

Cosmic explosions from compact binaries

Ross Church
Department of Astronomy and Theoretical Physics
Lund University

Collaborators include: Melvyn B. Davies (Lund), Andrew Levan (Warwick), Nial Tanvir (Leicester), Chris Tout (Cambridge)

Overview

Single star evolution
Physical processes in binary evolution
Explosions from compact binaries:
Short-duration gamma-ray bursts
Church et al. (20II) MNRAS 4I3 204
Long-duration gamma-ray bursts
Church et al. (2012) MNRAS 425470
Calcium-rich optical transients
Church et al. in prep.

Evolution of single, low-mass stars

E.g. the Sun

Today:

$$
\begin{aligned}
& R=R_{\odot} \\
& M=M_{\odot}
\end{aligned}
$$

H burning to
He at the
centre: the main sequence

Evolution of the Sun

Evolution of the Sun

Evolution of the Sun

Evolution of the Sun

No nuclear burning: a white dwarf

Evolution of a massive star

The end of a massive star

Nuclear reactions ultimately produce iron at the centre.

Once 1.44 solar masses of iron has accumulated the core collapses into a neutron star.

Some stars probably the most massive - produce black holes instead of neutron stars.

The end of a massive star

The collapse releases gravitational energy, which expels the star's outer layers.

An asymmetric explosion causes the neutron star (NS) to receive a velocity kick of $100-1000 \mathrm{~km} / \mathrm{s}$.

Binaries

About 80\% of solar-like stars are in a binary (a gravitationally bound pairs of stars orbiting their common centre of mass).

Duquennoy \& Mayor (1991)

80-100\% of massive stars are in binaries.
e.g. Kiminki \& Kobulniki (2012)

About 70\% of high-mass (O-type) stars interact significantly with their companion. Sana et al. (2013)

Only 50\% of low-mass (M-type) stars are in binaries (but low-mass stars are not very interesting).

Four additional processes in binaries

I. Tidal interactions
2. Mass transfer
3. Common envelope evolution
4. Gravitational radiation

I.Tidal interactions

In a close binary, tidal forces from one star will raise a bulge on the surface of the other.

Orbital angular frequency
Ω

Spin angular frequency
ω

$$
\text { If } \omega<\Omega
$$

The torque on the tidal bulge transfers angular momentum between the orbit and star. This can spin the star up.

I.Tidal interactions

Tides can transfer angular momentum and spin a star up.
If $\omega<\Omega$
Orbital angular frequency Ω

$$
\frac { \mathrm { d } \omega } { \mathrm { d } t } = f (\text { structure } , q) \longdiv { (\frac { R } { a }) ^ { 6 } (\Omega - \omega) }
$$

Tides are only significant in close binaries.

2. Mass transfer

The Roche Lobe is the equipotential surface connecting the two stars in the rotating frame

2. Mass transfer

When a star expands to fill its Roche lobe, mass transfers to its companion.

Steady mass transfer rate keeps the star
 just inside its Roche Lobe

3. Common envelope evolution

If the star expands as it loses mass, the mass transfer accelerates and runs away.

The envelope of the mass-losing star is shredded and surrounds both stars (the common envelope).

Core of masslosing star

Common envelope

3. Common envelope evolution

The stars spiral together, driving the envelope off.

A close binary of the mass-losing star's core and the companion is left.

The resulting binary is (much) smaller than the giant star was originally.

3. Common envelope evolution

The existence of common envelope evolution is implied by the observed compact binaries.

All the evidence for this process is indirect: the relationship between initial and final orbits is uncertain.

All close, evolved binaries must have undergone some form of interaction.

4. Gravitational radiation

Stars orbiting one another emit gravitational radiation.
This carries angular momentum away and ultimately the stars merge.
$\tau_{\text {merge }}=150 \operatorname{Myr}\left(\frac{a}{R_{\odot}}\right)^{4}\left(\frac{M_{\mathrm{tot}}}{M_{\odot}}\right)^{-2} \frac{M_{\odot}}{\mu}\left(1-e^{2}\right)^{7 / 2}$

Gravitational radiation is only significant for close binaries.

Gamma-ray bursts

"GRBs"

Gamma-ray bursts

Observation: a bright flash of gamma-rays, lasting for typically a few seconds, detected by space telescopes.

Followed by: an afterglow, which fades and reddens through X-rays, visible \& IR to radio. Need to detect rapidly in X -rays and follow up from ground and space.

Energetics suggest that we are seeing the birth of an accreting, rapidly-rotating black hole.

Short vs. long bursts

(Kouveliotou et al. I993; figure adapted from Horváth et al. 2006)

Short burst environments

See Fong et al. (2013) for a recent compilation

Host galaxies constrain progenitors

Bursts seen associated with elliptical galaxies
\Rightarrow progenitor can be old (not a massive star)
Bursts seen outside galaxies (not correlated with light)
\Rightarrow progenitor moves significantly from birthplace
Bursts are short and hard (high-energy photons)
\Rightarrow progenitor is relatively compact

This evidence points to an origin in a compact binary merger

Typical evolutionary pathway

Initial main sequence-main sequence binary
Stable mass transfer from primary
Helium star-main sequence star binary
First supernova
Neutron star-main sequence star binary

Typical evolutionary pathway

Compact binary model for GRBs

The stars evolve into a close double neutron star binary.
The binary emits gravitational waves.
This drives the neutron stars together until they merge.

Observed properties:
Old: gravitational wave inspiral can be very slow
Offsets: the supernovae produce a kick
Compact: the neutron stars are small ($\sim 20 \mathrm{~km}$)

Long-duration gamma-ray bursts

Long gamma-ray bursts: observations

Longer-lasting emission, softer spectrum, higher fluence
Found in star-forming regions out to very high redshift
Many bursts show co-incident Type lb/lc supernova
-Type lbc supernovae show neither H nor Si lines
-Thought to be the outcome of core collapse of massive stars (>40ish solar masses)
-Winds during the stars' lifetimes remove the hydrogen envelopes (and He in the case of Ic)

See Hjorth \& Bloom, arXiv I I 04.2274, for a review

Long gamma-ray bursts: standard model

A black hole forms from a massive star in a supernova.

Rapid rotation causes some material to fall back into a disc around the newlyformed black hole.

Same mechanism as for short-duration bursts, except for the presence of the star.

Woosley (I993) ApJ 405273

Problem

Strong winds carry off angular momentum
\Rightarrow spins star down

Potential solution

Can a binary companion prevent spin-down?

The evolutionary pathway, revisited

Initial main sequence-main sequence binary
Stable mass transfer from primary
Helium star-main sequence star binary
First supernova
Black hole-main sequence star binary

The evolutionary pathway, revisited

Binary is closest at the end \Rightarrow Tides can spin the star up before the final supernova

Common envelope evolution (round 2)
Final supernova

What effect does the companion have?

Side view

Top view

Typical accretion curve

Early times
the same as
single star
case

Late-time
flare
matches
those seen
in GRBs

Church et al. (2012) MNRAS 425470

Calcium-rich optical transients

AKA "gap transients"

Gap transients

Luminosities between those of novae and supernovae.
Spectra dominated by calcium.
Offset from the host galaxies.

Disrupted white dwarf progenitor?

If the mass transfer from a white dwarf to a neutron star is unstable, the white dwarf will be tidally disrupted and form an accretion disc around the neutron star.

Nuclear burning in the accretion disc can produce the observed calcium (Metzeer 2012, MNRAS 419 827).

These binaries contain a neutron star. Hence the supernova kick could be responsible for the offset.

Evolutionary pathway

Stars initially of similar mass

White dwarf forms from initially more massive star
\qquad

Predicted offsets (provisional!)

Summary

Most solar-mass and massive stars are in binaries.
The presence of a companion can significantly change a star's evolution, by tides, mass transfer, commonenvelope evolution and emission of gravitational waves.

Short gamma-ray bursts probably come from merging binaries of two neutron stars.

Some long gamma-ray bursts may come from binaries that form two black holes.

Calcium-rich "gap transients" may come from merging white dwarf - neutron star binaries.

