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Protein structure

• Exponentially many possible states 
• Unique “native” state
• Native structure by X-ray crystallography or NMR
• Local structure: α-helices and β-sheets
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Protein folding

• Protein with 100 amino acids, 3 states per amino acid       
⟶   3100 ~ 1047 possible structures

• Levinthal’s paradox: a random search for the native state 
would take the protein longer than the age of the universe

• Forces driving folding: H bonding, hydrophobic attraction,...

Do we have  
  (i) sufficient knowledge of the driving forces, and
  (ii) sufficiently fast computers 
to be able to simulate the folding of a 100-amino acid protein?  
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Folding of the Top7 protein

• Computationally designed & experimentally verified protein 
with >90 amino acids and a novel fold                                     
Kuhlman et al. Science 2003;302:1364-1368

• Folding simulations started from random initial conditions. 
Atomic protein representation, implicit water.                
General force field, Monte Carlo methods                              
Mohanty et al. Proteins 2013;81:1446-1456

Simulated structure and crystal structure
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Folding of Top7 
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Folding of Top7 
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Protein aggregation

Hartl and Hayer-Hartl NSMB 2009;16:574-581 
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Amyloid fibrils  
• Characteristic core of β-sheets 
• “Universal”: formed by many proteins   
• Interesting material properties
• Linked to many diseases, can be functional       

Dobson TBS 1999;24:329-332 
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Amyloid formation
• Fibril formation occurs with sigmoidal kinetics.              

Critical nucleus?

• Fibril growth occurs by monomer addition.                                    
Aggregation-competent form of the monomer?                 

?

Hellstrand et al. ACS Chem 
Neurosci 2009; 1:13-18

Petkova et al. PNAS 2002;99:16742-16747
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Fibril nucleation

• Experimentally difficult, transient species
• Simulations: system size limitations 
• Simple nucleation (3D): balance volume, surface terms.

No critical size in 1D

• Need to study the interplay between fibril length and width
• Sigmoidal kinetics independent of sequence details
⟶  coarse-grained modeling    
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Minimalistic model for amyloid formation

 Assume internal dynamics fast and can be averaged out
 Each peptide unit-length stick, b, on a cubic lattice
 H bonds in a direction p perpendicular to b
 Hydrophobic side s = b x p

(b) (c) (d)

(a)

Eb < Ec < Ed < 0

A Irbäck, S Æ Jónsson , N Linnemann, B Linse, S Wallin Phys Rev Lett 2013 
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Kinetics

• Monte Carlo single-peptide moves
• >100,000 peptides, 10 runs from random initial conditions
• Total fibril mass against Monte Carlo time
• Sigmoidal kinetics 
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Final configuration in a kinetic run

• ~40-50 fibrils, average mass ~1400
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Aggregate geometry 

• Equilibrium Monte Carlo simulation, 256 peptides
Cluster moves and generalized-ensemble techniques

• Aggregate length l and width w from inertia tensor
• Probability for a peptide to be part of an l x w aggregate

-  To reach a given l, a minimum w is required 
-  Multistep process
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AFM images of fibril formation

Jeong et al. JMB 2013; 425:1765-1781
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Specific proteins  

• amyloid β, Aβ (Alzheimer’s disease)  
• α-synuclein, αS (Parkinson’s disease)
• superoxide dismutase 1 (amyotrophic lateral sclerosis)
• apolipoprotein A-I 

Modeling:
• all-atom protein representation, implicit solvent
• one and the same force field (same as in Top7 study)
• Monte Carlo methods
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• Major constituent of Alzheimer plaques
• “Intrinsically disordered”, 42 amino acids
• Simulated free energy F(surface area,β-content): 

• Typical simulations: more disorder, smaller β-content

Aβ
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Comparison with NMR experiments 

• 3J(HN,Hα)-couplings: functions of a single backbone torsion 
angle (Karplus equation)

• Comparatively good agreement (alanine outlier)
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Exp.: Sgourakis et al. JMB 2007; 368:1448-1457

S Mitternacht, I Staneva, T Härd, A Irbäck Proteins 2010, J Mol Biol 2011  
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Experimental characterization of unstructured proteins

• Mainly bulk experiments, which must be interpreted with care 
• Single-molecule experiments are becoming available

xav xav
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AFM single-molecule pulling experiments

• Force versus distance
• Force peaks signal rupture events
• Aβ and αS: unexpected force resistance 

Sandal et al. PLoS Biology 2009; 6:e6

Hervás et al. PLoS Biology 2012; 10:e1001335
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AFM results for Aβ

• Sometimes no resistance, sometimes rupture forces as high 
as those for unusually stable, folded proteins

• Can a small 42-amino acid protein like Aβ be that force-
resistant? If so, what do the structures look like?

Hervás et al. PLoS Biology 2012; 10:e1001335
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Pulling simulations of Aβ

• Initial structures randomly drawn from simulated ensemble 

• Two examples of force vs distance trajectories (in total >500) 
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S Æ Jónsson, S Mitternacht & A Irbäck Biophys J 2013
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Pulling simulations of Aβ

• Plot symbols indicate initial structures 
• The color indicates maximum rupture force.                       

Black <20 pN, white 20-150 pN, red >150 pN  
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Comparison with fibril conformations 

• β-structure profiles for force-resistant Aβ and αS structures
• Similarities with β-strand locations in fibrils

Lührs et al. PNAS 2005;102:17342-17347

Vilar et al. PNAS 2008; 105; 8637-8642

Aβ

αS
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Summary —  Aβ and αS studies

• Aβ and αS pulling simulations reproduce the surprisingly high 
rupture forces observed in AFM experiments

• The mechanically most resistant structures 
− share a common architecture:                                            

a β-sheet with three strands in a meander pattern  
− show similarities with the fibril folds   

• Fibril-like structures might play a key role in aggregation

To do:
• Study fibril growth (monomer + fibril template)    
• Study aggregation-inhibiting small molecules 
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