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Wet lab:

(all up to scanning)

Wet lab

Computational Biology

Data analysis:

E.g. supervised feature selection
Biomarker search, profiles, classifiers
for diagnosis, prognosis, personalized medicine

Pre-processing:

Quality control
Correction for technical effects (e.g. slide-to-slide effects)
Noise reduction (filter low-variance reporters)
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Vet lab: Data analysis:
(all up to scanning) E.g. supervised feature selection

Biomarker search, profiles, classifiers
for diagnosis, prognosis, personalized medicine

Wet lab

Pre-processing:

Quality control
Correction for technical effects (e.g. slide-to-slide effects)
Noise reduction (filter low-variance reporters)
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I: Print dots on surface. Each dot with specific “probes” (antibodies)
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Arraylt.com
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UNIVERSITY lI: Make molecules in sample flourescent (or binding flourescence)
[1I: Pour onto surface

IV: Scan. Intensity=multiplicity.
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Detection with
conjugated streptavidin

Exposure to antibody array

Borrebaeck, Wingren, et al.
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30.000 simultaneous measurements of mRNA.
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Wet lab: Data analysis:

(all up to scanning) E.g. supervised feature selection

Biomarker search, profiles, classifiers
for diagnosis, prognosis, personalized medicine

Wet lab

Pre-processing:

Quality control
Correction for technicgl effects (e.g. slide-to-slide effects)
oise reduction (fili€r low-variance reporters)
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Pre-processing

Three replicate regions

Positive controls

Negative controls
Positive controls

Negative controls
Positive controls

Negative controls
ositive controls
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LUN | Example of open pre-processing question CREATE
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Mean intensity of negative controls vary from one array to another.
How is that best compensated?
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1200

1000} i

800 |

<Ipy, >

o®
600 |- é -

]
(]
400 P

200

200 400 600 800 1000 1200 1400 1600 1800
<Opys -~




Computational Biology

5 ] . - (reate
UND Example of open pre-processing question ealih

UNIVERSITY

Quiality control is important. What are the criteria?

Pre-processing “necessary evil”.
These slides illustrated “necessary”
Soon: and “evil”
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(all up to scanning)
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Computational Biology

Data analysis:

E.g. supervised feature sel§ction
Biomarker search, profiles, ¢lassifiers

Pre-processing:

Quality control
Correction for technical effects (e.g. slide-to-slide effects)

Noise reduction (filter low-variance reporters)
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30.000 simultaneous measurements of mRNA.

Typically, 100-1000 samples.

Many measurements will fit perfectly!
Machine learning allows for arbitrarily complex combinations!
Solution: set aside validation set of samples
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Mattias Ohlsson:

The “curse of dimensionality”
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Feature selection using
standard backward
elimination and a standard
classification model
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MR RE T The "curse of dimensionality”
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This is artificial and completely random data!!!
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Elimination of least Idantification of kast
relevant antibody relevant antibody
(5b)
Repeated MNtimes foreach sub-parel ength
When all but ene antibody {once for each sample, foreach kngth)
ame eliminated the iteration
. . process B completed
Solution strategy applied
to a feature selection problem
. . v
using support vector machines The omer inwhich the anfibodies
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The antibody elimiration oder &
used to build antibody sub-pareks
of a desired lergth
The beat antibodies
fﬂ in & ub-panel
An SVM s traired using the
antibodiesintr'esub-r%rel 7)
Teat antibody panelon
The model s tested on tre (98) ] — independents amples
sample keftout Weing the
zame antibodies

Neamples Antibody fromclass 0 sample

A. Carlsson et al. PNAS 108, (2011)
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Wet lab: cannot be redone Data analysis: Sample annotations used

(all up to scanning) E.g. supervised feature selection

Biomarker search, profiles, classifiers

Wet lab

Pre-processing:
Independent of sample annotations

Quality control
Correction for technical effects (e.g. slide-to-slide effects)

Noise reduction (filter low-variance reporters)
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Data analysis:

Correct for multiple hypotheses
and/or

set aside test set for unbiased result

Result,

Wet lab Application

—

Controlled Bioinformatics,
Experiments Interpretation
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If anything before test set selection is reconsidered, ( Reate
the final result is no longer unbiased
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<

Result,

Wet lab Application

One possible source for low

reproduction rate observed for the
microbiology community in clinical

application attempts
(loannidis, PloS medicine 2005)

Bioniformatics,
Interpretation

Controlled
Experiments
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THE NEW YORKER (Reare
“THE TRUTH WEARS OFF’
December 13, 2010
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Washington’s lawyer surplus
The ] How to do a nuclear deal with Iran
IR0V A0 1 ADRA @  iovestment ips from Nobel economists
Junk bonds are back

BIR0N P 18T 2 The meaning of Sachin Tendulkar

Hegazaas cam

c CE“ CE Community effects:
- .
1 * Lack of funding / career paths for
GO E s reproducing experiments
Ensienium * Lack of publications of negative results

WRONG. ...

* Re-analysis of data to find good p-value
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Result,
Application

Main “solution”:
Stick to “good-enough protocol”

Bioniformatics,
Interpretation
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Wanted:

Pre-processing controls independent of
sample annotations

Result,

Wet lab Application

Controlled
Experiments

Bioniformatics,
Interpretation

Current project:
* More use of replicate information
* Validated Imputation
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There can be missing values
Many analysis tools require complete data matrices
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Simple: estimate with row average
Better: use data correlations

fmt protein
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fmtC
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SrtA
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Shown with Validated
Imputation:

Artificially remove data.
Compare imputed value
with known answer.

Standard use:

Use bench-mark
preprocessed data to test
imputation algorithms
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Our use:
Use bench-mark imputation to test pre-processing

pre-processing 1 #
pre-processing 2 X

feature 2

0 2 4 6 8 10 12 14 16 18 20 22
feature 1

Same data, two pre-processings:
Black: good noise reduction
Purple: very noisy

( Reate
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LUN Our use: CREQLE
UNIVERSITY Use bench-mark imputation to test pre-processing

pre-processing 1 #
pre-processing 2 X

feature 2

0 2 4 6 8 10 12 14 16 18 20 22
feature 1

Artificially remove feature 1 value for a sample (in both pre-processings)
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Our use:
Use bench-mark imputation to test pre-processing

pre-processing 1 #
pre-processing 2 X

feature 2

0 2 4 6 8 10 12 14 16 18 20 22
feature 1

Use feature 2 (and others) to estimate missing value
Good (black) pre-processing: somewhere close
Noisy (purple) pre-processing: almost anywhere
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Outliers among

triplicates or not?

expression

A

Purple outlier cutoff

Black outlier cutoff

Sample s:

Computational Biology

25
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Outlier detection among spot replicates:

Statistical model and Validated Imputation agree!

—— average relative rank
- — fdr

0 100 nof excluded replicates (Grubbs score) 00

( Reate
Health
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The microarray community is in need of pre-processing

| . REATE
LUN controls ignorant of sample annotations Health
UNIVERSITY
Result,
Wet lab Application
Bioniformatics,

%

Controlled

Experiments Interpretation

Success requires close collaboration between
experimental and computational expertise

While co-developing pre-processing protocols for the protein antibody
array, we have found promising methods of high relevance for
many microarray platforms.
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