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Recent experiments uncovered a mutational pathway between two proteins, along which a single
mutation causes a switch in fold. Searching for such paths between real proteins remains, despite this
achievement, a true challenge. Here, we analyze fold switching in the minimalistic hydrophobic/polar
model on a square lattice. For this analysis, we generate a comprehensive sequence-structure database
for chains of length ≤ 30, which exceeds previous work by five units. Single-mutation-induced fold
switching turns out to be quite common in the model. The switches define a fold network, whose
topology is roughly similar to what one would expect for a set of randomly connected nodes. In the
combinatorially challenging search for fold switches between two proteins, a tempting strategy is to
only consider paths containing the minimum number of mutations. Such a restricted search fails to
correctly identify 40% of the single-mutation-linked fold pairs that we observe. The thermodynamic
stability is correlated with mutational stability and is, on average, markedly reduced at the observed
fold switches. © 2011 American Institute of Physics. [doi:10.1063/1.3660691]

I. INTRODUCTION

The traditional view that functional amino acid sequences
adopt specific and mutationally robust three-dimensional
structures provides a remarkably good starting point in ra-
tionalizing the complex sequence-structure relationship of
proteins.1 This picture is, nevertheless, known to be incom-
plete, as shown by the existence of intrinsically disordered
proteins2, 3 and of proteins that can switch between alterna-
tive ordered states.4, 5 An example of a protein populating two
distinct folds under physiological conditions is the chemokine
lymphotactin.6 A slightly different kind of fold switching is
exemplified by two proteins from the Cro family of bacterio-
phage transcription factors, which have a high sequence iden-
tity (40%) but very different folds.7

A great deal has been learned about fold switching from
stepwise mutagenesis experiments.8–14 Of particular interest
is the mutational pathway recently found between two bind-
ing domains of protein G, GA and GB, with 3α and α + β

folds, respectively.12–14 Along this pathway, an abrupt change
in fold and binding properties takes place, caused by a sin-
gle mutation. The stability is reduced near the switch point,
but complete unfolding never occurs. The sequence determi-
nants of this fold switch were analyzed by spectral methods.15

Clearly, this system poses a challenge to structure prediction
methods. Interestingly, the ROSETTA program was shown to
capture the switch in fold when including chemical shifts as
input (CS-ROSETTA).16

In this article, we study fold switching in the two-
dimensional hydrophobic/polar (HP) lattice model.17 This
model is too coarse-grained to permit studies of specific pro-
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teins, but has provided insights into various generic aspects of
protein folding.18 This and similar models have, for instance,
been used to study protein evolution19–36 and the statistical
properties of protein sequences.37–39 One noteworthy finding
from these studies is that the number of sequences that fold
to a given structure correlates with their average thermody-
namic stability.22 A related but different result is that among
sequences folding to the same structure, there is a correlation
between thermodynamic and mutational stability.26

The HP model has the useful property that the sequence-
to-structure mapping can be explored in an exact and com-
plete manner for short chains, by means of exhaustive
enumerations. Sequences that have a unique ground-state
structure are called designing. In previous work, we deter-
mined all designing HP sequences of length N ≤ 25.40 Here,
we extend these calculations to N ≤ 30.

In addition to ground-state properties, we also determine
the full density of states, g(E), for all designing N = 27 se-
quences and for selected designing N = 30 sequences. Using
these data, we assess the correlation between thermodynamic
and mutational stability, and the loss of thermodynamic sta-
bility upon fold switching.

II. MODEL AND METHODS

A. Model and definitions

In the HP model,17 a protein is represented by a self-
avoiding chain of hydrophobic (H) or polar (P) beads on a
lattice. The energy function is a contact potential. It can be
expressed as

E =
∑
i<j

U (σi, σj )Cij , (1)

0021-9606/2011/135(19)/195101/7/$30.00 © 2011 American Institute of Physics135, 195101-1
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where σ i denotes the type of bead i (H or P), U(σ i, σ j) sets the interaction strengths, and Cij is defined by

Cij =
{

1, if beads i , j are neighbors on the lattice but |i − j | �= 1,

0, otherwise.
(2)

Two beads i and j with Cij = 1 are said to form a contact.
Following Lau and Dill,17 we put U(σ i, σ j) = −1 if both σ i

and σ j are H, and U(σ i, σ j) = 0 otherwise. With this choice,
E is simply minus the number of HH contacts.

A sequence is designing if it possesses a unique mini-
mum energy structure; it then designs that structure. The des-
ignability of a structure is the number of sequences designing
it. A structure is designable if it has a non-zero designability.

In simplified protein models, it is customary to consider
a mutation neutral if it preserves structure. The set of all se-
quences designing a given structure is referred to as the neu-
tral set, which may be connected or fragmented with respect
to single-point mutations. The largest connected component
is called the neutral net. The prototype sequence of a neutral
net is the sequence that can accommodate the largest number
of neutral single-point mutations. This definition need not be
unique. If not, we select the sequence having the lowest aver-
age Hamming distance to other sequences in the neutral net;
the Hamming distance between two sequences of equal length
is the number of positions where they differ.

Below, we examine the neutral nets of highly designable
N = 30 structures. The above definitions of neutral net and
prototype sequence are unambiguous for these structures.

Our analysis is performed on a square lattice, where the
fraction of designing sequences is a few percent (see below).
This fraction is significantly lower on a triangular lattice,
where the chains are more flexible.41

B. Computational approach

We study this model by enumeration methods that rely on
several optimizations, but are approximation-free. To simply
go through all possible structures for each of the 2N possible
sequences is unfeasible for N = 30; the number of structures
is ∼8 × 1011 for this N (see below). The optimizations we
use to overcome this problem are largely as described in our
previous N ≤ 25 study.40 Somewhat related techniques were
used in an N ≤ 20 study.42 In short, the structures are reduced
to contact sets, which are further reduced through a breadth-
first exploration of sequence space. In each step, a sequence
position is set to H or P, the contact sets are reduced accord-
ingly, and any redundant contact sets are eliminated essen-
tially as described before.40 To reduce memory requirements,
we had to split the 230 sequences into subsets and deal with
each subset separately. With this approach, it was possible for
us to determine all designing sequences and the correspond-
ing structures for N ≤ 30.

For all designing N = 27 sequences and for selected de-
signing N = 30 sequences, we also determine the density of

states, g(E), using similar methods. The reduction of struc-
tures to contact sets is useful in this case as well, as the en-
ergy of a structure is determined by the contact set. To be able
to compute g(E) for all designing N = 30 sequences, further
optimization would have been needed.

III. RESULTS

A. Sequence and structure statistics

We begin by discussing how the number of designing HP
sequences, SN, and the number of designable structures, DN,
depend on chain length, N. As far as we know, these quantities
have not been determined before for N > 25. A complete list-
ing of SN, DN, the total number of structures, and the number
of contacts sets for N ≤ 30 can be found in the supplementary
material.43

Both DN and SN grow exponentially with N. Fig. 1 shows
DN along with the total number of structures and the number
of contact sets, plotted against N. A fit shows that DN scales
with N as μN with μ ≈ 1.86. The total number of structures,
that is the number of self-avoiding walks on a square lattice,
is known to behave as ∼Nγ − 1μN for large N, with γ = 43/32
and an effective coordination number of μ ≈ 2.63.44 It follows
that the fraction of all structures that are designable decreases
rapidly with N. For N = 30, this fraction is ∼ 3 × 10−6.

The number of contact sets grows slightly more slowly
than the total number of structures with N; an exponential fit
gives μ ≈ 2.38 in this case. This implies, in particular, that
the computational gain brought by replacing structures with
contact sets (see Sec. II B) gradually increases with N. For N
= 30, the number of contact sets is ∼ 200 times smaller than
the number of structures.
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FIG. 1. The total number of structures (+), the number of contact sets (×),
and the number of designable structures (*), DN, against chain length, N.
Lines are exponential fits to the data.
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FIG. 2. The fraction of designing sequences, SN/2N, against chain length, N.
The fact that this fraction is roughly constant implies that SN grows slightly
faster than DN with N; as illustrated in Fig. 1, the DN data scale as μN with μ

≈ 1.86.

Figure 2 shows the fraction of designing sequences,
SN/2N, which, unlike the fraction of designable structures, is a
slowly varying function of N. For 12 ≤ N ≤ 30, SN/2N lies in
the range 2.1%–2.6%. However, the data show a decreasing
trend, indicating that the same need not hold for larger N.

Among the designable structures, the spread in des-
ignability is large. The vast majority of the structures are
designed by only a few sequences, whereas the maximum
designability is 813 for N ≤ 30. The average designability,
SN/DN, increases slowly with N and is 9.63 for N = 30.

Figure 3 shows the maximally designable structures and
the corresponding prototype sequences for N = 26, . . . , 30.
The division into a hydrophobic core and a polar surface is
nearly perfect for these sequences. The structures are com-
pact, but not maximally compact. For instance, the N = 30
structure contains 17 contacts, whereas the maximum num-
ber of contacts is 20 for this N. The structures contain, despite
their high designability, 5–8 positions each that are strictly
conserved. These positions are indicated by dashed circles.
Most but not all of the conserved positions are of H type.

B. Highly designable structures and their neutral nets

Next, we study how highly designable structures and
their neutral nets are distributed in structure and sequence
space, respectively, focusing on chain length N = 30. We car-
ried out the same analyses for 26 ≤ N ≤ 29 as well, with quali-
tatively similar results which, for clarity, will not be discussed

here. We consider all N = 30 structures with designability
≥ 389, which ensures that the prototype sequence is uniquely
determined by our definition (see Sec. II A). This leaves us
with 336 structures. Many of the associated neutral sets are
fragmented, but they all have a single dominating component,
the neutral net. The average size of the 336 neutral nets is 480.

To assess structural similarity, we use a contact-based
Jaccard distance, J; two structures with contact sets A and
B are assigned a distance of J = 1 − |A ∩ B|/|A ∪ B|.
Figure 4(a) shows the distribution of J for pairs of highly
designable N = 30 structures. The distribution has a tail ex-
tending to relatively small J, but the typical J is large. For
comparison, Fig. 4(a) also shows the J distribution for general
designable N = 30 structures, which is slightly shifted toward
even higher J. This trend continues for pairs of random struc-
tures, which often do not share any contact at all. The J distri-
bution is in this case dominated by its highest bin (0.95 < J ≤
1), which alone has a frequency of 0.69. For clarity, this dis-
tribution is not included in Fig. 4(a). Highly designable struc-
tures, thus, have an increased tendency to share contacts. Re-
curring substructure motifs45 are a possible factor that could
contribute to a shift of the J distribution in this direction.

We now turn to the neutral nets. As a measure of the sep-
aration between a pair of neutral nets, we determine the min-
imum Hamming distance between any two members of the
two nets, called H. Figure 4(b) shows the distribution of H for
pairs of highly designable N = 30 structures. The most com-
mon value is H = 6, but the distribution is broad. In particular,
it can be seen that the minimal separation, H = 1, occurs with
a non-negligible frequency (∼0.8%).

Pairs of neutral nets with H = 1 are of special interest. For
such a pair, it is possible to find a mutational path between the
two prototype sequences that is entirely embedded within the
two neutral nets. Such a path will be called direct. At some
point along a direct path, a sudden change from one fold to
the other occurs, caused by a single-point mutation.

Figure 5 illustrates how the highly designable N = 30
structures are interconnected by direct paths. In this graph,
each vertex represents a neutral net and each edge indicates
an H = 1 pair. The average degree of the network is kav

= 2.62 and, thus, well above 1. A random graph with this kav

is likely to contain a giant component. The network in Fig. 5
has indeed a single dominating component, comprising 282
of the 336 neutral nets. In addition, there are 4 clusters with 2
neutral nets each, and 46 isolated neutral nets (which are not
shown in the figure).

FIG. 3. Maximally designable structures for N = 26 (designability 341), 27 (430), 28 (498), 29 (804), and 30 (813). The sequences shown are prototype
sequences; open and filled circles represent H and P beads, respectively. Dashed circles indicate strictly conserved positions.
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FIG. 4. (a) Histograms of the structural distance J for highly designable (blue) and general designable (red) N = 30 structures. (b) Histogram of the sequence-
space separation H between neutral nets of highly designable N = 30 structures.

Figure 5 also shows the degree distribution of the graph,
P(k), along with the expected degree distribution for a
(Bernoulli) random graph with the same mean, kav = 2.62.
The two distributions are roughly similar, although there are
deviations at small k. A scale-free topology, as observed
for protein-protein interaction networks,46 is signaled by an
enhanced tail of the degree distribution; the tail follows a
power law, k−γ , reflecting the presence of highly connected
hub nodes. Our network, describing the interconnectedness
of neutral nets, seems to be different in character. Over the
range of k values observed in our finite network, there is no
indication of an enhanced tail of this kind.

C. Minimal direct paths

The above analysis shows that for many pairs of highly
designable N = 30 structures (∼0.8%), it is possible to find
a direct mutational path connecting the two prototype se-
quences. Whether or not such a path exists was here deter-
mined by an exhaustive search covering all possible paths.
This option is not available for real proteins. A natural but

drastic restriction is to search only among paths of the mini-
mal length h, which is equal to the number of positions where
the two given proteins differ. How likely is the set of all h!
minimal paths to contain a direct path, given that a direct path
exists?

This problem can be studied for HP proteins. To this end,
we consider again the highly designable N = 30 structures,
this time focusing on those (>400) pairs of structures that are
connected by direct paths and, thus, correspond to the edges
in Fig. 5. For each such pair, we determine the length, L, of
the shortest direct path between the prototype sequences, by
using Dijkstra’s algorithm.47 We compare L with the short-
est possible length of a path connecting these two sequences,
which is given by their Hamming distance, h. The difference
�L = L − h is always an even number, because any change
beyond the minimal number needs to be undone.

Figure 6 shows our observed distribution of �L. It turns
out that there exists a direct path of minimal length (�L = 0)
for 60% of these structure pairs. A search restricted to mini-
mal paths, therefore, fails to find any of the direct paths known
to exist in 40% of the cases (�L > 0). Actually, in some cases,
a quite elaborate search might be required in order to find any
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FIG. 5. (Left) Illustration of how the neutral nets associated with highly designable N = 30 structures are interconnected by direct paths. Each vertex represents
a neutral net, and edges indicate the existence of direct paths (H = 1). Forty-six of a total of 336 neutral nets have a separation H > 1 to all the other neutral
nets, and are omitted in the figure. (Right) The degree distribution, P(k), of the graph to the left (including the isolated neutral nets). The line shows the expected
Poissonian distribution for a random graph with the same mean, kav = 2.62.
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FIG. 6. Distribution of �L = L − h calculated over all pairs of highly
designable N = 30 structures that are connected by direct paths (>400). A
minimal-length direct path exists for 60% of the pairs (�L = 0). L is the
length of the shortest existing direct path between the prototype sequences,
and h denotes their Hamming distance.

of the direct paths, as indicated by observed �L values of up
to 8.

D. Stability

So far, we have classified sequences as either designing
or not, thus ignoring differences in thermodynamic stability.
Previous work on N = 18 HP chains found that among se-
quences designing the same structure, the thermodynamic sta-
bility is correlated with mutational stability.26

Here, we assess this correlation through a global analysis
of all the ∼3.0 × 106 designing N = 27 sequences. The muta-
tional stability of a (designing) sequence can be calculated as
the number of single-point mutations that preserve the struc-
ture. As a measure of thermodynamic stability, we use the
ground-state population P0(β) at a given inverse temperature
β = 1/kBT (kB is Boltzmann’s constant). To compute P0(β),
we determine the exact density of states, g(E), for each se-
quence. Knowing g(E), P0(β) can be obtained as

P0(β) = g(E0)e−βE0∑
E g(E)e−βE

, (3)

where E0 is the ground-state energy.
Figure 7 shows the mean and standard deviation of P0(β),

at β = 4, as obtained at different fixed values of the mutational
stability. Although the standard deviations are large, a very
clear correlation can be seen between thermodynamic and
mutational stability; the average P0(4) increases from ∼0.2
at low mutational stability to >0.8 at high mutational stabil-
ity. Figure 7 also shows the number of sequences with a given
mutational stability. Consistent with the fact that most struc-
tures have low designability, we find that most sequences have
low mutational stability. The number of sequences falls off
approximately exponentially with increasing mutational sta-
bility in the range 5–20.

Consider now a direct mutational path between two pro-
totype sequences. The mutational stability is, by definition,
relatively high at the end points, and should be reduced near
the switch point between the two folds. Being correlated with

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20
1

10

102

103

104

105

106

 T
he

rm
od

yn
am

ic
st

ab
ili

ty
 (

β 
=

 4
)

Se
qu

en
ce

s

Mutational stability

FIG. 7. Thermodynamic stability versus mutational stability, based on data
for all designing N = 27 sequences. The figure shows the mean and standard
deviation of the ground-state population P0(4) (see Eq. (3)), calculated at
different fixed mutational stabilities. The dashed line indicates the number of
sequences with a given mutational stability.

mutational stability, the thermodynamic stability should fol-
low the same trend.

To test this picture, we examine how both stabilities vary
along direct paths between highly designable N = 30 struc-
tures. For a given structure pair, we identify all direct paths
that have the shortest length observed for that pair. In total,
this gives us a set of 1392 direct paths, which we divide into
subsets corresponding to different path lengths, L. For a given
L, we compute the mean and standard deviation of both the
ground-state population P0(4) and the mutational stability at
all positions i along the paths, i = 0, . . . , L. The results of
this analysis are displayed in Fig. 8, where different curves
correspond to different L. We limit ourselves to L values of
7–12, for each of which we have ≥100 paths. The calculated
stabilities are plotted against the relative position i/L, a num-
ber between zero and one. When viewed as functions of i/L,
the stability curves obtained for different L have a roughly
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FIG. 8. Mean and standard deviation of the thermodynamic and mutational
stabilities along direct mutational paths connecting highly designable N = 30
structures. Different curves correspond to different path lengths, L = 7–12.
The x axis shows the relative position along the paths. The thermodynamic
and mutational stabilities are defined as in Fig. 7.
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similar shape. Although the path-to-path variation is large, as
shown by the standard deviations, there is, on average, a clear
drop in both thermodynamic and mutational stability in the
central region between the prototype sequences. In particular,
this strongly indicates that fold switching, indeed, is associ-
ated with a reduced thermodynamic stability.

To unambiguously demonstrate this point, we specifically
locate all fold switches along these 1392 direct paths. The se-
quences involved in fold switches (a switch consists of two
sequences) turn out to show a large variation in thermody-
namic stability, from 0.024 to 0.949 (at β = 4). The average
thermodynamic stability at the switch points is 0.438, which
is similar to the values seen at the center of the paths in Fig. 8.
This confirms that, statistically, the thermodynamic stability
is markedly reduced at the switch points. The precise location
of the switch points varies and need not be close to i/L = 0.5.
Also worth noting is that the thermodynamic stability is not
necessarily minimal at the switch point; we see many exam-
ples of direct paths (∼400 of 1392) along which the minimum
thermodynamic stability does not occur at the switch point.

IV. DISCUSSION

In this article, we have studied mutation-induced fold
switching in the minimal HP model, where the sequence-to-
structure mapping can be fully and exactly determined for
short chains. This property opens the possibility to address
questions out of reach in more detailed models about the
sequence-to-structure relationship in general and fold switch-
ing in particular.

Our analysis mainly focused on the 336 most designable
N = 30 structures, with designabilities in the range 389–813.
The network describing the interconnectedness of the corre-
sponding neutral nets was mapped out, and found to have
>400 links (∼0.8% of the pairs). The degree distribution of
this network is roughly similar to what one would expect for
a set of randomly connected nodes (Fig. 5).

The existence of a single-mutation link between two neu-
tral nets implies that a direct mutational path can be found be-
tween their prototype sequences. For each of our >400 con-
nected pairs of neutral nets, we determined the length L of the
shortest path of this kind, which has to be greater than or equal
to the Hamming distance h between the prototype sequences.
The shortest direct path turned out to be of minimal length, L
= h, for 60% of the pairs. But in 40% of the cases, one must,
thus, search beyond the h! minimal paths in order to find any
of the direct paths known to exist.

Along a minimal mutational path, only one substitution
can occur at each sequence position. For real proteins, this,
in particular, means that, instead of 20, there are at most two
possible amino acids at each position. The direct path recently
discovered between the GA and GB proteins belongs to the
class of minimal paths.12–14 The path was found despite that
even this restricted class of paths is far too large to be fully
explored for real proteins.

The GA/GB experiments found that the thermodynamic
stability is reduced at the switch point.14 We computed the
ground-state population P0(β = 4) at the switch points on
1392 direct paths between highly designable N = 30 struc-

tures. The obtained P0(4) values vary widely from path to
path, between 0.024 and 0.949. Statistically, there is neverthe-
less a clear reduction in thermodynamic stability at the switch
points; the average ground-state population P0(4) is 0.44 at
the switch points, but >0.9 for the prototype sequences.

Bornberg-Bauer, Chan, and Wroe investigated the orga-
nization of sequences within a neutral net using N = 18 HP
chains, and found the thermodynamic and mutational stabil-
ities to be correlated.26, 32 A global analysis of all the ∼3 ×
106 designing N = 27 sequences corroborates this finding; the
average ground-state population, P0(4), increases from ∼0.2
at low mutational stability to >0.8 at high mutational stabil-
ity. This analysis shows that there exists a clear correlation
across different HP structures between thermodynamic and
mutational stability.

A complete list of all designing N ≤ 30 sequences and
their structures, including the density of states of all the
N = 27 sequences, will be made electronically available at
http://cbbp.thep.lu.se/activities/hp/.
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