
LU TP 14-41
December 2014

CHIRON: a package for ChPT numerical results at two loops†

Johan Bijnens

Department of Astronomy and Theoretical Physics, Lund University,
Sölvegatan 14A, SE 223-62 Lund, Sweden

Abstract

This document describes the package CHIRON which includes two libraries,
chiron itself and jbnumlib.

chiron is a set of routines useful for two-loop numerical results in Chiral Per-
turbation Theory (ChPT). It includes programs for the needed one- and two-loop
integrals as well as routines to deal with the ChPT parameters. The present ver-
sion includes everything needed for the masses, decay constants and quark-antiquark
vacuum-expectation-values. An added routine calculates consistent values for the
masses and decay constants when the pion and kaon masses are varied. In addition
a number of finite volume results are included: one-loop tadpole integrals, two-loop
sunset integrals and the results for masses and decay constants.

The numerical routine library jbnumlib contains the numerical routines used
in chiron. Many are to a large extent simple C++ versions of routines in the
CERNLIB numerical library. Notable exceptions are the dilogarithm and the Jacobi
theta function implementations.

This paper describes what is included in CHIRON v0.50.

Contents

1 Introduction 2

2 Files and setup 3

3 jbnumlib 3
3.1 Special functions . 3

3.1.1 Dilogarithm or Li2(x): jbdli2(x) 3
3.1.2 Bessel functions . 4
3.1.3 Theta functions . 4
3.1.4 Higher dimensional theta functions 4

3.2 Integration routines . 5

4 ChPT notation 5

5 Data structures 5
5.1 physmass: Masses, Fπ, µ . 5
5.2 Classes for the NLO LECS: Li . 6
5.3 Classes for the NNLO LECS: Ci . 7

6 Loop integrals 8
6.1 One-loop integrals . 8

6.1.1 Tadpoles . 8
6.1.2 Bubble integrals . 8

6.2 Sunset integrals . 9
6.3 One-loop finite volume integrals . 9

6.3.1 Tadpoles . 10
6.3.2 Bubble integrals . 10

6.4 Sunset finite volume integrals . 10

7 Masses, decay constants and vacuum-expectation-values 12
7.1 Masses . 12
7.2 Decay constants . 12
7.3 getfpimeta . 13
7.4 Vacuum-expectation-values . 13

8 Masses and decay constants at finite volume 14
8.1 Masses at finite volume . 15
8.2 Decay constants at finite volume . 15

9 Various comments 15
9.1 Error handling . 15
9.2 Warnings . 16

1

9.3 Possible extensions . 16

10 Conclusions 16

1 Introduction

Chiral Perturbation Theory (ChPT) is the low-energy effective field theory of QCD. It was
introduced by Weinberg, Gasser and Leutwyler [1, 2, 3] and the present state of the art
are calculations performed at two-loop level. A review is [4] but many more exists. The
long term goal of this project is to make available all these calculations with a consistent
interface in C++. Many of the original programs were written in FORTRAN77 and are
available on request from the authors, but they are not always consistent in the interfaces
and the use of common blocks for moving parameters around has occasionally lead to
difficult to find errors.

A general knowledge of C++ is assumed throughout this paper. The routines are at
present not guaranteed to be thread-safe, some global variables inside the various files are
used for the loop functions and integration routines. These are however never used for
setting outside the files, there are always functions provided for this. It is recommended
to always use these. The routines return double precision types if not indicated directly.

Kheiron, Xειρων, or Chiron, was the eldest and wisest of the Centaurs, half-horse men
of Greek mythology. His name is derived from the Greek word for hand (Kheir) which also
formed the basis of the word chiral which is why his name was chosen for this package [5].

The license chosen is the General Public License v2 or later from the Free Software
Foundation [6].

The chiron routines have mainly been tested against the FORTRAN codes of the
original publications. These were in turn implemented in at least two independent ver-
sions originally. The jbnumlib routines have their output compared with the original
CERNLIB routines in case they were simple translations to C++. In the other cases,
the tests are described in the relevant sections.

This paper describes what is included in CHIRON v0.50. The package itself is available
from [7]. The included files and how to install it is described in Sect. 2. The numerical
routines included in jbnumlib are described in Sect. 3. Some short comments on ChPT
notation are in Sect. 4. The main part describing the contents of chiron are Sects. 5 to 8.
Sect. 5 contains the objects implemented to deal with input data for the ChPT calculations.
A large part of the work is in implementing the relavant loop integrals, especially those at
finite volume. This is the content of Sect. 6. The simplest quantities are masses, decay
constants and vacuum-expectation-values. The functions for these are discussed in Sect. 7
and the finite volume extensions for masses and decay constants in Sect. 8. Some comments
about errors, some warnings about the use of the routines and definitions in ChPT as well
as a number of planned/possible extensions are discussed in Sect. 9. A short summary is
given in the final section.

2

2 Files and setup

The package is delivered as a gzipped tarred file (chironvvvv.tar.gz), where vvvv is
version information. Untarring it creates a directory chironvvvv, which is referred to as
the root directory below.

The package has a number of subdirectories when delivered. The root directory contains
a Makefile and files COPYING, INSTRUCTION and GUIDELINES. The main instructions
to produce CHIRON are to do first “make libjbnumlib.a” to produce the numerical library
and then “make libchiron.a” to produce the main library or simply “make” to do both. The
latter also puts the newly produced library versions in the subdirectory lib. To install,
put the the two library files and the content of the include directory somewhere where
they can be linked to and included. Linking should be indicated on the compile line with
the options “-lchiron -ljbnumlib”.

The subdirectory doc contains this manuscript, a filelist and possibly more files in future
versions. The subdirectory src contains the source files and include the various header
files. The subdirectory test contains a number of testing programs where the names
“testyyy.cc” indicates a program testing the code in the source file “yyy.cc”. A testing
program can be compiled using “make testyyy” in the root directory. The program “a.out”
should then produce the output as shown in the file “testyyy.dat” in the subdirectory
testoutputs. The test subdirectory contains in addition the file LiCiBE14.dat with the
latest determination of the LECs [8].

3 jbnumlib

The functions in this section are included to make the program collection self-contained.
They are mainly implementations of well known programs in C++ and in particular many
of the routines are a port to C + + from the CERNLIB [9] FORTRAN routines. Some, as
mentioned in the respective texts, are fully original. The definitions are all in jbnumlib.h

and contained in libjbnumlib.a. The implementations are in the files menstioned in each
subsection below. In order to avoid conflict with other implementations all routines in this
section have names starting with jb. The exact interface is best checked by looking in the
include file jbnumlib.h.

3.1 Special functions

3.1.1 Dilogarithm or Li2(x): jbdli2(x)

The way the vertex integrals are implemented requires a Spence or Li2 function which
returns complex values for all possible complex inputs. The routine implemented uses the
algorithm given in [10], Appendix A up to Bernouilly number B28. Defined in jbdli2.cc.
For real numbers the output has been compared to that of the CERNLIB routine DDILOG.
It has also been checked that the function satisfies a number of the relations between values
with different arguments that were not used in its evaluation.

3

3.1.2 Bessel functions

The modified Bessel functions I0, I1, K0, K1 with real arguments are available as jbdbesi0,
jbdbesi1, jbdbesk0 and jbdbesk1. These are implemented in jbdbesio which is a simple
port to C++ of the CERNLIB routines dbesi0,. . . . In addition the modified Bessel functions
K1, K2, K3 are available as jbdbesk2, jbdbesk3 and jbdbesk4. These are evaluated using
the recursion relations from K0 and K1.

3.1.3 Theta functions

The functions defined are related to the Jacobi theta functions. jbdtheta30(q) returns
the function

θ30(q) = 1 + 2
∑

n=1,∞
q(n

2) . (1)

It uses the idea behind the CERNLIB routines DTHETA. For small q it simply sums the series
(1) and for larger q it uses the modular invariance and a series in the changed variable
instead. The accuracy has been checked by running both series too much higher orders
and comparing the two results. Implemented in jbdtheta30.cc. A function without the
1 which is needed to keep accuracy for small q is available as jbdtheta30m1. Implemented
in jbdtheta30m1.cc.

jbdtheta32(q) returns the function

θ32(q) = 2
∑

n=1,∞
n2q(n

2) . (2)

For small q it simply sums the series (2) and for larger q it uses the modular invariance
and the derivative of the series in the changed variable The accuracy has been checked
by running both series too much higher orders and comparing the two results. Defined
in jbdtheta32.cc. A function with n4 multiplying q(n

2) is available as jbdtheta34 and
implemented in jbdtheta34.cc.

3.1.4 Higher dimensional theta functions

There are higher dimensional generalizations of the theta functions. These satisfy a more
general modular invariance which can be used to get much faster convergence series. The
functions defined below use some of these possible optimizations.

The basic function is the 2-dimensional generalization

θ
(2d)
0 (α, β, γ) =

∑
n1,n2=−∞,∞

e−αn
2
1−βn

2
2−γ(n1−n2)2 . (3)

This function is implemented as jbdtheta2d0 with arguments α, β, γ in jbdtheta2d0.cc.
In addition the function with the one removed is also available as jbdtheta2d0m1 imple-
mented in jbdtheta2d0m1.cc.

The function with the exponential multiplied by n2
1 is called jbdtheta2d02 and imple-

mented in jbdtheta2d02.cc.

4

3.2 Integration routines

An adaptive gaussian quadrature routine jbdgauss and an adaptive integration routine
jbdcauch, that integrates symmetrically around a singularity, are included. These are
ports of the CERNLIB routines dgauss and dcauch respectively. Implementation is in
jbdgauss.cc and jbdcauch.cc. The complex equivalent is jbwgauss in jbwgauss.cc.

The higher dimensional integration CERNLIB routine DADMUL based on [11] has been
ported to C++ and a simple interface for two and three-dimensional integration implemented
as jbdad2 and jbdad3. The code can be found in jbdadmul.cc.

4 ChPT notation

The notation used in ChPT is not fully unique. The notation used in this program collection
is the main one used by the author and his collaborators. The main point to be observed
is that chiron uses a normalization for the decay constants with Fπ ≈ 92 MeV.

For the low-energy-constants, we use the conventions of [3] and [12, 13] with dimen-
sionless renormalized couplings Lri and Cr

i .
The lowest order couplings are denoted by F0 and B0. The quark masses are m̂ = mu =

md, note that we work in the isospin limit, and ms. The lowest order masses1 are given by

m2
π 0 = 2B0m̂ , m2

K 0 = B0 (m̂+ms) , m2
η 0 =

B0

3
(2m̂+ 4ms) . (4)

5 Data structures

This section discusses the structures available for dealing with masses, Fπ, the Lri and Cr
i ,

and the subtraction constant µ. Note that µ is present in all three data structures and the
user should make sure that their use is consistent. The default-value mechanism in C++

has been used to define the values when the constructors are called with less than the full
data needed.

These data structures are implemented as classes.
Note that we assume dimensional units in GeV, but if all dimensional inputs are scaled

accordingly the routines give the correct answer. However, typical precisions set are as-
suming ChPT applications with dimensional units in powers of GeV.

5.1 physmass: Masses, Fπ, µ

The physical masses are defined in a class physmass defined in inputs.h and implemented
in inputs.cc.

Private data members: mpi, mk, meta, fpi, mu.
Typical declaration: physmass mass1(0.135,0.495,0.548,0.0922,0.77); The num-

bers given above are also the defaults.

1Note that the programs use an internal convention where mhat= 2B0m̂ and mstrange= 2B0ms.

5

These are the physical pion, kaon and eta mass, mπ,mK ,mη the physical pion decay
constant, Fπ and the subtraction point µ. The default constructor puts them all at some
reasonable values but they can be created with any number of the inputs specified, starting
from the left. In addition there are functions void setmpi(double) etc., defined that set
one of the values only. These use the same default values.

The values can be obtained from the function void out(mpi, mk, meta, fpi, mu)

that returns all of them via referenced doubles. Functions double getmpi(void) etc. are
defined that return one of the values.

The output/input stream format is defined as well so cout << mass1 and cin >>

mass1 make sense. The input stream should have the same format as the output stream
produces. This works for all streams, not just the standard cout and cin.

A test for equality is defined which checks that all data members agree to 7 significant
digits. So expressions like if(mass1 == mass2) can be used. This is relative precision,
so it is assumed no mass is zero here. The reason for not using exact equality is that
calculated masses might not be exactly the same using double precision variables.

5.2 Classes for the NLO LECS: Li

The class for dealing with the next-to-leading-order (NLO) low-energy constants (LECs)
defined in [3] is named Li. This is implemented in Li.cc and defined in Li.h.

The Li class has 13 double precision variables to store the LECs Lr1, . . . , L
r
10, H

r
1 , H

r
2

and the subtraction scale µ. It also contains a string with a name for the set of constants.
The LECs default to zero, the scale to 0.77 and the name to “nameless Li.” When the
LECs are referred to with numbers, 11,12 correspond to Hr

1 , H
r
2 respectively.

Typical declarations are:
Li Li1; Li Lifitall(0.88e-3,0.61e-3,-3.04e-3,0.75e-3,0.58e-3,0.29e-3,

-0.11e-3,-0.18e-3,5.93e-3,0.,0.,0.,0.77,"fit All");

Operations defined on the Li: overloaded operators are defined such that sets of Li

can be added or subtracted and multiplied by a number (double).The output/input stream
format is defined as well so cout << Li1 and cin >> Li1 make sense. The input stream
should have the same format as the output stream produces.

Member functions that can be used to set the parameters are setli which takes an
integer and a double (in either order) as argument to set the corresponding LEC to the
double, setmu which sets the scale2 and setname which changes the name of the set of Lri .

Output member functions exist to obtain a single LEC, out(int), or the 10 Lri , the 10
Lri and µ, the 12 LECs, the 12 LECs and µ, and the 12 LECs, µ and the name. These are
all called out and return the results via a reference to 10, 11, 12, 13 double or 13 double
and a string variable.

The member function changescale changes the scale µ and changes the Lri and Hr
i

according the scale dependence as obtained first in [3].

2This sets the scale simply, it does not change the numerical values of the LECs.

6

There are also three functions defined that return a set of random NLO LECs. These
are Lirandom wich gives each LEC a random value between ±1/(16π2). LirandomlargeNc
does the same but leaves Lr4, L

r
6 and Lr7 zero. Finally, LirandomlargeNc2 does the same but

Lr4, L
r
6 and Lr7 get a random value between ±(1/3)/(16π2). Note that 1/(16π2) ≈ 0.0063 so

the ranges include the values of the fitted Lri . The random numbers are generated using the
system generator rand() so we recommend initializing using something like srand(time

(0)). These latter functions were used in the random walks in the Lri in [14].

5.3 Classes for the NNLO LECS: Ci

The class for dealing with the next-to-next-to-leading-order (NNLO) low-energy constants
(LECs) defined in [12] is named Ci. This is implemented in Ci.cc and defined in Ci.h.
Note that this set of routines uses the convention where the Cr

i are dimensionless. The
parameters in the Lagrangian have dimension mass(−2) but the definition of the subtracted
Cr
i in [13] is dimensionless. Going from one-convention to the other is with the appropriate

power3 of Fπ.
The Ci class has as private members a double precision array Cr[95], which holds the

Cr
i , i = 1, 94 in Cr[i], the scale mu and string for the name. Defaults are zero for all the

Cr
i , 0.77 GeV for the scale and “nameless Ci” for the name.

Constructors are provided with as input a double array Cr[95], the scale and a name
or a scale and a name or a scale only or no input. Typical declarations are:
Ci Ci1,Ci2(1.0),Ci3(Crr,0.8,"a nice set") where Crr is defined as double Crr[95].

An additional constructor is provided that has as input the resonance parameters where
the resonance model is the simple version described in Sect. 5 of [15].

Operations defined on the Ci are: overloaded operators are defined such that sets of Ci
can be added or subtracted and multiplied by a number (double).The output/input stream
format is defined as well so cout << Ci1 and cin >> Ci1 make sense. The input stream
should have the same format as the output stream produces.

Member functions that can be used to set the parameters are setci which takes an
integer and a double (in either order) as argument to set the corresponding LEC to the
double, setmu which sets the scale4 and setname which changes the name of the set of Cr

i .
Output member functions exist to obtain a single LEC, out(int), or the Cr[95], or

Cr[95] and the scale, or Cr[95], scale and name. These are all called out and return the
results via references to the string and scale and the array.

The member functions changescale(double,Li) and changescale(Li,double) change
the scale µ and changes the Lri , H

r
i and Cr

i according the scale dependence as obtained
first in [13]. Note that the Li set here has also the scale and values changed accordingly,
not only the Cr

i .
There are also three functions defined that return a set of random NLO LECs. These

are Cirandom which gives each LEC a random value between±1/(16π2). CirandomlargeNc

3The definition is with the chiral limit value F0 but the difference is higher order.
4This sets the scale simply, it does not change the numerical values of the LECs.

7

does the same but leaves the large-Nc suppressed constants zero. Finally, CirandomlargeNc2
does the same but the large-Nc suppressed constants get a value between ±(1/3)/(16π2).
The random numbers are generated using the system generator rand() so we recommend
initializing using something like srand(time (0)). Typically these values of the Cr

i are
somewhat on the large side when fitting data.

6 Loop integrals

Most of the integrals used have been treated in many places. I refer only to the papers
where our particular notation has been defined and/or the method used to evaluate them
was developed. When comparing with other packages, keep in mind the differences in
subtraction and/or differences in defining the integrals.

6.1 One-loop integrals

6.1.1 Tadpoles

These integrals have been defined in [16] and correspond to the finite parts of the integral

A(n,m2) =
1

i

∫ ddp

(2π)d
1

(p2 −m2)n
. (5)

After the subtraction and renormalization as usual in ChPT, we are left with the finite
four-dimensional part Ā(n,m2) which is implemented as Ab(n,msq,mu2) and the n =
1, 2, 3 as Ab,Bb,Cb respectively with arguments msq,mu2. These functions are defined in
oneloopintegrals.h and implemented in oneloopintegrals.cc.

6.1.2 Bubble integrals

These have been defined in [16, 17]

B(m2
1,m

2
2, p

2) =
1

i

∫ ddq

(2π)d
1

(q2 −m2
1)((q − p)2 −m2

2)
,

Bµ(m2
1,m

2
2, p

2) =
1

i

∫ ddq

(2π)d
qµ

(q2 −m2
1)((q − p)2 −m2

2)

= pµB1(m
2
1,m

2
2, p

2) ,

Bµν(m
2
1,m

2
2, p

2) =
1

i

∫ ddq

(2π)d
qµqν

(q2 −m2
1)((q − p)2 −m2

2)

= pµpνB21(m
2
1,m

2
2, p

2) + gµνB22(m
2
1,m

2
2, p

2) ,

Bµνα(m2
1,m

2
2, p

2) =
1

i

∫ ddq

(2π)d
qµqνqα

(q2 −m2
1)((q − p)2 −m2

2)

= pµpνpαB31(m
2
1,m

2
2, p

2) + (pµgνα + pνgµα + pαgµν)B32(m
2
1,m

2
2, p

2) . (6)

8

Again one needs to do the subtraction and renormalization with ChPT convention. The
analytical values can be obtained using the methods of [10] for the B integral and the others
can be reduced to it using the methods of [18]. All functions have been implemented via a
method that does the integration over the Feynman parameter x numerically. These have
real arguments m1sq,m2sq,psq,mu2 and are called Bbnum,B1bnum,B21bnum,B22bnum,

B31bnum, B32bnum and return a complex value. The analytical evaluation has been imple-
mented in Bb,B1b,B21b,B22b with the same arguments and a complex return value. The
simpler analytical expression for the case of the two masses equal has been implemented
analytically for Bb and B22b called with argument msq,psq,mu2.

For the cases with numerical integrations, the precision can be set using
setprecisiononeloopintegrals(double) and obtained by
getprecisiononeloopintegrals(void).

All functions are defined in oneloopintegrals.h and implemented in
oneloopintegrals.cc.

6.2 Sunset integrals

These give the sunsetintegral loop integral functions HF , HF
1 , H

F
21 defined in App. of [16].

The definition in finite volume is given in (9) below. HF
31 is the function multiplying the

pµpνpρ part of the integral with rµrνrρ. These exist in a real version valid below threshold
and a complex version valid everywhere. The method used is derived in [16].

The derivative w.r.t. p2 is included for the real version of H,H1, H21. Functions defined
in sunsetintegrals.h and implemented in sunsetintegrals.cc.

Input arguments are real and are m2
1,m

2
2,m

2
3, p

2, µ2. Naming conventions are hh,hh1,

hh21,hh31 for the real versions valid below threshold and the complex versions valid ev-
erywhere zhh,zhh1,zhh21,zhh31. The real versions are normally faster when applicable.
In addition, wave-function renormalization requires some derivatives w.r.t. the external
momentum p2. These are encoded in hhd,hh1d,hh21d and zhhd,zhh1d,zhh21d for the
real and complex case respectively.

The precision of the numerical integrations can be set using
setprecisionsunsetintegrals(double) and obtained by
getprecisionsunsetintegrals(void).

These functions are defined in sunsetintegrals.h and implemented in
sunsetintegrals.cc.

6.3 One-loop finite volume integrals

The methods used for these are derived in detail in [19], references to earlier literature
can be found there. The integrals used here are given in the Minkowski conventions as
defined in [20]. All of the integrals are available with two different methods, one using a
summation over Bessel function and the other an integral over a Jacobi theta function.
The versions included at present are using periodic boundary conditions, all three spatial
sizes of the same length L and the time direction of infinite extent.

9

6.3.1 Tadpoles

The tadpole integrals A and Aµν are defined as

{
A(m2), Aµν(m

2)
}

=
1

i

∫
V

ddr

(2π)d
{1, rµrν}
(r2 −m2)

. (7)

The B tadpole integrals are the same but with a doubled propagator.
The subscript V on the integral indicates that the integral is a discrete sum over the

three spatial components and an integral over the remainder. At finite volume, there are
more Lorentz-structures possible. The tensor tµν , the spatial part of the Minkowski metric
gµν , is needed for these. The functions for Aµν are

Aµν(m
2) = gµνA22(m

2) + tµνA23(m
2) . (8)

In infinite volume A22 is related to A and A23 vanishes. We denote the finite volume part
by a superscript V and one should remember that for the full integrals, the infinite volume
results of Sect. 6.1.1 need to be added.

The functions are defined as AbVt(msq,L), BbVt(msq,L), AbVb(msq,L), BbVb(msq,L).
The last letter indicates whether they are computed with the theta function or Bessel func-
tion method. The results were checked by comparing against each other and by comparing
with the independent Bessel function implementation done in [21].

The functions A22bVt(msq,L), A22bVt(msq,L), and A23bVb(msq,L), A23bVb(msq,L)
are available as well.

setprecisionfinitevolumeoneloopt(Abacc,Bbacc,printout) and
setprecisionfinitevolumeoneloopt(maxsum,Bbacc,printout) set the precision. The
last variable printout is a logical variable which can be set to true or false, default is
false. The first and second argument give the (mainly absolute) precision of the numerical
integration for the tadpole and bubble integral numerical integrations. maxsum indicates
how far the sum over Bessel function is taken. Maximum at present is 400.

These functions are defined in finitevolumeoneloopintegrals.h and implemented
in finitevolumeoneloopintegrals.cc.

6.3.2 Bubble integrals

Not implemented in this version.

6.4 Sunset finite volume integrals

Sunset integrals are defined as

{H,Hµ, Hµν} =
1

i2

∫
V

ddr

(2π)d
dd1

(2π)d
{1, rµ, rµrν}

(r2 −m2
1) (s2 −m2

2) ((r + s− p)2 −m2
3)
. (9)

The subscript V indicates that the spatial dimensions are a discrete sum rather than an
integral. The conventions correspond to those in infinite volume of [16]. Integrals with

10

the other momentum s in the numerator are related using the trick shown in [16] which
remains valid at finite volume in the cms frame [19].

In the cms frame we define the functions5

Hµ = pµH1 (10)

Hµν = pµpνH21 + gµνH22 + tµνH27 .

The arguments of all functions in the cms frame are (m2
1,m

2
2,m

2
3, p

2). These functions
satisfy the relations, valid in finite volume [19],

H1(m
2
1,m

2
2,m

2
3, p

2) +H1(m
2
2,m

2
3,m

2
1, p

2) +H1(m
2
3,m

2
1,m

2
2, p

2) = H(m2
1,m

2
2,m

2
3, p

2) ,

p2H21 + dH22 + 3H27 −m2
1H = A(m2

2)A(m2
3) . (11)

The arguments of the sunset functions in the second relation are all (m2
1,m

2
2,m

2
3, p

2, L, µ2).
(L only for the finite volume part).

We split the functions in an infinite volume part, H̃i, and a finite volume correction,
H̃V
i , with Hi = H̃i+H̃V

i . The infinite volume part has been discussed above. For the finite
volume parts we define

H̃V =
λ0

16π2

(
AV (m2

1) + AV (m2
2) + AV (m2

3)
)

+
1

16π2

(
AV ε(m2

1) + AV ε(m2
2) + AV ε(m2

3)
)

+HV ,

H̃V
1 =

λ0
16π2

1

2

(
AV (m2

2) + AV (m2
3)
)

+
1

16π2

1

2

(
AV ε(m2

2) + AV ε(m2
3)
)

+HV
1 ,

H̃V
21 =

λ0
16π2

1

3

(
AV (m2

2) + AV (m2
3)
)

+
1

16π2

1

3

(
AV ε(m2

2) + AV ε(m2
3)
)

+HV
21 ,

H̃V
27 =

λ0
16π2

(
AV23(m

2
1) +

1

3
A23(m

2
2)) +

1

3
AV23(m

2
3)
)

+
1

16π2

(
AV ε23 (m2

1) +
1

3
AV ε23 (m2

2 +
1

3
AV ε23 (m2

3))
)

+HV
27 . (12)

The finite parts are defined differently from the infinite volume case in [16]. The parts
with AV ε are removed here as well.

The functions HV
i can be computed with the methods of [19]. They correspond to

adding the parts labeled with G and H in Sect. 4.3 and the part of Sect. 4.4 in [19].
They are implemented as functions hhVt,hh1Vt,hh21Vt,hh22Vt,hh27Vt with argu-

ments m1sq,m2sq,m3sq,psq,L,mu2. The derivatives w.r.t. p2 exist as hhdVt,hh1dVt,

hh21dVt,hh22dVt,hh27dVt. These are the functions using the theta function method.
Those using the Bessel function method are implemented with a b instead of t as last
letter in the name. The arguments are the same.

For all cases discussed we have done checks that both methods, via Bessel or (gener-
alized) Jacobi theta functions, give the same results. In addition the derivatives w.r.t. p2

for all the integrals are compared with taking a numerical derivative.

5In the cms frame tµν = gµν − pµpν/p2 but the given separation appears naturally in the calculation
[19]. It also avoids singularities in the limit p→ 0.

11

Note that the sunset functions at finite volume call the tadpole integrals evaluated with
the same method. Do not forget to set precision for those as well. The precision for the sun-
set integrals can be set with the functions setprecisionfinitevolumesunsett(racc,rsacc,printout)
and setprecisionfinitevolumesunsetb(maxsum1,mxsum2,racc,rsacc,printout). The
bool variable printout defaults to true and sets whether the setting is printed. The dou-
ble values sunsetracc and sunsetrsacc set the accuracies of the numerical integration
needed when one or two loop-momenta “feel” the finite volume. Default values are 1e-5

and 1e-4 respectively. The integers maxsum1 and maxsum2 give how far the sum over Bessel
functions is used for the same two cases. The first is maximum 400, the second maximum
40 in the present implementation. In the latter case a triple sum is needed, hence the much
lower upper bound. For most applications it makes sense to have a higher precision for the
case with one loop momentum quantized, i.e. racc smaller than rsacc.

7 Masses, decay constants and vacuum-expectation-

values

7.1 Masses

The masses of the pion, kaon and eta at two-loops in three flavour ChPT were calculated
in [16]. The pion and eta mass were done earlier with a different subtraction scheme and
a different way to perform the sunset integrals in [22].

The expressions for the physical masses for a = π,K, η are given by

m2
aphys = m2

a 0 +m2(4)
a +m2(6)

a . (13)

The superscripts indicate the order of the diagrams in p that each contribution comes from.
The lowest order masses are given in (4). The expressions can be found in [16]. In addition
the contributions themselves are split in the parts depending on the NLO LECs Lri , on the
NNLO LECs Cr

i and the remainder as

m2(4)
a = m

2(4)
aL +m

2(4)
aR , m2(6)

a = m
2(6)
aL +m

2(6)
aC +m

2(6)
aR . (14)

All the parts in (14) are implemented as the functions mpi4(physmass,Li),
mpi4L(physmass,Li), mpi4R(physmass), mpi6(physmass,Li,Ci), mpi6L(physmass,Li),
mpi6C(physmass,Ci) and mpi6R(physmass) . The equivalent functions also exist for the
kaon, with pi to k, and eta, with pi to eta.

The functions are defined in massesdecayvev.h and implemented in massesdecayvev.cc.

7.2 Decay constants

The decay constants of the pion, kaon and eta at two-loops in three flavour ChPT were
calculated in [16]. The pion and eta decay constants were done earlier with a different
subtraction scheme and a different way to perform the sunset integrals in [22].

12

The expressions for the decay constants for a = π,K, η are given by

Faphys = F0

(
1 + F (4)

a + F (6)
a

)
. (15)

The superscripts indicate the order of the diagrams in p that each contribution comes
from. F0 denotes the decay constant in the three-flavour chiral limit. The expressions were
originally derived in [16], but note the description in the erratum of [15]. The expressions
corrected for the error can be found in the website [23]. In addition the contributions
themselves are split in the parts depending on the NLO LECs Lri , on the NNLO LECs Cr

i

and the remainder as

F (4)
a = F

(4)
aL + F

(4)
aR , F (6)

a = F
(6)
aL + F

(6)
aC + F

(6)
aR . (16)

All the parts in (16) are implemented as the functions fpi4(physmass,Li),
fpi4L(physmass,Li), fpi4R(physmass), fpi6(physmass,Li,Ci), fpi6L(physmass,Li),
fpi6C(physmass,Ci) and fpi6R(physmass) . The equivalent functions also exist for the
kaon, with pi to k, and eta, with pi to eta. For the η the decay constant has been defined
with the octet axial-vector current.

The functions are defined in massesdecayvev.h and implemented in massesdecayvev.cc.

7.3 getfpimeta

A problem that occurs in trying to compare to lattice QCD is that the present routines
are written in terms of the physical pion decay constant and masses. In particular, the eta
mass is treated as physical. One thus needs a consistent eta mass and pion decay constant
when varying the input pion and kaon mass. This assumes we have fitted the LECs Lri
and Cr

i with a known set of mπ,mK ,mη, Fπ.
The functions getfpimeta6(mpiin,mkin,massin,Li,Ci) and

getfpimeta4(mpiin,mkin,massin,Li) return a physmass with a consistent set of Fπ and
mη for input values of the pion and kaon mass. The other input is the physmass massin,
the Li and Ci that are used as input. The formulas used are (14) and (16) up to order
p6 and p4 respectively. The solution is obtained by iteration and stops when six digits of
precision are reached. This method was used in [20] to obtain the consistent set of masses
and decay constants used there.

7.4 Vacuum-expectation-values

The corrections to the vacuum expectation values (vevs) 〈0|qq|0〉 for up, down and strange
quarks in the isospin limit were calculated at two-loops in three flavour ChPT in [15]. The
expression for the up and down quark vev are identical since we are in the isospin limit.

We write the expressions in a form analoguous to the decay constant treatment:

〈0|qq|0〉a phys = −F 2
0B0

(
1 + 〈0|qq|0〉(4)a + 〈0|qq|0〉(6)a

)
. (17)

13

The superscripts indicate the order of the diagrams in p that each contribution comes from.
The lowest order values are −F 2

0B0.
Note that the vevs are not directly measurable quantities. They depend on exactly

the way the scalar densities are defined in QCD. ChPT can be used for them when a
massindependent, chiral symmetry respecting subtraction scheme is used. MS in QCD
satisfies this, but there are other possibilities. Even within a scheme, B0 and the quark
masses depend on the QCD subtraction scale µQCD is such a way that B0mq is independent

of it. The higher order corrections in this case also depend on the LECs for fully local
counter-terms, Hr

1 , H
r
2 at order p4 and Cr

91, . . . , C
r
94 at p6. When the scalar density is fully

defined, measuring these quantities in e.g. lattice QCD and comparing with the ChPT
expressions is a well defined procedure.

The contributions at the different orders themselves are split in the parts depending on
the NLO LECs Lri , on the NNLO LECs Cr

i and the remainder as

〈0|qq|0〉(4)a = 〈0|qq|0〉(4)aL + 〈0|qq|0〉(4)aR ,
〈0|qq|0〉(6)a = 〈0|qq|0〉(6)aL + 〈0|qq|0〉(6)aC + 〈0|qq|0〉(6)aR . (18)

All the parts in (18) are implemented as the functions qqup4(physmass,Li),
qqup4L(physmass,Li), qqup4R(physmass), qqup6(physmass,Li,Ci),
qqup6L(physmass,Li), qqup6C(physmass,Ci) and qqup6R(physmass) . The equivalent
functions also exist for the strange quark case, with up changed to strange.

The functions are defined in massesdecayvev.h and implemented in massesdecayvev.cc.

8 Masses and decay constants at finite volume

The expressions treated in this section have been derived in [20]. A general remark is that
care should be taken to set the precision in the loop integrals sufficiently high. For the
one-loop integrals setting it very high is usually no problem. For the sunset integrals the
evaluation can become very slow. It is strongly recommended to play around with the
settings and compare the outputs for the two ways to evaluate the integral. The theta
and Bessel function evaluation approach the correct answer differently. For most cases it
is possible to have rsacc set smaller than racc.

For many applications it is useful to calculate the very time consuming parts, those
labeled 6RV, once and store them. They only depend nontrivially on the masses and size of
the finite volume. The decay constant dependence is very simple and there is dependence
on the NLO LECs Lri .

The results presented in this section are with periodic boundary conditions and an
infinite extension in the time direction. They are also restricted to the case where the
particle is at rest, i.e. ~p = 0.

14

8.1 Masses at finite volume

The finite volume corrections to the masses squared6 are defined as the difference of the
mass squared in finite volume and in infinite volume:

∆Vm2
a = m2V

a −m2V=∞
a = m2V (4)

a +m2V (6)
a .

m2V (6)
a = m

2V (6)
aL +m

2V (6)
aR . (19)

These definitions are for a = π,K, η. These functions are available as mpi4Vt, mpi6Vt,
mpi6LVt mpi6RVt respectively for the pion. mpi4Vt and mpi6RVt have as arguments a
physmass and the length L. The other two have as arguments physmass,Li double L.
The final letter “t” indicates the evaluation using theta functions. With a “b” instead they
use evaluation via Bessel functions.

The equivalent functions for the kaon (pi to k) and eta (pi to eta) are also available.
All these are defined in massdecayvevV.h and implemented in massdecayvevV.h.

8.2 Decay constants at finite volume

The finite volume corrections to the decay constants are defined as the difference of the
mass squared in finite volume and in infinite volume:

∆V Fa = F V
a − F V=∞

a = F V (4)
a + F V (6)

a .

F V (6)
a = F

V (6)
aL + F

V (6)
aR . (20)

These definitions are for a = π,K, η. Note that the correction is defined to the value of
the decay constant, not divided by the the lowest order decay constant as in (15). The
functions are available as fpi4Vt, fpi6Vt, fpi6LVt fpi6RVt respectively for the pion.
fpi4Vt and fpi6RVt have as arguments a physmass and the length L. The other two have
as arguments physmass,Li double L. The final letter “t” indicates the evaluation using
theta functions. With a “b” instead they use evaluation via Bessel functions.

The equivalent functions for the kaon (pi to k) and eta (pi to eta) are also available.
All these are defined in massdecayvevV.h and implemented in massdecayvevV.h.

9 Various comments

9.1 Error handling

Error handling has been dealt with in a very simple manner. Most functions print out
a message to standard output if something doesn’t seem right. In particular, since the
subtraction scale is present in several inputs, many functions check if these are the same
and print out a message if not.

Errors due to a zero in a denominator are not caught and might lead to a crash.

6Note that in other papers the corrections to the mass itself are sometimes quoted.

15

9.2 Warnings

The definition of higher orders in ChPT is not unique. In this program collection, we have
consistently chosen to rewrite all results in the physical masses and the physical pion decay
constant, but note that even this is not fully unique. While there is usually a standard
choice for the lowest order expression, at one-loop order this is often not the case since the
Gell-Mann–Okubo relation can be used to rewrite the dependence on the η mass.

The files contain many internal functions as well as some extensions which are not
described in this manuscript. These might change in future releases and have in general
not been as fully tested as the described ones. Use at your own risk.

9.3 Possible extensions

Two-loop results are known for many more ChPT quantities also including isospin violation
as well as for two-flavour ChPT and the partially quenched case. In addition at the one-loop
level very many extensions exist for inclusion of the internal electro-magnetic interaction,
finite volume effects, twisting and various extensions that include finite a effects in lattice
gauge theory.

Another extension is how the higher orders are actually defined. In this program
collection so far we have consistently chosen to rewrite all results in the physical masses
and the physical pion decay constant. Implementations of other choices of higher orders,
in particular in terms of lowest-order quantities are planned.

A last extension worth mentioning is the inclusion of the existing two-flavour ChPT
results.

10 Conclusions

This paper describes a library of useful numerical programs in C++ for ChPT at upto
two-loop order. Care has been taken to be independent of other libraries. In particular
a number of numerical routines has been reimplemented in the numerical algorithm part
of the library, libjbnumlib.a. The more ChPT direct functions like the loop integrals, a
number of data structures to deal with LECs and the result for the masses, decay constants
and decay constants are put in libchiron.a. Finite volume results are included for the
masses and decay constants.

A simple Makefile as well as a large number of testing/example programs are included.

Acknowledgements

This work is supported, in part, by the European Community SP4-Capacities “Study of
Strongly Interacting Matter” (HadronPhysics3, Grant Agreement number 283286) and the
Swedish Research Council grants 621-2011-5080 and 621-2013-4287. I also thank all my
collaborators in the work for which my version of the program made it into this collection

16

and especially Ilaria Jemos who has tested many of the earlier versions in the course of
[14].

References

[1] S. Weinberg, Physica A 96 (1979) 327.

[2] J. Gasser and H. Leutwyler, Annals Phys. 158 (1984) 142.

[3] J. Gasser and H. Leutwyler, Nucl. Phys. B 250 (1985) 465.

[4] J. Bijnens, Prog. Part. Nucl. Phys. 58 (2007) 521 [hep-ph/0604043].

[5] http://en.wikipedia.org/wiki/Chiron

[6] http://www.gnu.org/licenses/gpl-2.0.htmlhttp://www.gnu.org/licenses/gpl-2.0.html

[7] http://www.thep.lu.se/∼bijnens/chiron/

[8] J. Bijnens and G. Ecker, arXiv:1405.6488 [hep-ph].

[9] http://cernlib.web.cern.ch

[10] G. ’t Hooft, M. J. G. Veltman, Nucl. Phys. B153 (1979) 365-401.

[11] A. van Doren and L. de Ridder, J. Comput. Appl. Math. 2 (1976) 207-217.

[12] J. Bijnens, G. Colangelo and G. Ecker, JHEP 9902 (1999) 020 [hep-ph/9902437].

[13] J. Bijnens, G. Colangelo and G. Ecker, Annals Phys. 280 (2000) 100 [hep-ph/9907333].

[14] J. Bijnens and I. Jemos, Nucl. Phys. B 854 (2012) 631 [arXiv:1103.5945 [hep-ph]].

[15] G. Amorós, J. Bijnens and P. Talavera, Nucl. Phys. B 585 (2000) 293 [Erratum-ibid.
B 598 (2001) 665] [hep-ph/0003258].

[16] G. Amorós, J. Bijnens and P. Talavera, Nucl. Phys. B 568 (2000) 319 [hep-
ph/9907264].

[17] J. Bijnens and P. Talavera, JHEP 0203 (2002) 046 [hep-ph/0203049].

[18] G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151.

[19] J. Bijnens, E. Boström and T. A. Lähde, JHEP 1401 (2014) 019 [arXiv:1311.3531
[hep-lat]].

[20] J. Bijnens and T. Rössler, arXiv:1411.6384 [hep-lat].

[21] J. Bijnens and K. Ghorbani, Phys. Lett. B 636 (2006) 51 [hep-lat/0602019].

17

http://en.wikipedia.org/wiki/Chiron
http://www.gnu.org/licenses/gpl-2.0.html
http://www.thep.lu.se/~bijnens/chiron/
http://cernlib.web.cern.ch

[22] E. Golowich and J. Kambor, Phys. Rev. D 58 (1998) 036004 [hep-ph/9710214].

[23] http://www.thep.lu.se/∼bijnens/chpt/

18

http://www.thep.lu.se/~bijnens/chpt/

	Introduction
	Files and setup
	jbnumlib
	Special functions
	Dilogarithm or Li2(x): jbdli2(x)
	Bessel functions
	Theta functions
	Higher dimensional theta functions

	Integration routines

	ChPT notation
	Data structures
	physmass: Masses, F,
	Classes for the NLO LECS: Li
	Classes for the NNLO LECS: Ci

	Loop integrals
	One-loop integrals
	Tadpoles
	Bubble integrals

	Sunset integrals
	One-loop finite volume integrals
	Tadpoles
	Bubble integrals

	Sunset finite volume integrals

	Masses, decay constants and vacuum-expectation-values
	Masses
	Decay constants
	getfpimeta
	Vacuum-expectation-values

	Masses and decay constants at finite volume
	Masses at finite volume
	Decay constants at finite volume

	Various comments
	Error handling
	Warnings
	Possible extensions

	Conclusions

