Turbulent Mixing in Galactic Disks

Chao-Chin Yang

Lund Observatory

Photo Credit: S. Brunier

Periodic Table of Elements

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/														
57 La Lanthanum 138.90547	58 Ce Cerium 140.116	59 ¹⁶ Pr ¹⁶ Paseodymium 140.90765	60 20 20 20 20 20 20 20 20 20 20 20 20 20	61 28 28 28 28 28 28 28 28 28 28 28 28 28	62 28 Sm 24 Samarium 150.36	63 28 Eu 25 Europium 22 151.904	64 26 Gd 25 Gadolinium 22	65 18 Tb 27 Terbium 158.92535	66 28 Dy 28 Dysprosium 28 162.500	67 28 Ho 29 Holmium 164.93032	68 2 Er 30 Erbium 2 167.259	69 10 10 10 10 10 10 10 10 10 10 10 10 10	70 28 Yb 32 Ytterbium 173.054	71 55 Lu 55 Lutetium 174.9008
89 to the second	90 Th Thorium 232,03808	91 18 Pa 18 Protactinium 2 231.03588	92 ² U ³⁵ Uranium ⁹ 238.02891	93 ************************************	94 20 Pu 35 Plutonium 2 (244) 2	95 Am ¹⁵ Americium ²⁵ (243)	96 ************************************	97 Bk Berkelium (247)	98 15 Cf 228 Californium 2 (251)	99 50 50 50 50 50 50 50 50 50 50 50 50 50	100 55 Fm 55 Fermium 52 (257) 52	101 10 Md 10 Mendelevium 10 (258)	102 10 No 10 Nobelium 2 (259)	103 Lr

Periodic Table for Astronomers

~70%

~28%

~2%

Red Supergiant

Main Sequence Star Explosive Outbursts

Supernova

Recycled Chemicals

The Life Cycle of Massive Stars

Credit: L. H.

Neutron Star / Pulsar

Black Hole

Star forming nebula

Interstellar Medium

Red Supergiant

Main Sequence Star Explosive Outbursts

Supernova

Recycled Chemical

The Life Cycle of Massive Stars

Credit: L. H.

Neutron Star / Pulsar

Black Hole

Star forming nebula

Interstellar Medium

Radial Metallicity Gradient The Milky Way

Radial Metallicity Gradient Nearby Disk Galaxies

Bresolin, Kennicutt, & Ryan-Weber (2012)

Failure of Closed-system Models

Credit: S. Brunier

Supernova-driven galactic fountains

Credit: S. Brunier

e.g., Spitoni, Recchi, & Matteucci (2008); Spitoni et al. (2009)

Radial inflows within the disk

Credit: S. Brunier

Mayor & Vigroux (1981); Lacey & Fall (1985); Pitts & Tayler (1989) Götz & Köppen (1992); Portinari & Chiosi (2000) Spitoni & Matteucci (2011); Bilitewski & Schönrich (2012)

Accretion/infall from halo/circumgalactic medium

Credit: S. Brunier

Tinsley & Larson (1978); Chiosi (1980); Matteucci & François (1989) Chiappini et al. (1997, 2001); Prantzos & Boissier (2000)

Merger/interaction history

344 C - 2

Credit: J. E. Barnes

Perez et al. (2006, 2011); Kewley et al. (2010); Rupke, Kewley, & Barnes (2010); Rupke, Kewley, & Chien (2010); Torrey et al., in prep.

Stellar radial migration

Credit: S. Brunier

Roškar et al. (2008a,b); Schönrich & Binney (2009)

Stellar radial migration

Roškar et al. (2008a,b); Schönrich & Binney (2009)

Turbulent Diffusion (?)

- Shakura & Sunyaev (1973) α-prescription
 - Kinematic viscosity: $v = \alpha c_s H$, $0 < \alpha < 1$
- Diffusion timescale: $\tau \sim L^2 / v$
 - Typical galactic disks: $c_s \sim 7$ km/s, $H \sim 200$ pc
 - $\tau \sim (10 \text{ Gyr}) (\alpha / 10^{-2})^{-1} \text{ for } L \sim 10 \text{ kpc}$

Turbulent Diffusion (?)

- Shakura & Sunyaev (1973) α-prescription
 - Kinematic viscosity: $v = \alpha c_s H$, $0 < \alpha < 1$
- Diffusion timescale: $\tau \sim L^2 / v$
 - Typical galactic disks: $c_s \sim 7$ km/s, $H \sim 200$ pc
 - $\tau \sim (10 \text{ Gyr}) (\alpha / 10^{-2})^{-1} \text{ for } L \sim 10 \text{ kpc}$

• Is that so?

Driving Turbulence in the Interstellar Medium

- Supernova explosions
 - Rayleigh-Taylor instability
- Gravitational instability
- Magneto-rotational instability
- Thermal instability

Crab Nebula • M1

Two-phase Model for the ISM

Two-phase Model for the ISM

HTTP://CHANDRA.HARVARD.EDU

Local Shearing Sheet for a Thin Gas Disk

Kim & Ostriker (2002)

 $L_x = \pi R_0 \sin i$

Local Shearing Sheet for a Thin Gas Disk

Kim & Ostriker (2002)

 $L_x = \pi R_0 \sin i$

lsothermal

3 kpc

 $// \bigoplus \mathbf{e}_{\phi}$

Isothermal Metal Injection Layer

Turbulent Steady StateSpiral ForcingMagnetic FieldsSurface Density

 $// \bigoplus \mathbf{e}_{\phi}$

Isothermal

Isothermal

Turbulent Steady StateSpiral ForcingMagnetic FieldsSurface Density

lsothermal

//**♠** e_φ

lsothermal

Power Spectrum of Mixed Metals

Yang & Krumholz (2012)

Following the Flow

Metal Tracer Field

Space

个

Power in k_y

Yang & Krumholz (2012)

Following the Flow

Metal Tracer Field

 $// \oint e_{\phi}$

Power in k_y

Time

Yang & Krumholz (2012)

Yang & Krumholz (2012)

Yang & Krumholz (2012)

Yang & Krumholz (2012)

Table 3

Properties of the Mixing Process for Different Metal Tracers in Model T

		F	irst Stage	Second Stage			
λ _{inj} (kpc)	t ₀ (Myr)	τ_D (Myr)	D (kpc ² Gyr ⁻¹)	τ _D (Gyr)	D (kpc ² Gyr ⁻¹		
3.1	100	48	5.2	0.20	1.2		
1.6	41	18	3.5	0.16	0.38		
0.78	22	8.6	1.8	0.13	0.12		
0.39	12	4.0	0.96	0.11	0.037		

Notes. λ_{inj} is the wavelength of the metal distribution injected from the left boundary. \bar{t}_0 denotes the approximate advection time when the mixing process transitions from the first stage to the second. τ_D and D respectively represent the decay time constant of the injected distribution and the corresponding diffusion coefficient at each stage.

 $D \sim \alpha c_s H$? $c_s H \simeq 0.7 \text{ kpc}^2 \text{ Gyr}^{-1}$

Yang & Krumholz (2012)

Conclusions

Turbulent mixing of metals...

- is efficient (timescale < orbital time).
- is not the same as the viscous stress of the gas.
- is important in setting metallicity gradients.

Where do we go from here?

Chemical Homogeneites in Old Open Clusters

Chemical Homogeneites in Old Open Clusters

Chemical Homogeneites in Moving Groups

Chemical Homogeneites in Moving Groups

HR 1614, de Silva et al. 2007a

Chemical Tagging Technique (Freeman & Bland-Hawthorn 2002)

Stay tuned...

