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INTRODUCTION

Proteins are polymer chains, made out of amino acids, that perform a wide range of functions in cells.

Each protein has a unique, genetically determined sequence of amino acids, which can be written in

a 20-letter alphabet, namely the 20 amino acids of natural proteins. One main class of proteins is that

of globular proteins, which fold into compact, more or less well-defined shapes. A key force driving

the folding is hydrophobicity. Hydrophobic, or apolar, amino acids tend to fold into the interior,

whereas charged and polar amino acids end up on the surface of the protein. The number of possible

arrangements of a protein grows exponentially with chain length, and is astronomically large even for

a modestly sized protein with, say, 100 amino acids.

A minimal model that captures some basics of protein folding is the HP model,1 where the protein

chain is represented by a string of beads on a lattice. Each bead is of one of only two (rather than 20)

types: either H (hydrophobic) or P (polar). Two beads cannot simultaneously share the same lattice

site, and are said to be in contact if they are nearest neighbors on the lattice but not along the chain.

The energy of a given configuration C is taken to be EC = −NHHε, where NHH is the number of HH

contacts and ε (> 0) is a parameter. This choice makes the formation of a core of H beads energetically

favorable. Figure 1 shows a 27-bead HP sequence in a state with EC = −13ε. It can be shown that

all of the >1010 other possible states of this chain have higher energy. Therefore, this sequence can

be assigned a unique (minimum-energy) structure. In this sense, it may be said to be protein-like. A

random HP sequence may or may not have this property.

FIGURE 1: An HP chain with 27 beads in its unique

minimum-energy state (EC = −13ε). Filled

and open circles represent H and P beads, re-

spectively.

1K.F. Lau and K.A. Dill, Macromolecules 22, 3986 (1989).
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EXERCISES

The HP model can be studied on different lattices. For simplicity, throughout these exercises, a two-

dimensional square lattice is used. The lattice spacing is denoted by a.

There are three exercises to be solved. It is recommended that you do exercises 1 and 2a before

the lab. Data for exercise 2 (Table 2) and a simulation program for exercise 3 can be downloaded from

the webpage http://home.thep.lu.se/∼anders/teaching/fysb12/.

1) High temperature

The probability of finding a given HP chain in a configuration C at temperature T is PC ∝ e−EC/kT ,

where EC =−NHHε. At high temperature, all configurations become equally probable. The chain then

behaves as a random walk, except for the self-avoidance condition (the chain must not cross itself).

Consider an ordinary random walk with N steps on the square lattice. Each step si has length

|si| = a and is in one of four equally probable directions (up, down, right, left). The mean-square

distance between the two end points is given by

r2
ee =

〈
(s1 + . . .+ sN)

2〉= N

∑
i=1
〈s2

i 〉+∑
i 6= j
〈si · s j〉 (1)

where 〈·〉 denotes an average over all possible realizations of the walk. In this equation, 〈s2
i 〉 = a2

(i = 1, . . . ,N) and 〈si · s j〉 = 0 (i 6= j), where the latter equality is due to the fact that the steps are

independent. It follows that r2
ee = Na2, so ree ∝ Nν with ν = 1/2.

After imposing the self-avoidance condition, it turns out that, for large N, ree still scales as Nν, but

with a different exponent ν. Table 1 shows data for r2
ee for a few different N for a self-avoiding walk.

Plot the data in this table in log-log scale, along with the result for an ordinary random walk. Use the

data to estimate the exponent ν for a self-avoiding walk (assuming that ree ∝ Nν).

2) Thermodynamic analysis based on the density of states

For an HP chain with a unique minimum-energy state, this single state will dominate at low tempera-

tures, whereas all states are equally probable in the limit of high temperature. To find out how the tran-

sition between these two behaviors occurs, it is useful to analyze the heat capacity CV = d〈E〉T/dT .

The thermal average of a general property f at temperature T can be written as

〈 f 〉T = ∑
C

fCPC =
∑C fCe−EC/kT

∑C e−EC/kT (2)

TABLE 1: Simulation data for r2
ee for a few different N, for a self-avoiding walk on the square latttice.

N 20 40 80 160

r2
ee/a2 66.7 193 549 1555
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The heat capacity CV can, in principle, be obtained by using this equation to find 〈E〉T at different T ,

and then taking a numerical derivative. However, the computation can be simplified by making two

observations. First, using equation 2, it can be shown that

CV =
d〈E〉T

dT
=

1
kT 2

(
〈E2〉T −〈E〉2T

)
(3)

Second, for a property f that only depends on E, equation 2 can be rewritten as

〈 f 〉T =
∑E fEgEe−E/kT

∑E gEe−E/kT (4)

where the sums are over energy levels rather than configurations and gE counts the number of con-

figurations with a given E. This expression contains much fewer terms than equation 2, but requires

knowledge of the density of states, gE . For many short HP sequences (≤27 beads), exact results for

gE are available. Table 2 lists gE for the HP sequence shown in figure 1. Note that there are only 13

possible values of the energy, whereas the number of different configurations is >1010.

In this exercise, you will use the known gE (Table 2) to investigate how the behavior of this HP

sequence depends on temperature. Proceed as follows.

(a) Starting from equation 2, show equation 3.

(b) Use equations 3 and 4 along with the data in Table 2 to compute CV at different temperatures

T . To avoid numerical instabilities, replace the e−E/kT factors in equation 4 by e−(E−Emin)/kT ,

where Emin =−13ε. In the calculations, set ε = k = 1 (E and T are then in units of ε and ε/k,

respectively). Plot CV against T for 0.1 < T < 1 and estimate the temperature Tmax at which CV

is maximal.

(c) The probability of finding the chain in its unique “native”, or minimum-energy, state is given

by

Pnat =
e−Emin/kT

∑E gEe−E/kT (5)

where Emin =−13ε. Make a similar plot of Pnat against T , and compare the behavior of Pnat to

that of CV .

3) Thermodynamic Monte Carlo simulations

Determining the density of states by exact methods is feasible only for short chains. By using Monte

Carlo methods, it is possible to study longer chains. In this exercise, this approach is illustrated using

the same 27-bead chain (Figure 1) as an example.

The aim of a Monte Carlo simulation is to generate a sequence of configurations C1, . . . ,Cτ dis-

tributed according to the desired probability distribution PC. If the set of configurations is sufficiently
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TABLE 2: Density of states, gE , for the 27-bead HP chain in figure 1. Each “state” corresponds to a pair of

configurations related by reflection symmetry. One of all possible configurations (a straight line) has

no symmetry-related partner. This “state” is therefore assigned a weight of 1/2.

E/ε gE

0 18 671 059 783.5

−1 15 687 265 041

−2 5 351 538 782

−3 1 222 946 058

−4 234 326 487

−5 40 339 545

−6 5 824 861

−7 710 407

−8 77 535

−9 9 046

−10 645

−11 86

−12 0

−13 1

large, then thermal averages can be estimated by averaging over these configurations, that is

〈 f 〉T = ∑
C

fCPC ≈
1
τ

τ

∑
k=1

fk

where fk denotes the value of f in configuration Ck. The generated configurations are generally

correlated and long simulations may be required in order to obtain a sufficient number of effectively

independent configurations.

You will receive a ready-made Monte Carlo program for simulations of HP chains. Use this

program to simulate the 27-bead sequence in figure 1 at the temperatures T = 0.9Tmax and T =

1.1Tmax, where Tmax is the maximum of the heat capacity (see exercise 2b).

During the course of a simulation, the program prints the Monte Carlo “time” and the energy to a

file at regular intervals. Use the data in this file to compute CV and Pnat at the two temperatures. Add

these data points to the figures drawn in exercises 2b and 2c.
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