discrete space version of RD dynamics

◮ Most general case: consider RD version for multiple species
on arbitrary graph G :

u̇i = D
∑

j∈N (i)

(uj − ui )− f(u)

where N (i) defines the set of neighbor nodes of node i .
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Discrete RD – one species, one dimension

◮ Again, focus on one species on a linear one-dim. lattice,
described by {ui (t)}.

◮ Dynamics: one-dim. discrete RD (rescaled units):

u̇ = u+ + u− − f (u)

in simplified notation, where u−, u, u+ are short for
ui−1, ui , ui+1.

◮ Properties similar to continuous case:
– Lyapunov: S =

∑

(−uu+ + F (u)), with F ′ = f

– Stat. sol’s, patterns stable if local minima of S .
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Discrete RD – stable patterns?

◮ Homogeneous fixed points? Must obey 2u0 = f (u0)

◮ Nontrivial static patterns? Must obey Discrete Newton!:

u+ + u− = f (u)

◮ Linear stability analysis leads to discrete space version of
Schrödinger eq.:

ǫ̇ = −Hǫ = ǫ+ + ǫ− − f ′(u)ǫ

with a positive-semidef. H required to have stable pattern

◮ No obvious sliding mode on a lattice, but still difficult to get
stable non-tivial patterns.

◮ So no-go?
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◮ Can get similar static eqs., with an improved stability!

◮ Ex.: Auxin (plant growth hormone governing various types of
pattern-forming) see e.g. [Sahlin, BS, Jönsson 2009 and refs.
therein]

◮ Discrete space dynamics modelled with
◮ more complicated dynamics
◮ with passive diffusion as in RD, but with
◮ active transport replacing the local reaction term,
◮ feat. (dep. on version) e.g. matter conservation, scaling, and

other nice properties.

◮ Written out in its full glory, the simplest auxin model
dynamics reads:

u̇ = D (u+ − 2u + u−) + T

(

uu+

u++ + u
− u +

uu−

u + u−−

)

where D and T are parameters governing the rate of diffusive
and active transport, respectively.
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Auxin model – continued

◮ More compactly, the auxin dynamics can be written as a
continuity eqn.:

u̇ = −∆+I = −∆+uu−∆−

(

D

u
−

T

u+ + u−

)

,

where ∆± are the local difference operators, while I is the flux
between neighbor cells.

◮ Note linearity of eqs. ⇒ can rescale solutions.

◮ Pattern eqs. follow from I = 0:

D

u
−

T

u+ + u−
= −C

where C is a positive integration constant.



Example – auxin model
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Example – auxin model

◮ Miracle 1: the auxin pattern eq. can be turned around to
yield a discrete Newton type pattern eq. with a simple,
rational f (u), here given by:

f (u) =
2u

µ+ Ku

where µ ∈ [0, 1] = 2D/T gives the relative balance between
passive and active transport, while K > 0 is a mere rescaling
of C .

◮ By rescaling u, K can be rescaled to an arbitrary number,
suitably chosen as 1− µ, yielding the auxin pattern eqs. in
the standard version:

u+ + u− = f (u) =
2u

µ+ (1− µ)u

with fixed points at u0 = 0, 1.

◮ This eq. will turn out to have some unusual properties!
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Continuous vs. discrete Newton patterns

◮ Continuous Newton eqs. define area-preserving flows in phase
space u(x), u′(x).

◮ Discrete Newton eqs. sim. define area-preserving maps: with
v = u− we get

{

u+ = f (u)− v ,
v+ = u,

with a Jacobian J having a unit determinant, det J = 1!

◮ Natural to study discrete Newton patterns in the u, v
“phase” plane!

◮ Continuous Newton flows are conservative: H(u, u′) =const.

◮ Discrete Newtonian patterns normally are not conservative!
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Discrete auxin patterns in the u, v plane

◮

Typical auxin model patterns
in the first quadrant of the
u, v plane rotate around the
(1, 1) fixed point (a center),
and bounce off the (0, 0) one
(a saddle).

◮ Q: Why so smooth curves? Appear surprisingly quasiperiodic!

◮ Maybe auxin map conservative, a.k.a. integrable?

◮

Compare to the chaotic tra-
jectories of a generic, non-
integrable Newton eqs. in u, v
plane:
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Conservative discrete Newton patterns?
◮ Suspect conserved quantity H(u, v) in u, v plane,

H(u+, u) = H(u, u−)

◮ Expect H spatially mirror symmetric: H(u, u−) = H(u−, u),
so get:

H(u+, u) = H(u−, u) = 0

◮ Should follow from Newton eq. – rewrite this as

u2+g(u)− u+f (u)g(u) + h(u) = u2−g(u)− u−f (u)g(u) + h(u)

with arbitrary g , h – and identify:

H(u+, u) = u2+g(u)− u+f (u)g(u) + h(u)

◮ H symmetric, finally ⇒ H must be biquadratic:

H(u, v) = Au2v2−Buv(u+v)+C (u2+v2)+Duv−E (u+v)+F
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Auxin map conservative?

◮ Working backwards from general conserved H(u, v):
f must be broken quadratic:

f (u) =
Bu2 − Du + E

Au2 − Bu + C

(with same B in both places!)

◮ What with auxin map? Not promising. . .

f (u) =
2u

µ+ (1− µ)u

◮ . . . but multiplying upstairs/downstairs by (1− µ)u − (2 + µ)
helps! (Miracle nr 2!)

f (u) =
2(1− µ)u2 − 2(2 + µ)u

(1− µ)2u2 − 2(1− µ)u − µ(2 + µ)
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Auxin map conservative!

◮ So, the auxin map is indeed conservative, with a biquadratic
conserved H(u, v), explaining the quasiperiodic-looking
trajectories!

◮
The restriction of trajectories to
the level curves of H gives. . .

◮ . . . smooth, non-chaotic patterns!
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Conclusions

◮ Discrete Newtonian systems: rich structure, lots of well-known
eqs. (Newton, Schrödinger,. . . ) – can reuse old intuition.

◮ Active transport helps stability of Newtonian patterns.

◮ Unexpected spatial conservation law in auxin system.

◮ Q: What with higher dim.? Similar special properties for
certain choices of reaction term? Applications in astronomy?

◮ Extra take-home lesson: Be careful when simulating one-dim.
Newton eqs: conservation law spoilt, except for a special
integrable class of f !



That’s all, folks!

THANK YOU!


