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Malmö University Hospital, SE-205 02 Malmö,
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Summary

The prognosis of acute myocardial infarction (AMI) improves by early revascular-
ization. However the presence of left bundle branch block (LBBB) in the
electrocardiogram (ECG) increases the difficulty in recognizing an AMI and different
ECG criteria for the diagnosis of AMI have proved to be of limited value. The
purpose of this study was to detect AMI in ECGs with LBBB using artificial neural
networks and to compare the performance of the networks to that of six sets of
conventional ECG criteria and two experienced cardiologists. A total of 518 ECGs,
recorded at an emergency department, with a QRS duration >120 ms and an LBBB
configuration, were selected from the clinical ECG database. Of this sample 120
ECGs were recorded on patients with AMI, the remaining 398 ECGs being used as a
control group. Artificial neural networks of feed-forward type were trained to
classify the ECGs as AMI or not AMI. The neural network showed higher sensitivities
than both the cardiologists and the criteria when compared at the same levels of
specificity. The sensitivity of the neural network was 12% (P ¼ 0Æ02) and 19%
(P ¼ 0Æ001) higher than that of the cardiologists. Artificial neural networks can be
trained to detect AMI in ECGs with concomitant LBBB more effectively than
conventional ECG criteria or experienced cardiologists.

Introduction

It has been demonstrated that the prognosis of acute myocardial
infarction (AMI) improves by early revascularization (Kleiman

et al., 1994) (Muller & Topol, 1990); thus early diagnosis of

AMI is of vital importance. However, as the 12-lead electrocar-

diogram (ECG) is still the best and most readily available device

for such investigation and as the presence of left bundle branch

block (LBBB) makes the electrocardiographic manifestations of

acute myocardial ischaemia difficult to detect, the presence of

LBBB is an issue of major diagnostic importance. In unselected
populations of patients with myocardial infarction the preval-

ence of LBBB has been shown to be 5–10% (Eriksson et al.,

1998).

According to the recommendation of the ACC ⁄AHA

(ACC ⁄AHA Guidelines, 1999), patients presenting with symp-

toms suggestive of AMI and concomitant LBBB should be

considered for reperfusion therapy. Using this approach there is

a risk that patients without AMI are treated with thrombolysis
thus inducing a risk of bleeding and other adverse effects. The

opposite approach, not to treat patients with LBBB, would

exclude those patients with AMI from the benefits of reper-

fusion. It is therefore of interest to develop more accurate

methods for the early diagnosis of AMI in patients with LBBB.

Artificial neural networks have already been applied to

different aspects of automated interpretation of ECGs, for
example in the diagnosis of healed myocardial infarction

(Heden et al., 1994; Heden et al., 1996) and AMI (Heden et al.,

1997). These studies using neural networks have demonstrated

a significantly improved performance over both conventional

ECG criteria and experienced ECG readers.

The purpose of this study was to detect AMI in ECGs

with LBBB using artificial neural networks, the performance

of the neural networks being compared with that of six
sets of conventional ECG criteria and two experienced cardio-

logists.

Methods

Study population

This retrospective study was based on ECGs recorded at the

emergency department of the University Hospital in Lund,

Sweden from July 1990 to May 1997. Each ECG was classified as

being AMI if the recorded ECG originated from a patient who

was discharged from the coronary care unit with the diagnosis

of AMI. If the ECG originated from a patient who was

discharged with a diagnosis other than AMI, it was classified
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as being a �control ECG�. All ECGs with technical deficiencies and

pacemaker ECGs were excluded from both groups.

During the study, the AMI diagnosis required at least two of

the following three criteria to be met:

characteristic chest pain lasting >20 min,

elevated creatine kinase levels,

characteristic serial ECG changes.
Creatine kinase-B values greater than 0Æ23 lkat l)1 with a

typical rise and fall were used as diagnostics for AMI. The ECG

evidence including new Q waves in at least two adjacent leads

and ⁄ or persistent T inversions in more than two adjacent leads

after a newly developed ST elevation in those leads. A senior

cardiologist at the department of cardiology confirmed each

discharge diagnosis.

From the AMI and the control group, ECGs with LBBB were
identified in a two step procedure. In the first step all ECGs with

a QRS duration >120 ms were selected, this being based on the

measurement program of the computerized electrocardiograph.

In the second step a cardiologist visually analysed all ECGs

selected in the first step and made the final selection according to

the following criteria (Havelda et al., 1982):

QRS duration >120 ms,

QS or rS pattern in V1,
predominantly upright complexes with broad waves in the

leads, aVL, I and V5 or V6.

After this procedure the final data set consisted of 518 ECGs

with LBBB configuration, of which 120 were recorded on

patients with AMI and 398 on control patients. The prevalence

of LBBB was 6Æ8% in the AMI group and 3Æ6% in the control

group.

The AMI group consisted of 74 ECGs recorded on males and
46 ECGs recorded on females. The mean age of the groups was

77Æ4 (±9Æ1) years. The control group was composed of 202

ECGs recorded on males and 196 ECGs recorded on females. The

mean age of this group was 75Æ7 (±12Æ8) years.

Electrocardiography

The 12-lead ECGs were recorded by computerized electrocar-

diographs (Siemens-Elema AB, Solna, Sweden), with 11

measurements from each of the 12 leads being selected for
further analysis: QRS duration, QRS area, Q, R and S

amplitudes and six ST-T measurements (ST-J amplitude, ST

slope, ST amplitude 2 ⁄ 8, ST amplitude 3 ⁄ 8, positive T

amplitude and negative T amplitude). The ST amplitude 2 ⁄ 8
and ST amplitude 3 ⁄ 8 were obtained by dividing the interval

between ST-J point and the end of the T wave into eight parts

of equal duration. The amplitudes at the end of the second and

the third intervals denoted ST amplitude 2 ⁄ 8 and ST amplitude
3 ⁄ 8. In total 132 measurements from each 12-lead ECG were

used.

Because of the high degree of correlation between the

measurements taken from the 12-lead ECGs, the data set

comprising the 132 measurements for each case was reduced to

a smaller set of more �effective� variables by means of principal

component analysis (Jollife, 1986). Prior to this analysis the

measurements were grouped into the following eight sets of

measurements namely: QRS durations, QRS areas, Q amplitudes,

R amplitudes, S amplitudes, ST amplitudes, ST slopes and

positive ⁄ negative T amplitudes. Each of these sets was then

subjected to principal component analysis reduction, for

example, the 12 ST slope measurements (one from each lead)
were reduced to two variables. Using this technique the final

data set was reduced to 30 variables.

Artificial neural networks

A general introduction to the subject of artificial neural networks

can be found elsewhere (Cross et al., 1995). Neural networks

with standard feed-forward, multilayer perceptron architecture

were used in this study. The networks contained one input

layer, one hidden layer and one output layer. The input layer
comprised 30 nodes, one for each of the input variables, the

hidden layer contained 12 nodes and the output layer consisted

of one node. The latter encoded the output as to whether the

patient suffered from AMI or not.

A Kullback–Liebler error function was implemented together

with a Langevin extension (Rögnvaldsson, 1994) of the back-

propagation updating rule. Langevin updating consists of

adding a random Gaussian component to the weight updates,
which has the effect of speeding up the minimization

procedure.

To assess the generalization performance a test set is needed.

A common procedure is to divide the full data set into one test

set and one training set, using the training set to construct the

neural networks and test its performance on the test set. To

reduce a possible bias because of a particular test ⁄ training split,

the full data set (518 ECGs) was randomly divided into three
equally sized subsets (172 ⁄173 ⁄173). This division resulted in

three unique test sets and their corresponding training sets. For

each of the three training sets a neural network classifier was

constructed and its performance was tested on the correspond-

ing test set. The results presented in this paper are based on all

three test sets, thus comprising the full data set. It is important to

notice that each of the test sets was never part of the training

procedure, which is described below and was repeated three
times, one for each training set.

When training a neural network, particularly for small sized

training sets, it is important to avoid over-training, which

often decreases the generalization ability. For the neural

networks used in this paper a weight elimination regulariza-

tion term was employed (Hanson & Pratt, 1989). The amount

of regularization is controlled by a regularization parameter.

This was determined using a five-fold cross-validation scheme
on the training set, where a range of regularization parameters

were tested. The regularization parameter that corresponded to

the smallest average validation error was selected and used for

training a committee of 50 neural networks on the full

training set. The output from the committee was calculated as

the mean of the output from all 50 neural network members.
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All calculations were undertaken using the JETNET 3Æ0 package

(Peterson et al., 1994).

Cardiologists

The performance of the neural networks was compared with

that of two cardiologists, one, the head of the coronary care unit

had 25 years of experience in reading ECGs and the other

10 years. The 518 ECGs were presented to the cardiologists in
random order without any supporting information and each

ECG was then classified independently by the cardiologists as

AMI or not AMI.

ECG criteria

The performance of the neural networks was also compared

with those of six sets of conventional rule-based criteria used

for the detection of AMI in the presence of LBBB. Four of these

criteria, listed below and denoted A–C (Sgarbossa et al., 1996)
and D (Hands et al., 1988), have been evaluated in previous

studies. In addition two further criteria, E and F were also

used; Criterion E was defined as the combination of criteria

A–C formed by means of the operation logical OR and

criterion F the A–C combination formed by the operation

logical AND. Consequently, criterion E was met if at least one

of the three criteria A–C were fulfilled, whilst criterion F was

met if all three of the criteria A–C were fulfilled. Thus the
following six criteria were evaluated:

A ST segment elevation >1 mm and concordant with QRS

complexes in any lead.

B ST segment depression >1 mm in V1, V2 or V3.

C ST segment elevation >5 mm and discordant with QRS

complexes in any lead.

D Q waves in at least two of leads I, aVL, V5 or V6.

E criteria A or B or C
F criteria A and B and C

These criteria were evaluated using a computer program where

the ST segment elevation was taken as the ST-J amplitude and

concordant ⁄discordantwas defined as positive ⁄negativeQRS area.

Statistical methods

The sensitivity and specificity of the two cardiologists, the

criteria A–F and the receiver operating characteristic (ROC)

curve of the neural network were calculated and plotted. The
technique used for comparing the neural network and cardiol-

ogists, and also for comparing the network and the criteria was

performed as follows. The threshold applied to the network

outputs was chosen so that the specificity for the neural network

had the same value as the specificity for the cardiologist ⁄ criteria.
Thereafter the corresponding network sensitivity was compared

with that of the cardiologist ⁄criteria. The significance of a

difference in sensitivity was tested paying particular attention to
the fact that the same ECGs were used, i.e. a McNemar type of

statistic was used (Riffenburgh, 1999).

Results

The ROC curve of the neural network is plotted in Fig. 1

together with the results of the two cardiologists and the criteria

A–F. The sensitivities and specificities with 95% confidence

intervals of the criteria and the cardiologists are presented in

Table 1. The sensitivity of the neural networks compared at the
same levels of specificity as the criteria and cardiologist are

presented in the same table.

These results show that the sensitivity of the neural network

was 12% (P ¼ 0Æ02) and 19% (P ¼ 0Æ001) higher than that of

the two cardiologists when compared at the same levels of

specificity. Both cardiologists and the criteria C and D showed a

specificity close to 80%, but the sensitivity of the criteria was

much lower than those of the cardiologists. Criterion A (ST
elevation concordant with QRS complexes) had a very high

specificity as had criterion F, which was met when all three

criteria A–C were fulfilled, but the corresponding sensitivities

were very low. The criteria with highest sensitivity were B (ST

depression in V1–V3) and E, which were fulfilled when at least

one of the criteria A–C were met.

The neural network showed significantly higher sensitivity in

comparison with criteria B–F when compared at the same levels
of specificities. The sensitivity of the network was also higher

than that of criterion A (27 vs. 22%) but this difference was not

statistically significant.

Discussion

The results of this study show that it is possible to detect AMI in

ECGs with LBBB using artificial neural networks. The perform-

ance of the networks was better than that of conventional rule-

based criteria and even better than that of two experienced
cardiologists. These results are in accordance with earlier studies

Figure 1 ROC curve for the neural networks diagnosing AMI in ECGs
with LBBB. Sensitivities and specificities of the two cardiologists and the
criteria are also indicated.
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where neural networks have shown high performance in the
diagnosis of acute and healed myocardial infarction (Heden

et al., 1994, 1996, 1997). The performance of the networks in

those studies was also better than that of rule-based criteria and

experienced ECG readers.

The artificial neural networks used in this study were trained

and tested on ECGs recorded at the emergency department on an

unselected group of patients with AMI, the prevalence of LBBB in

the population being 6Æ8%. This particular group has a higher
LBBB prevalence than previous studies which used selected

samples drawn from patients with myocardial infarction: Gusto 1

material (Sgarbossa et al., 1996) and material from the multi-

center investigation of the limitation of infarct size (MILIS) study

(Hands et al., 1988) where the prevalence was 131 ⁄ 26003

(0Æ5%) and 35 ⁄ 985 (3Æ5%), respectively. In the control

population the prevalence of LBBB was 3Æ6%, this being in line

with earlier epidemiological studies of the prevalence of LBBB
which showed prevalence rates of 1Æ4% at the age of 67 and 5Æ7%

at 80 years (Eriksson et al., 1998). Because the results of this

study is based on an unselected population of patients with LBBB

we believe that the techniques developed could also be applied in

other emergency departments with the same level of accuracy.

Today the use of reperfusion therapies, either as thrombolysis

or acute percutaneous transluminal coronary angioplasty

(PTCA), improves the prognosis (Muller & Topol, 1990;
Kleiman et al., 1994) and their efficiency is enhanced the earlier

they are initiated. However thrombolysis administered to a

patient with unstable angina or non-cardiac chest pain is

potentially harmful. The ECG is a fast and easily available

diagnostic tool, but the analysis is difficult in cases with LBBB.

The appearance of a new LBBB in patients with chest pain is

highly suggestive of AMI and new ischaemic ECG-changes in

patients with previous ECGs possessing chronic LBBB are
sometimes possible to identify by comparison. However, earlier

ECGs are frequently not available and therefore this study

focused on the interpretation of single ECGs by neural networks,

cardiologists and criteria.

The objective for the complete training-test procedure

employed in this paper was to estimate the true generalization

performance that one can achieve with a neural network

classifier. It is important to notice that a slightly different
training procedure should be used when constructing a neural

network classifier that can evaluate completely new ECGs.

However, the expected performance on new ECGs should

conform to the figures obtained in this study.

In conclusion, it has been demonstrated that artificial neural

networks can be trained to detect AMI in ECGs with concomitant

LBBB. In addition it has also been shown that the networks’

performance is superior to both conventional criteria currently
in use, as well as experienced cardiologists.
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