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Abstract Background and Purpose: The purpose of this study was to determine which leads in the standard
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12-lead electrocardiogram (ECG) are the best for detecting acute coronary syndrome (ACS) among

chest pain patients in the emergency department.

Methods: Neural network classifiers were used to determine the predictive capability of individual

leads and combinations of leads from 862 ECGs from chest pain patients in the emergency

department at Lund University Hospital.

Results: The best individual lead was aVL, with an area under the receiver operating characteristic

curve of 75.5%. The best 3-lead combination was III, aVL, and V2, with a receiver operating

characteristic area of 82.0%, compared with the 12-lead ECG performance of 80.5%.

Conclusions: Our results indicate that leads III, aVL, and V2 are sufficient for computerized

prediction of ACS. The present results are likely important in situations where the 12-lead ECG is

impractical and for the creation of clinical decision support systems for ECG prediction of ACS.
D 2007 Published by Elsevier Inc.
Keywords: Acute coronary syndrome; Myocardial Infarction; Electrocardiography; Artificial neural networks
Introduction

In the emergency department (ED), the electrocardio-

gram (ECG) is crucial in the evaluation of a possible

acute myocardial infarction (AMI) or unstable angina

pectoris, that is, acute coronary syndrome (ACS). The

standard 12-lead ECG may, in this situation, convey as

much diagnostic information as all other clinical data taken

together.1 For the ED diagnosis of ACS, it is conceivable

that all of the standard 12 leads are not equally important.

Myocardial ischemia and infarction are more frequent in
nt matter D 2007 Published by Elsevier Inc.

ard.2006.12.011

supported by grants from the Swedish Knowledge

504), the Swedish Heart-Lung Foundation, Region

he Leardal Foundation for Acute Medicine, Sweden.

en supported by the Swedish Knowledge Foundation

PhD program in Medical Bioinformatics at the Centre

ns at the Karolinska Institute.

uthor. Department of Theoretical Physics, SE-223 62

46 46 222 34 94; fax: +46 46 222 96 86.

ichael@thep.lu.se
some parts of the heart, and there are also bblind spotsQ in
the standard ECG for certain regions of the heart, for

example, that supplied by the left circumflex artery.2 If a

few leads, or combinations of leads, would have as good or

almost as good performance for ACS as the complete

standard 12-lead ECG, this would be of interest both in

situations where the 12-lead ECG is impractical, as in

prehospital triage or in ECG monitoring of possible ACS,

and for the creation of ECG decision support software.

Selection of the best leads from a 12-lead ECG has

previously been attempted for detection of coronary artery

disease3 and for the assessment of QT prolongation.4

Artificial neural networks (ANNs) represents a ma-

chine learning tool that has proved useful for complex

pattern recognition problems and is widely used for

medical applications.5 The networks learn by associating

different ECG patterns with the desired classification, not

by being fed a set of predefined diagnostic criteria. Data

from a large group of observations are presented to the

networks, together with the desired classification, during a

so-called training session. Neural networks have already
iology 40 (2007) 251–256
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been applied to different aspects of automated interpreta-

tion of ECGs, for example, in the diagnosis of myocardial

infarction.6-8 These studies have demonstrated a signifi-

cantly improved performance over both conventional ECG

criteria and experienced ECG readers. Neural networks

have also been used for ACS prediction in patients with

acute chest pain9-11 and have been compared to standard

statistical methods such as multiple logistic regression.12

These studies indicate that networks are well suited as a

tool for analyzing ECGs in suspected ACS patients.

The aim of this study was to elucidate, with the use of

neural networks, which of the standard ECG leads or which

combination of these leads have the largest predictive

capability for the emergency diagnosis of ACS when being

used together with a machine learning tool.
Methods

Study population

This retrospective study was based on the first ECGs

recorded in the ED of Lund University Hospital on patients

with a principal complaint of chest pain—from July 1997 to

March 1999. Electrocardiograms were recorded 5 minutes

to 1 hour after the patient arrived at the ED. Only ECGs for

which the electronic ECG data could be retrieved were

included, excluding ECGs with severe technical deficiencies

and ECGs from pacemaker patients. Each ECG was

classified as either bACSQ or bnon-ACS,Q depending on

the hospital discharge diagnosis of the patient. A diagnosis

of ACS was defined as a discharge diagnosis of AMI or

unstable angina pectoris, and the criteria for these diagnoses

were the ones used during the ECG recording period. Acute

myocardial infarction was defined by the World Health

Organization criteria13 where the biochemical criterion was

at least one measurement of creatine kinase–MB below

10 lg/L or troponin T below 0.1 lg/L. The criteria for

unstable angina were ischemic symptoms (chest pain

N15 minutes, syncope, acute heart failure or pulmonary

edema) together with at least one of the following: (a) ECG

changes—transient or persisting ST-segment depression

(z1 mm) and/or T-wave inversion (z1 mm) without

developing Q waves or loss of R wave height, or (b)

biochemical markers—creatine kinase–MB 5 to 10 lg/L or

troponin T 0.05 to 0.1 lg/L.
All discharge diagnoses were made by the senior ward

physician or the ED physician (in cases discharged from the

ED), reviewed by a senior research nurse, and when

ambiguous, further reviewed by a senior cardiologist. In

the review of diagnoses for cases discharged from the ED,

available data from the patient records indicated that the rate

of missed diagnosis of ACS, compared to the above-

described criteria, was low (V2%).

The final data set consisted of 862 patients, 345 with

diagnosis of ACS and 517 with diagnosis of no ACS.

Among the non-ACS cases, 123 patients were diagnosed as

stable angina pectoris, 114 as suspected angina pectoris, and

the remaining 280 patients belonged to the category bother
diagnoses.Q The mean age within the ACS and non-ACS
group was 69(13) and 62(18) years, respectively, and the

numbers in parenthesis are SDs. In addition, the ACS group

consisted of 227 men and 118 women, and the

corresponding numbers for the non-ACS group were 291

and 226.

This study was approved by the Lund University

Research Ethics Committee.

Electrocardiography

The 12-lead ECGs were recorded by the use of

computerized electrocardiographs (Siemens-Elema AB,

Solna, Sweden), and the following 12 measurements taken

from each of the 12 leads were selected for further analysis:

QRS duration, QRS area, Q duration, Q amplitude, R

duration, R amplitude, ST-J amplitude, ST slope (the slope

at the beginning of the ST segment), ST amplitude 2/8, ST

amplitude 3/8, positive T amplitude, and negative T

amplitude. All durations and amplitudes are measured in

milliseconds and microvolts, respectively. The ST amplitude

2/8 and ST amplitude 3/8 were obtained by dividing the

interval between ST-J point and the end of the T wave

into 8 parts of equal duration. The amplitudes at the end of

the second and the third intervals were denoted ST

amplitude 2/8 and ST amplitude 3/8. In total, 144 measure-

ments from each 12-lead ECG were collected. To reduce the

number of input measurements for the neural networks, a

principal component analysis (PCA)14 on the 12 measure-

ments within each lead was used. Using only the first 6

principal components in each lead resulted in a total of

72 measurements when considering all 12 leads. The

number of selected principal components was chosen as

to include at least 90% of the variance in each lead. The

variance captured in each lead varied within a range of

91.1% to 94.9%. The PCA analysis was based on the

correlation matrix.

Artificial neural networks

In this work, we built ACS prediction classifiers using

neural network ensembles with the bagging technique.15 A

general presentation of ANNs can be found in the work of

Cross et al.16 An ensemble size of 50 was chosen, which has

been found to be sufficient in numerical studies.17 The

ensemble prediction was computed as the average over the

output of each of the individual networks. All 6 principal

components from the PCA step was fed to the ANN as

continuous variables.

The model selection11 consisted of selecting the best

architecture and regularization parameter for each neural

network ensemble with respect to the area under the receiver

operating characteristic (ROC) curve.18 The ROC area is

commonly used as a performance measure and can be

interpreted as the probability that a randomly chosen patient

with ACS has a higher risk output than a randomly chosen

patient without ACS. We used K-fold cross-validation19 to

estimate the best ensemble parameters. To accomplish this,

the training data were split into K random equally sized

disjoint parts. One part was selected for the validation of the

neural network ensemble, which was constructed on the

other K-1 parts. This procedure was repeated for all K parts.



Table 1

The test ROC areas for the individual leads

Selected ECG lead Test ROC area (%)

I 74.1 (67.9, 81.8)

II 68.6 (61.6, 76.2)

III 75.0 (68.2, 80.6)

aVR 67.9 (62.2, 75.3)

aVL 75.5 (65.8, 82.6)

aVF 72.0 (63.7, 78.1)

V1 67.8 (60.6, 75.7)

V2 74.3 (67.7, 82.5)

V3 73.7 (65.4, 81.3)

V4 72.3 (66.1, 79.6)

V5 71.5 (65.6, 79.3)

V6 73.7 (65.1, 81.6)

The ROC area is presented as median (2.5, 97.5 percentiles) over the 100

test sets.
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The K-fold cross-validation was repeated N times, and the

total validation result was taken as the mean of the N � K

validation results. We used N = 10 and K = 5 for the model

selection.

To estimate the generalization performance of the neural

network ensemble, an outer cross-validation loop was used.

The data were randomly split into 5 disjoint parts. Each part

was selected as a test set with the rest of the parts as the

corresponding training set. The outer cross-validation loop

was repeated 20 times, resulting in 100 training and test sets.

The total test result was evaluated as the median over the

100 test results.

Statistics

We used the area under the ROC curve to assess the

performance of the neural networks. When comparing 2

different neural network classifiers, on a given test set, we

used their corresponding outputs to evaluate whether they

produced significantly different ROC areas or not. Statistical

significance was evaluated using a permutation test20 where

we considered a P b 0.05 as statistically significant.
able 2

he test ROC areas for combination of leads

elected ECG leads Test ROC area (%)

I-aVL 78.9 (71.1, 83.9)

I-aVL-V1 78.9 (70.9, 84.9)

I-aVL-V2 82.0 (74.2, 87.7)

I-aVL-V3 81.1 (74.0, 86.9)

I-aVL-V4 81.1 (73.3, 87.1)

I-aVL-V5 80.9 (72.8, 85.8)

I-aVL-V6 80.6 (72.0, 87.0)

-lead ECG 78.0 (68.7, 81.6)

-lead ECG + V2 80.2 (73.6, 86.5)

-lead ECG + V3 80.7 (73.6, 86.7)

2-lead ECG 80.5 (72.8, 86.2)

he 6-lead ECG refers to the combination of all limb leads. The ROC areas

are presented as median (2.5, 97.5 percentiles) over the 100 test sets.
Results

All results are presented as medians over the 100 ROC

areas produced by the outer cross-validation loop. The

results for the neural network classifiers fed with single

leads as input are presented in Table 1. The 3 best limb leads

I, III, and aVL had similar performance with ROC areas of

74.1%, 75.0%, and 75.5%, respectively. Leads II, aVR, and

aVF did not match that performance. For the precordial

leads, the best performance was obtained using lead V2 with

an ROC area of 74.3%. However, leads V3 and V6 were

almost as good with ROC areas of 73.7%. Statistical

evaluations showed that a significant difference between

the best-performing (aVL) and the worst-performing (V1)

leads was found in 36 of the 100 test sets.

The performance of the neural networks classifiers fed

with inputs from different combinations of leads are

presented in Table 2. The 2 (III and aVL) best individual

leads were combined, and this combination obtained an

ROC area of 78.9%. Any 2 lead combinations of the six

limb leads resulted in similar ROC areas with a median area
of 77.9% (range, 74.5%-78.9%). Adding 1 precordial lead

to the best 2 lead combinations almost always increased the

performance (see Table 2). The best three lead combinations

was III, aVL, and V2 with an area under the ROC curve

of 82%.

Table 2 also shows the results for the combination of all

limb leads (denoted 6-lead ECG), the 2 best combinations of

the 6-lead ECG and 1 precordial lead, and the full 12-lead

ECG. The performance of the neural network when using

the 12-lead ECG was 80.5%. A statistical comparison of the

best 3-lead combination (III-aVL-V2) and the full 12-lead

ECG resulted in only 10 of the 100 test splits being

significantly different, indicating that performance of these

2 combinations of leads are comparable.

The ROC curves for the best single lead, the best 3-lead

combination, and for the 12-lead ECG are shown in Fig. 1.

A comparison with traditional ECG criteria for AMI

detection resulted in a specificity and sensitivity of 95.6%

and 24.3%, respectively. The sensitivity of the AMI

subgroup was 34.1%, and the corresponding result for the

unstable angina subgroup was 5.2%.
Discussion

In the present study we attempted to establish the best

lead, or combination of leads, for the ED diagnosis of ACS.

The results showed that the best individual lead was aVL

(ROC area of 75.5%) and that the 6 limb leads together with

either V2 (80.2%) or V3 (80.7%) had principally the same

performance for ACS as the complete 12-lead ECG

(80.5%). Somewhat surprisingly, using only leads III,

aVL, and V2 gave similar discriminatory power for ACS

(82.0%). It thus seems that these 3 leads together contain all

the ACS-predicting information present in the standard

12-lead ECG, at least in the present patient material. This

can partially be explained by the fact that any 2 limb leads

can be used to derive the other 4 limb leads when using the

raw ECG lead recording. Thus, given that our representation

of the ECG is good enough, the ANN will be able to extract

information about all 6 limb leads even if only 2 of them are

fed to the network as inputs.

The present results are compatible with previous studies

on optimal leads for detection of ST segment deviations in

acute myocardial ischemia. During coronary occlusion
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Fig. 1. The ROC curves for the best single-lead, 3-lead, and 12-lead ECG using the respective median test split. The ROC curves were produced by

concatenating all 5 test results from the outer cross-validation split, with an ROC area most similar to the median test results, as presented in Tables 1 and 2.
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induced by balloon angioplasty, the largest ST changes have

been observed in leads V2 to V4 (occlusions of the left

anterior descending or circumflex arteries) and in leads III

and aVF (right coronary artery),21-23 and these leads have

therefore been suggested to be optimal for ischemia

detection during balloon angioplasty. For identification of

ST changes in established AMI, leads III and V2 have been

suggested to be optimal.24 However, these results are not

immediately applicable to ED patients with suspected ACS.

First, many ED patients with ACS do not have ST-segment

changes at all but, rather, T-wave inversions, new Q waves,

or no ECG changes at all, and the ECG changes may, in

turn, be due to subtotal and varying occlusion of branches of

the large coronary arteries. Because we considered not only

the ST segment but several other ECG variables (QRS

duration, QRS area, Q duration, Q amplitude, R duration,

and R and T amplitudes), it is not surprising that our results

differ from those in studies focusing only on the ST

segment. For instance, aVL was the single best lead for

ACS prediction in our study, whereas during balloon

angioplasty,22,25 DST in aVL was too low to be of any

use for ischemia detection. Second, in the present study,

only 1 ECG from each patient was considered. The neural

networks thus only had access to absolute measures in the

ECG and not to any relative changes induced by ischemia in

the ACS patients. It may be that preexisting ECG changes

unrelated to current ischemia contributed to ACS detection

by the neural networks in our patients.

In the present results, good ACS discriminating power

with only 3 leads was observed. Electrocardiographic

registration with reduced lead sets is practical for many

reasons. Few leads interfere less with the everyday care of

the patient, with diagnostic tests such as echocardiography

and with emergency procedures such as defibrillation. To
detect acute ischemia by ST deviation, however, current

consensus is that all 12 leads of the standard ECG are

necessary.21 Indeed, many ischemic events were missed

when only the usual telemetry leads (V1 and II)
26 were used,

or even the 3 single best leads for detection of ST

deviation.27 Ischemia detection with reduced lead sets have,

in fact, so far, only been successful when the omitted leads

have been calculated or when a derived 12-lead ECG has

been used.28-30 Thus, in reduced lead sets, it seems that

ischemia detection will not be satisfactory if only the ST

segment is monitored. To our knowledge, detection of

ischemia using multiple ECG variables in reduced lead sets

has not previously been tested. Our finding that leads III,

aVL, and V2 together predicted ACS as well as the standard

12-lead ECG may thus be explained by the fact that we

included several ECG measurements in addition to the ST

segment. We have not, however, investigated the relative

importance among the ECG measurements within each

included lead.

In this study, we used neural networks as the method for

ACS prediction with a varying number of input leads. This

choice of classification method was guided by previous

work7,9,11 where neural networks have proved to be useful for

ACS and AMI prediction. Standard linear statistical methods,

such as multiple logistic regression, would not have been

sufficient because there are nonlinear relationships among the

lead measurements, used by the networks, that are important

for predicting ACS.11 The PCA preprocessing of the ECGs

has been used previously31 and can be motivated by the fact

that measurements for each lead showed large correlations.

Furthermore, it is always advantageous to keep the number of

inputs to the network models as low as possible since the

problem of overtraining usually increases with an increasing

number of inputs. Using PCA for this reduction is a
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commonly used method. Care was taken to obtain as reliable

estimates as possible of the generalization performance for

each lead selection. Although the study population was

relatively small, which may have influenced the absolute

values for the ROC areas, we believe that the obtained

selection of important leads is valid.

Clinical implications

The present results have their main implications for the

creation of future clinical decision support systems (CDSS)

for ECG interpretation. For a CDSS to produce as robust

ACS predictions as possible, it is essential that it is allowed

to work only with the ECG elements crucial for ACS

prediction and that other information is left out. With more

robust ACS predictions, the CDSS will, of course, be more

valuable to the patients and the physicians using them. The

identified leads III, aVL, and V2, together with clinical

patient data such as chest pain history and blood pressure,

could be used to develop a neural network-based CDSS that

would potentially be useful in situations where the standard

12-lead ECG is impractical, as in, for example, prehospital

triage or in telemedicine settings. For true clinical useful-

ness, such a CDSS should also include an ANN able to

detect ST-elevation myocardial infarction in need of urgent

reperfusion therapy.32 Before clinical implementation, the

CDSS would of course need to be validated prospectively,

preferably at multiple centers.

Limitations of the study

The results from this study are probably not applicable to

the manual interpretation of ECGs by physicians. It is not at

all evident, and perhaps even unlikely, that leads III, aVL,

and V2 together would be as useful as the 12-lead ECG to

the physician trying to establish whether the patient has

ACS or not. Some of the variables used in the present study

are not part of the standard ECG interpretation routine and

are not easy to appreciate by eye. Furthermore, if ANNs

such as those in the present study are to be used in CDSS for

physicians, a problem is that the ANN is unable to explain

to the user the reasons for the suggested decisions. Current

research is trying to overcome this problem.33,34

The results were obtained using ECG data collected from

a limited number of patients during a limited period and at 1

center only. Other populations might, of course, produce

different results. Likewise, we cannot exclude the possibility

that another set of ECG variables than the ones chosen

would produce other results. However, we believe it is

unlikely that results in other populations or with other

variables would differ substantially because only the relative

performances of the different leads and combinations of

leads were analyzed in this study.

The ECGs in the present study were collected in the

late 1990s, and old definitions of AMI and unstable angina

were used. More recent definitions of AMI have lower

cutoff values for biochemical markers,35 and for the

diagnosis of unstable angina no marker elevation is

currently needed. A few patients classified as non-ACS

in the present study may thus be classified as having an

ACS with current diagnostic criteria.
Conclusions

The aim of this study was not to find the best neural

network classifiers for prediction of ACS but, rather, to

compare the information content of the different leads and

of the different combinations of leads. We found that the

lead aVL was the single best lead for ACS detection and

that the leads III, aVL, and V2 together yielded similar

performance as the full 12-lead ECG for predicting ACS.

It thus seems that these 3 leads together contain all the

ACS predicting information present in the standard 12-lead

ECG, at least in our patient population. These findings

may be useful for the creation of ECG decision support

software to be used in situations where the 12-lead ECG

is impractical.
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