
CHIRON v0.55alpha Manual and User Guide

Johan Bijnens

Department of Astronomy and Theoretical Physics, Lund University
Sölvegatan 14A, SE 22362 Lund, Sweden

Manual version of March 12, 2021

Abstract

This manual and user guide describes the classes and functions contained in the
ChPT program collection CHIRONv0.55alpha which includes the numerical library
jbnumlib and the ChPT routine library chiron.

This text is licensed under the creative commons license
CC-BY 4.0 (http://creativecommons.org/licenses/by/4.0/), except some parts which
are under their own license.

http://creativecommons.org/licenses/by/4.0/

Contents

Contents 1

1 Introduction 5

2 Guidelines 5
2.1 Main comments . 5
2.2 Some caution for use . 6

3 Files, installation and testroutines 6
3.1 Files . 7
3.2 Installation . 7
3.3 testroutines . 7

4 jbnumlib 8
4.1 Complex numbers . 8
4.2 Special functions . 8

4.2.1 Polylogarithms . 8
4.2.1.1 jbdli2p . 8
4.2.1.2 jbdli2 . 8
4.2.1.3 jbdli3 . 8
4.2.1.4 jbdli4 . 9

4.2.2 Bessel functions . 9
4.2.2.1 jbdbesi0 . 9
4.2.2.2 jbdbesi1 . 9
4.2.2.3 jbdbesk0 . 9
4.2.2.4 jbdbesk1 . 10
4.2.2.5 jbdbesk2 . 10
4.2.2.6 jbdbesk3 . 10
4.2.2.7 jbdbesk4 . 10

4.2.3 Theta and related functions . 10
4.2.3.1 jbdtheta30 . 10
4.2.3.2 jbdtheta30m1 . 11
4.2.3.3 jbdtheta32 . 11
4.2.3.4 jbdtheta34 . 11
4.2.3.5 jbdtheta3 . 11
4.2.3.6 jbderivutheta3 . 12
4.2.3.7 jbderiv2utheta3 . 12
4.2.3.8 jbderiv3utheta3 . 12
4.2.3.9 jbdtheta2d0 . 12
4.2.3.10 jbdtheta2d0m1 . 13

1

4.2.3.11 jbdtheta2d02 . 13
4.3 Root finders . 13

4.3.1 Zero of a real function of one variable 13
4.3.1.1 jbdzerox . 13

4.3.2 Roots of a cubic equation . 13
4.3.2.1 jbdrteq3 . 13

4.4 Integration routines . 14
4.4.1 One dimension, real . 14

4.4.1.1 jbdgauss . 14
4.4.1.2 jbdgauss2 . 15
4.4.1.3 jbdquad15 . 15
4.4.1.4 jbdquad21 . 15

4.4.2 One dimension, real with singularity 16
4.4.2.1 jbdcauch . 16
4.4.2.2 jbdcauch2 . 16
4.4.2.3 jbdsing15 . 17
4.4.2.4 jbdsing21 . 17

4.4.3 One dimension, complex . 18
4.4.3.1 jbwgauss . 18
4.4.3.2 jbwgauss2 . 18
4.4.3.3 jbwquad15 . 19
4.4.3.4 jbwquad21 . 19

4.4.4 Two dimensions, real . 20
4.4.4.1 jbdad2 . 20

4.4.5 Three dimensions, real . 20
4.4.5.1 jbdad3 . 20

5 Chiral Perturbation Theory 21

6 Data structures 21
6.1 Two flavour ChPT . 21

6.1.1 Class: physmassnf2 . 21
6.1.2 Class: lomassnf2 . 22
6.1.3 Class: quarkmassnf2 . 22
6.1.4 NLO LECs: Class li . 23
6.1.5 NLO LECs: Class libar . 24

6.2 Three flavour ChPT . 25
6.2.1 Class: physmass . 25
6.2.2 Class: lomass . 26
6.2.3 Class: quarkmass . 26
6.2.4 NLO LECs: Class Li . 27
6.2.5 NNLO LECs: Class Ci . 29

6.3 nF flavour ChPT . 30

2

6.3.1 Class: quarkmassnf . 30
6.3.2 Class: lomassnf . 31
6.3.3 NLO LECs: Class Linf . 32
6.3.4 NNLO LECs: Class Ki . 33

6.4 Vectors . 34
6.4.1 Class: fourvector . 34

7 Loop integrals 35
7.1 Tadpole or one-propagator integrals . 35
7.2 Bubbles or two-propagator integrals . 36

7.2.1 Definitions . 36
7.2.2 Analytical implementation . 37
7.2.3 Numerical implementation . 38

7.3 Bubbles or two-propagator integrals with different powers of propagators . 38
7.3.1 Definitions . 38
7.3.2 Analytical implementation . 39

7.4 Sunset integrals . 39
7.4.1 Definition . 39
7.4.2 Functions . 41

7.5 Sunsetintegrals with different powers of propagators 41
7.5.1 Definition . 41
7.5.2 Functions . 42

7.6 Finite volume tadpole integrals: periodic boundary conditions 43
7.6.1 Definitions . 43
7.6.2 Functions . 44

7.7 Finite volume tadpole integrals: twisted boundary conditions 46
7.7.1 Definitions . 46
7.7.2 Functions . 46

7.8 Finite volume bubble integrals: periodic boundary conditions 47
7.8.1 Definitions . 47
7.8.2 Functions . 48

7.8.2.1 p = 0 and periodic boundary conditions 48
7.9 Finite volume bubble integrals: twisted boundary conditions 49

7.9.1 Definitions . 49
7.9.2 Functions . 50

7.10 Finite volume sunsetintegrals . 51
7.10.1 Definitions . 51
7.10.2 Functions . 52

7.11 Finite volume sunsetintegrals with different powers of propagators 53
7.11.1 Definitions . 53
7.11.2 Functions . 54

8 Two flavour isospin conserving results 56

3

8.1 Mass, decay constant and vacuum-expectation-value: in physical 56
8.1.1 Mass . 56
8.1.2 Decay constant . 56
8.1.3 vacuum-expectation-value . 57

8.2 Mass, decay constant and vacuum-expectation-value at finite volume: in
physical . 57
8.2.1 Mass at finite volume: in physical 58
8.2.2 Decay constant at finite volume: in physical 59
8.2.3 Vacuum-expectation-value at finite volume: in physical 59

9 Three flavour isospin conserving results 60
9.1 Masses, decay constants and vacuum-expectation-values: in physical 60

9.1.1 Masses . 60
9.1.2 Decay constants . 61
9.1.3 getfpimeta . 62
9.1.4 Vacuum-expectation-values . 63

9.2 Masses, decay constants and vacuum-expectation-values: in lowest order . 64
9.2.1 Masses: in lowest order . 64
9.2.2 Decay constants: in lowest order . 66
9.2.3 Vacuum-expectation-values: in lowest order 67

9.3 Masses and decay constants at finite volume: in physical 68
9.3.1 Masses at finite volume: in physical 68
9.3.2 Decay constants at finite volume: in physical 70

9.4 Masses, decay constants and vacuum expectation values at finite volume: in
lowest order . 71
9.4.1 Masses at finite volume: in lowest order 71
9.4.2 Decay constants at finite volume: in lowest order 72
9.4.3 Vacuum-expectation-values at finite volume: in lowest order 74

9.5 Masses, decay constants and vacuum expectation values at finite volume
with twisted boundary conditions: in lowest order 75
9.5.1 Masses . 75

9.6 Vector form-factors: in lowest order . 76
9.6.1 Electromagnetic form-factors . 76

9.6.1.1 Functions . 77
9.6.2 K → π and K`3 form-factors . 77

9.6.2.1 Functions . 78

10 Three flavour partially quenched results 78
10.1 Masses . 79
10.2 Decay constants . 81
10.3 Masses at finite volume . 82
10.4 Decay constants at finite volume . 84
10.5 Vector form-factors . 86

4

10.5.1 K → π or K`3 form-factors . 86
10.5.2 Functions . 86

11 QCD like theories for NF flavours 87
11.1 Mass, decay constant and vacuum-expectation-value: in lowest order 88
11.2 Mass, decay constant and vacuum-expectation-value at finite volume: in

lowest order . 90
11.3 Partially quenched mass, decay constant and vacuum-expectation-value: in

lowest order . 91
11.4 Partially quenched mass, decay constant and vacuum-expectation-value at

finite volume: in lowest order . 93

A GNU GENERAL PUBLIC LICENSE 95

B Creative Commons Attribution 4.0 International Public License 102

References 106

Index 109

1 Introduction

This is the manual and user guide for the Chiral Perturbation Theory package CHIRON
v0.55alpha. It also defines the functions included in a more extended fashion as compared to
the published short description [1]. There is obviously a large overlap with that publication.
The numerical routines are described in Sect. 4. The remaining sections are devoted to the
chiron library.
This manual is released under the creative commons license CC-BY 4.0 [2] as reproduced
in App. B except for the parts in App. A and App. B which have their own licenses. The
software itself is released under the GNU General Public License (GPL) version 2 or later,
which is reproduced in App. A.
Kheiron, Xειρων, or Chiron, was the wisest and eldest of the Centaurs, half-horse men of
Greek mythology. His name comes from the Greek word for hand (Kheir) which is also the
origin of the word chiral which is why his name was deemed appropriate for this package
[3].

2 Guidelines

2.1 Main comments

Most of these routines were produced during and after scientific research. They are licensed
under the GPL v2 or later, see App. A, [4] or the file COPYING in the main directory, so

5

you have very strong rights in using and modifying them. However, please respect the
guidelines as described in the file GUIDELINES in the main directory. A summary of these
is

• Citations are important in the academic world so when using these please both cite
the relevant CHIRON publication [1] and the papers where the work itself was done
as quoted in the different chapters.

• Suspected bugs, proposed fixes and suggestions should preferably be communicated
to the author(s) so they can be added in future releases.

• If you distribute modified versions, please indicate clearly the modifications in the
source and at the point of distributions. However, the preferred way to introduce
changes is via future releases.

• To make published results reproducible, the exact versions of the code that were
used should be kept. This includes the values of all parameters used including the
precisions.

2.2 Some caution for use

These routines have been used and tested in a ChPT environment using units in powers of
GeV. Typical accuracies are set by default to relevant and obtainable values for that case.
In addition, there are often special cases where the routines might not work, often due to
0/0 or large cancelations.
Similar comments apply to the special functions included. They are sufficiently accurate
for the purposes they were used for originally and usually return values with a precision
close to double precision but this is not guaranteed.
In some cases, the large formulas have inherently large cancelations. This might lead to
degrading of precision in unexpected places. Use common (scientific) sense to judge the
quality of the results.
Finally, there are a number of internal functions and extensions already present in the
source code but not yet documented in this manual. These might change and have not
been tested as well as the documented ones. In particular interfaces etc. might change.

3 Files, installation and testroutines

The package can be downloaded from [5]. There are ready to install libaries there for some
cases, but in general it is better to compile it for your own system. C++ can have a
large overhead in calling classes and functions compared to FORTRAN. Therefore always
compile the library with optimization. The interfaces are as much as possible defined with
the keyword const to allow the compiler to optimize more efficiently.

6

3.1 Files

The gzipped tarred file (chiron.vvvv.tar.gz) will produce a directory chiron.vvvv with
a number of subdirectories. vvvv is version information. The created directory is called
the main directory in the remainder.
The main directory contains the files COPYING, INSTRUCTIONS, GUIDELINES and a Makefile.
The subdirectory doc contains the documentation. The latest published article about
CHIRON, this manual (manual.tex), a list of files (filelist.txt) and a summary of
things added since earlier versions (Changelog.vvv.to.www.txt).
The subdirectory lib will after compiling contain the compiled libraries libjbnumlib.a

and libchiron.a.
The subdirectory include contains all the needed header files. The subdirectory src

contains the source files. test contains the testing and example programs. testoutputs

contains the output the testprograms should produce.
Typically for each subject xxx there are files xxx.h, xxx.cc, testxxx.cc and testxxx.dat

in the respective directories.
There are a few extra files around as well. These typically contain inputs needed or large
sets of constants.

3.2 Installation

The main steps are to run make in the main directory. This should produce the files
libjbnumlib.a and libchiron.a and also copy them to the lib subdirectory. You might
have to change the variables CXX, CFLAGS and CFLAGTESTS. CXX should specify the C++
compiler and the options to be used for everything. CFLAGS can be used to specify addi-
tional options in compiling the libraries and CFLAGTESTS to specify additional options for
the testing programs.
“make clean” can be used to remove many of the files created during compiling.
The actual installation is by putting the contents of the include directory somewhere
in the include path of your compiler and the two files libjbnumlib.a and libchiron.a

somewhere in the library path. For many C++ compilers the paths are given in the
environment variables CPLUS INCLUDE PATH and LIBRARY PATH respectively.

3.3 testroutines

For every file xxx.h and xxx.cc included for chiron there is a testing/example code
testxxx.cc in the subdirectory test. These can be compiled using “make testxxx” in the
main directory. Executing the resulting file a.out should then produce output identical (up
to the precision specified and possible randomly generated cases) to the file testxxx.dat

in the subdirectory testoutputs.

7

4 jbnumlib

4.1 Complex numbers

Complex numbers are defined via the standard C++ library and an abbreviation provided
as
typedef std::complex<double> dcomplex;

All variables declared complex will be of the this type and referred to as dcomplex in the
remainder.

4.2 Special functions

4.2.1 Polylogarithms

4.2.1.1 jbdli2p

dcomplex jbdli2p(const dcomplex x)

Returns the complex dilogarithm or Spence function defined by

Li2(x) = −
∫ 1

0

dt
log(1− xt)

t
, (1)

where it converges and analytic continuation. Cut defined on the positive real axis from
1 to ∞. Uses the properties of the dilogarithm to transform the argument and then the
Bernouilly series as described in [6].
Defined in jbnumlib.h and implemented in jbdli2.cc. This was jbdli2 in versions of
jbnumlib up to 0.54.

4.2.1.2 jbdli2

dcomplex jbdli2(const dcomplex x)

Returns the complex dilogarithm or Spence function defined by

Li2(x) = −
∫ 1

0

dt
log(1− xt)

t
, (2)

where it converges and analytic continuation. Cut defined on the positive real axis from
1 to ∞. Uses the properties of the dilogarithm to transform the argument and then the
Bernouilly series around zero or 1 as described in [8]. Somewhat faster than jbdli2p in
some cases.
Defined in jbnumlib.h and implemented in jbdlin.cc.

4.2.1.3 jbdli3

dcomplex jbdli3(const dcomplex x)

8

Returns the complex trilogarithm function defined by

Li3(x) =

∫ 1

0

dt
Li2(xt)

t
, (3)

where it converges and analytic continuation. Cut defined on the positive real axis from
1 to ∞. Uses the properties of the trilogarithm to transform the argument and then the
Bernouilly series around zero or 1 as described in [8].
Defined in jbnumlib.h and implemented in jbdlin.cc.

4.2.1.4 jbdli4

dcomplex jbdli4(const dcomplex x)

Returns the complex polylogarithm function defined by

Li4(x) =

∫ 1

0

dt
Li3(xt)

t
, (4)

where it converges and analytic continuation. Cut defined on the positive real axis from
1 to ∞. Uses the properties of the trilogarithm to transform the argument and then the
Bernouilly series around zero or 1 as described in [8].
Defined in jbnumlib.h and implemented in jbdlin.cc.

4.2.2 Bessel functions

4.2.2.1 jbdbesi0

double jbdbesi0(const double x)

Returns the modified Bessel function I0 for real values of the argument. A simple port to
C++ of CERNLIB[7] routine DBESI0.
Defined in jbnumlib.h, implemented in jbdbesik.cc.

4.2.2.2 jbdbesi1

double jbdbesi1(const double x)

Returns the modified Bessel function I1 for real values of the argument. A simple port to
C++ of CERNLIB[7] routine DBESI1.
Defined in jbnumlib.h, implemented in jbdbesik.cc.

4.2.2.3 jbdbesk0

double jbdbesk0(const double x)

Returns the modified Bessel function K0 for real values of the argument. A simple port to
C++ of CERNLIB[7] routine DBESK0.
Defined in jbnumlib.h, implemented in jbdbesik.cc.

9

4.2.2.4 jbdbesk1

double jbdbesk1(const double x)

Returns the modified Bessel function K1 for real values of the argument. A simple port to
C++ of CERNLIB[7] routine DBESK1.
Defined in jbnumlib.h, implemented in jbdbesik.cc.

4.2.2.5 jbdbesk2

double jbdbesk2(const double x)

Returns the modified Bessel function K2 for real values of the argument. Uses the recursion
relations for Bessel functions and jbdbesk0 and jbdbesk1.
Defined in jbnumlib.h, implemented in jbdbesik.cc.

4.2.2.6 jbdbesk3

double jbdbesk3(const double x)

Returns the modified Bessel function K3 for real values of the argument. Uses the recursion
relations for Bessel functions and jbdbesk0 and jbdbesk1.
Defined in jbnumlib.h, implemented in jbdbesik.cc.

4.2.2.7 jbdbesk4

double jbdbesk4(const double x)

Returns the modified Bessel function K4 for real values of the argument. Uses the recursion
relations for Bessel functions and jbdbesk0 and jbdbesk1.
Defined in jbnumlib.h, implemented in jbdbesik.cc.

4.2.3 Theta and related functions

4.2.3.1 jbdtheta30

double jbdtheta30(const double q)

Returns the value of the function

θ30(q) = 1 + 2
∑
n=1,∞

q(n2) =
∑

n=−∞,∞

q(n2) . (5)

This function is related to the third Jacobi theta function. For small q the summation in
(5) is used directly. For larger q the identity

θ30(q) =

√
λ

π
θ30

(
e−λ
)

(6)

with λ = π2/| log(q)| is used instead. This is related to the modular invariance for the
higher dimensional case. Precision can be judged by comparing the two series to each
other. Same idea as used in the CERNLIB[7] routine DTHETA.
Defined in jbnumlib.h, implemented in jbdtheta30.cc.

10

4.2.3.2 jbdtheta30m1

double jbdtheta30m1(const double q)

Returns the value of the function

θ30(q)− 1 = 2
∑
n=1,∞

q(n2) =
∑

n∈Z,n6=0

q(n2) . (7)

Implementation as for jbdtheta30 but without the 1. Especially for small q often needed
to keep accuracy in the finite volume applications in ChPT.
Defined in jbnumlib.h, implemented in jbdtheta30m1.cc.

4.2.3.3 jbdtheta32

double jbdtheta32(const double q)

Returns the value of the function

θ32(q) = 2
∑
n=1,∞

q(n2) =
∑

n=−∞,∞

n2q(n2) = q
d

dq
θ30(q) . (8)

For small q the summation in (8) is used directly. For larger q the derivative of the right-
hand-side of the identity (6) is used.
Defined in jbnumlib.h, implemented in jbdtheta32.cc.

4.2.3.4 jbdtheta34

double jbdtheta34(const double q)

Returns the value of the function

θ34(q) =
∑
n=1,∞

n4q(n2) =
∑

n=−∞,∞

n4q(n2) =

(
q
d

dq

)2

θ30(q) . (9)

For small q the summation in (9) is used directly. For larger q the appropriate derivative
of the right-hand-side of the identity (6) is used.
Defined in jbnumlib.h, implemented in jbdtheta34.cc.

4.2.3.5 jbdtheta3

double jbdtheta3(const double u, const double q)

Returns the value of the function

θ3(u, q) = 1 + 2
∑
n=1,∞

q(n2) cos(2πnu) =
∑

n=−∞,∞

q(n2)ei2πnu . (10)

For small q the summation in (10) is used directly. For larger q the expansion after using
the relation

θ3(u, q) =
√
π/| log(q)| exp(−π2u2/| log(q)|)θ3(−iuπ/| log(q)|, exp(−π2/| log(q)|)) (11)

is used.
Defined in jbnumlib.h, implemented in jbdtheta3.cc.

11

4.2.3.6 jbderivutheta3

double jbderivutheta3(const double u, const double q)

Returns the value of the function

∂

∂u
θ3(u, q) = −4π

∑
n=1,∞

q(n2) sin(2πnu) = i2π
∑

n=−∞,∞

nq(n2)ei2πnu . (12)

For small q the summation in (12) is used directly. For larger q the appropriate derivative
of the relation (11) is used.
Defined in jbnumlib.h, implemented in jbderivutheta3.cc.

4.2.3.7 jbderiv2utheta3

double jbderiv2utheta3(const double u, const double q)

Returns the value of the function

∂2

∂u2
θ3(u, q) = −8π2

∑
n=1,∞

q(n2) cos(2πnu) = −4π2
∑

n=−∞,∞

n2q(n2)ei2πnu . (13)

For small q the summation in (13) is used directly. For larger q the appropriate derivative
of the relation (11) is used.
Defined in jbnumlib.h, implemented in jbderiv2utheta3.cc.

4.2.3.8 jbderiv3utheta3

double jbderiv3utheta3(const double u, const double q)

Returns the value of the function

∂3

∂u3
θ3(u, q) = 16π2

∑
n=1,∞

q(n2) sin(2πnu) = −8iπ3
∑

n=−∞,∞

n3q(n2)ei2πnu . (14)

For small q the summation in (14) is used directly. For larger q the appropriate derivative
of the relation (11) is used.
Defined in jbnumlib.h, implemented in jbderiv2utheta3.cc.

4.2.3.9 jbdtheta2d0

double jbdtheta2d0(const double a, const double b, const double c)

Returns the value of the function

θ
(2)
0 (a, b, c) =

∑
n1,n2=−∞,∞

e−an
2
1−bn2

2−c(n1−n2)2

. (15)

There are many higher-dimensional generalizations of the Jacobi theta functions. The
modular invariance properties of these are discussed in App. B of [9] and are used in

the evaluation to speed up the calculation. It should be noted that θ
(2)
0 (a, b, c) is fully

symmetric in a, b, c.
Defined in jbnumlib.h and implemented in jbdtheta2d0.cc.

12

4.2.3.10 jbdtheta2d0m1

double jbdtheta2d0m1(const double a, const double b, const double c)

Returns the value of the function

θ
(2)
0 (a, b, c)− 1 =

∑
n1,n2=−∞,∞

e−an
2
1−bn2

2−c(n1−n2)2 − 1 =
∑

n1,n2∈Z
(n1,n2)6=(0,0)

e−an
2
1−bn2

2−c(n1−n2)2 − 1 .

(16)
Method as in jbdtheta2d0 but the 1 removed, more accurate for small a, b, c as often
needed in finite volume ChPT.
Defined in jbnumlib.h and implemented in jbdtheta2d0m1.cc.

4.2.3.11 jbdtheta2d02

double jbdtheta2d02(const double a, const double b, const double c)

Returns the value of the function

θ
(2)
02 (a, b, c) =

∑
n1,n2=−∞,∞

n2
1e
−an2

1−bn2
2−c(n1−n2)2

= − ∂

∂a
θ

(2)
0 (a, b, c) . (17)

It should be noted that θ
(2)
02 (a, b, c) is symmetric in b, c. Method similar to jbdtheta2d0.

Defined in jbnumlib.h and implemented in jbdtheta2d02.cc.

4.3 Root finders

4.3.1 Zero of a real function of one variable

4.3.1.1 jbdzerox

double jbdzerox(double (*f)(const double),const double a0,const double b0,

const double eps,const int maxf=10000, const int mode=1)

Returns the position of a zero of the function f in the interval [a0,b0]. Requires that f(a0)
and f(b0) have different sign.
maxf gives the maximum number of function eveluations and eps is the precision, relative
for results larger than one in absolute value else absolute precision. There are two methods
available chosen by mode. 0 is algorithm M and 1 is algorithm R of [10]. Method R
converges faster, method M is a bit more robust.
Defined in jbnumlib.h, implemented in jbdzerox.cc. A short example program is
testjbdzerox.cc.

4.3.2 Roots of a cubic equation

4.3.2.1 jbdrteq3

double jbdrteq3(const double r,const double s,const double t,

double x[3], double & d)

13

Finds the roots of the equation with real coefficients

x3 + rx2 + sx+ t = 0 . (18)

If d ≤ 0 the three real roots are in x[0], x[1], x[2]. For degenerate roots d = 0. For d > 0
the real root is in x[0] and the two complex conjugate roots are x[1]± ix[2].
The routine uses the classical method of Tartaglia-Vieta. Sometimes, the solutions are
improved by Newton iteration. A simple port to C++ of CERNLIB[7] routine DRTEQ3.
Defined in jbnumlib.h, implemented in jbdrteq3.cc. A short example program is
testjbdrteq3.cc.

4.4 Integration routines

4.4.1 One dimension, real

The interface of these routines is identical so they can be simply interchanged. For most
problems the speed decreases as jbdquad15, jbdquad21, jbdgauss2, jbdgauss but this is
somewhat dependent on the function integrated and the precision requested.
The routines do not use the endpoints so an integrable singularity at the endpoint can
be done but an integrand transformation that removes the singularity will lead to a much
better performance.
An example program that shows the relative speeds is in testintegralsreal.cc.

4.4.1.1 jbdgauss

double jbdgauss(f,a,b,eps)

double jbdgauss(fp,a,b,eps,ap)

Two versions exist:
f: double (*f)(const double x) The double precision function to be integrated over.
fp: double (*fp)(const double x, void*) The double precision function to be inte-
grated over, the pointer allows for extra parameters to be transferred through the integra-
tion routine.
a,b,eps: const double

a: Lower limit of integration.
b: Upper limit of integration.
eps: Precision attempted to be reached: relative precision if absolute value of the integral
is above 1, otherwise absolute precision.
ap: void*
Subroutine translated from the CERNLIB[7] routine DGAUSS. Uses 8 and 16 point Gaus-
sian rules with the 16 point for the estimate and the difference for the error estimate.
Adaptive with a subdivision strategy.
Defined in jbnumlib.h, implemented in jbdgauss.cc.

14

4.4.1.2 jbdgauss2

double jbdgauss2(f,a,b,eps)

double jbdgauss2(fp,a,b,eps,ap)

Two versions exist:
f: double (*f)(const double x) The double precision function to be integrated over.
fp: double (*fp)(const double x, void*) The double precision function to be inte-
grated over, the pointer allows for extra parameters to be transferred through the integra-
tion routine.
a,b,eps: const double

a: Lower limit of integration.
b: Upper limit of integration.
eps: Precision attempted to be reached: relative precision if absolute value of the integral
is above 1, otherwise absolute precision.
ap: void*
Uses 8 and 16 point Gaussian rules with the 16 point for the estimate and the difference
for the error estimate. Adaptive with a subdivision strategy. Very similar to jbdgauss but
the subdivision strategy is more appropriate for high precision.
Defined in jbnumlib.h, implemented in jbdgauss2.cc.

4.4.1.3 jbdquad15

double jbdquad15(f,a,b,eps)

double jbdquad15(fp,a,b,eps,ap)

Two versions exist:
f: double (*f)(const double x) The double precision function to be integrated over.
fp: double (*fp)(const double x, void*) The double precision function to be inte-
grated over, the pointer allows for extra parameters to be transferred through the integra-
tion routine.
a,b,eps: const double

a: Lower limit of integration.
b: Upper limit of integration.
eps: Precision attempted to be reached: relative precision if absolute value of the integral
is above 1, otherwise absolute precision.
ap: void*
Uses 15 point Gauss-Kronrod rule for the estimate and the difference with the embedded 7
point Gauss rule for the error estimate. Adaptive with a subdivision strategy appropriate
for high precision.
Defined in jbnumlib.h, implemented in jbdquad15.cc.

4.4.1.4 jbdquad21

double jbdquad21(f,a,b,eps)

double jbdquad21(fp,a,b,eps,ap)

15

Two versions exist:
f: double (*f)(const double x) The double precision function to be integrated over.
fp: double (*fp)(const double x, void*) The double precision function to be inte-
grated over, the pointer allows for extra parameters to be transferred through the integra-
tion routine.
a,b,eps: const double

a: Lower limit of integration.
b: Upper limit of integration.
eps: Precision attempted to be reached: relative precision if absolute value of the integral
is above 1, otherwise absolute precision.
ap: void*
Uses 21 point Gauss-Kronrod rule for the estimate and the difference with the embedded 10
point Gauss rule for the error estimate. Adaptive with a subdivision strategy appropriate
for high precision.
Defined in jbnumlib.h, implemented in jbdquad21.cc.

4.4.2 One dimension, real with singularity

The interface of these routines is identical so they can be simply interchanged. For most
problems the speed decrases as jbdquad15 or jbdquad21, jbdgauss2, jbdgauss but this
is somewhat dependent on the function integrated and the precision requested.
An example program that shows the relative speeds is in testintegralsrealsingular.cc.

4.4.2.1 jbdcauch

double jbdcauch(f,a,b,s,eps)

f: double (*f)(const double x) The double precision function to be integrated over.
a,b,s,eps: const double

a: Lower limit of integration.
b: Upper limit of integration.
s: Place of the singularity.
eps: Precision attempted to be reached: relative precision if absolute value of the integral
is above 1, otherwise absolute precision.
Subroutine translated from the CERNLIB[7] routine DCAUCH.Uses 8 and 16 point Gaussian
rules with the 16 point for the estimate and the difference for the error estimate. Adaptive
with a subdivision strategy. Integrates symmetrically around the singularity so it returns
the integral in the sense of the principal value prescription. Uses jbdgauss.
Defined in jbnumlib.h, implemented in jbdcauch.cc.

4.4.2.2 jbdcauch2

double jbdcauch2(f,a,b,s,eps)

f: double (*f)(const double x) The double precision function to be integrated over.
a,b,s,eps: const double

16

a: Lower limit of integration.
b: Upper limit of integration.
s: Place of the singularity.
eps: Precision attempted to be reached: relative precision if absolute value of the integral
is above 1, otherwise absolute precision.
Subroutine translated from the CERNLIB[7] routine DCAUCH.Uses 8 and 16 point Gaus-
sian rules with the 16 point for the estimate and the difference for the error estimate.
Adaptive with a subdivision strategy more suitable for high precision. Integrates symmet-
rically around the singularity so it returns the integral in the sense of the principal value
prescription. Uses jbdgauss2.
Defined in jbnumlib.h, implemented in jbdcauch2.cc.

4.4.2.3 jbdsing15

double jbdsing15(f,a,b,s,eps)

f: double (*f)(const double x) The double precision function to be integrated over.
a,b,s,eps: const double

a: Lower limit of integration.
b: Upper limit of integration.
s: Place of the singularity.
eps: Precision attempted to be reached: relative precision if absolute value of the integral
is above 1, otherwise absolute precision.
Subroutine similar to jbdcauch2 but uses a Gauss-Kronrod 15 point rule for the estimate
and the difference withe embedded 7 point Gauss rule for the error estimate. Adaptive with
a subdivision strategy more suitable for high precision. Integrates symmetrically around
the singularity so it returns the integral in the sense of the principal value prescription.
Uses jbdquad15.
Defined in jbnumlib.h, implemented in jbdsing15.cc.

4.4.2.4 jbdsing21

double jbdsing21(f,a,b,s,eps)

f: double (*f)(const double x) The double precision function to be integrated over.
a,b,s,eps: const double

a: Lower limit of integration.
b: Upper limit of integration.
s: Place of the singularity.
eps: Precision attempted to be reached: relative precision if absolute value of the integral
is above 1, otherwise absolute precision.
Subroutine similar to jbdcauch2 but uses a Gauss-Kronrod 21 point rule for the estimate
and the difference withe embedded 10 point Gauss rule for the error estimate. Adaptive
with a subdivision strategy more suitable for high precision. Integrates symmetrically
around the singularity so it returns the integral in the sense of the principal value prescrip-

17

tion. Uses jbdquad21.
Defined in jbnumlib.h, implemented in jbdsing21.cc.

4.4.3 One dimension, complex

The interface of these routines is identical so they can be simply interchanged. For most
problems the speed decrases as jbwquad15 or jbwquad21 or jbwgauss2, jbwgauss but this
is somewhat dependent on the function integrated and the precision requested.
An example program that shows the relative speeds is in testintegralscomplex.cc.

4.4.3.1 jbwgauss

dcomplex jbwgauss(f,a,b,eps)

f: dcomplex (*f)(const dcomplex x) The complex double precision function to be in-
tegrated over.
fp: dcomplex (*fp)(const dcomplex x, void*) The complex double precision function
to be integrated over. The void* allows for extra parameters to be passed to the function.
a,b: const dcomplex

a: Lower endpoint of integration.
b: Upper endpoint of integration.
eps: const double Precision attempted to be reached: relative precision if absolute value
of the integral is above 1, otherwise absolute precision.
ap: void*
Subroutine translated from the CERNLIB[7] routine WGAUSS. Uses 8 and 16 point Gaus-
sian rules with the 16 point for the estimate and the difference for the error estimate.
Adaptive with a subdivision strategy. The integration is the lineintegral over the straight
line between a and b.
Defined in jbnumlib.h, implemented in jbwgauss.cc.

4.4.3.2 jbwgauss2

dcomplex jbwgauss2(f,a,b,eps)

f: dcomplex (*f)(const dcomplex x) The complex double precision function to be in-
tegrated over.
fp: dcomplex (*fp)(const dcomplex x, void*) The complex double precision function
to be integrated over. The void* allows for extra parameters to be passed to the function.
a,b: const dcomplex

a: Lower endpoint of integration.
b: Upper endpoint of integration.
eps: const double Precision attempted to be reached: relative precision if absolute value
of the integral is above 1, otherwise absolute precision.
ap: void*
Subroutine translated from the CERNLIB[7] routine WGAUSS. Uses 8 and 16 point Gaus-
sian rules with the 16 point for the estimate and the difference for the error estimate.

18

Adaptive with a subdivision strategy better suited for high precision. The integration is
the lineintegral over the straight line between a and b.
Defined in jbnumlib.h, implemented in jbwgauss2.cc.

4.4.3.3 jbwquad15

dcomplex jbwquad15(f,a,b,eps)

dcomplex jbwquad15(fp,a,b,eps,ap)

f: dcomplex (*f)(const dcomplex x) The complex double precision function to be in-
tegrated over.
fp: dcomplex (*fp)(const dcomplex x, void*) The complex double precision function
to be integrated over. The void* allows for extra parameters to be passed to the function.
a,b: const dcomplex

a: Lower endpoint of integration.
b: Upper endpoint of integration.
eps: const double Precision attempted to be reached: relative precision if absolute value
of the integral is above 1, otherwise absolute precision.
ap: void*
Subroutine similar to jbwgauss2 but uses a 15 point Gauss-Kronrod rule for the estimate
and the difference with the embedded 7 point Gauss rule for the error estimate. Adap-
tive with a subdivision strategy better suited for high precision. The integration is the
lineintegral over the straight line between a and b.
Defined in jbnumlib.h, implemented in jbwquad15.cc.

4.4.3.4 jbwquad21

dcomplex jbwquad21(f,a,b,eps)

dcomplex jbwquad21(fp,a,b,eps,ap)

f: dcomplex (*f)(const dcomplex x) The complex double precision function to be in-
tegrated over.
fp: dcomplex (*fp)(const dcomplex x, void*) The complex double precision function
to be integrated over. The void* allows for extra parameters to be passed to the function.
a,b: const dcomplex

a: Lower endpoint of integration.
b: Upper endpoint of integration.
eps: const double Precision attempted to be reached: relative precision if absolute value
of the integral is above 1, otherwise absolute precision.
ap: void*
Subroutine similar to jbwgauss2 but uses a 21 point Gauss-Kronrod rule for the estimate
and the difference with the embedded 10 point Gauss rule for the error estimate. Adap-
tive with a subdivision strategy better suited for high precision. The integration is the
lineintegral over the straight line between a and b.
Defined in jbnumlib.h, implemented in jbwquad21.cc.

19

4.4.4 Two dimensions, real

4.4.4.1 jbdad2

double jbdad2(f,a,b,eps, relerr, ifail)

double jbdad2(f,ap,a,b,eps, relerr, ifail)

f: double (*f)(double x[]) or double (*f)(double x[],void*) The double precision
function to be integrated over, x[0] and x[1] contain the values of the two variables to
be integrated over. The void* ap allows extra parameters to be transferred.
a: double a[] a[0] and a[1] are the lower limits of integration.
b: double b[] b[0] and b[1] are the upper limits of integration.
eps: const double Precision attempted to be reached: relative precision if absolute value
of the integral is above 1, otherwise absolute precision.
relerr: double & returns the obtained relative precision via a reference.
ifail: int & returns an integer. Zero indicates success, if not zero the routine did not
obtain the requested precision..
The function does a two dimensional integration over a hypercube. The underlying routine
is jbdadmul which is a simple port to C++ of the CERNLIB[7] routine DADMUL. This in
turn was based on [11].
Defined in jbnumlib.h, implemented in jbdadmul.cc and jbdadmul2.cc.

4.4.5 Three dimensions, real

4.4.5.1 jbdad3

double jbdad3(f,a,b,eps, relerr, ifail)

double jbdad3(f,ap,a,b,eps, relerr, ifail)

f: double (*f)(double x[]) or double (*f)(double x[],void*) The double precision
function to be integrated over, x[0], x[1] and x[2] contain the values of the three variables
to be integrated over. The void* ap allows extra parameters to be transferred.
a: double a[] a[0], a[1] and a[2] are the lower limits of integration.
b: double b[] b[0], b[1] and b[2] are the upper limits of integration.
eps: const double Precision attempted to be reached: relative precision if absolute value
of the integral is above 1, otherwise absolute precision.
relerr: double & returns the obtained relative precision via a reference.
ifail: int & returns an integer. Zero indicates success, if not zero the routine did not
obtain the requested precision..
The function does a three dimensional integration over a hypercube. The underlying
routine is jbdadmul which is a simple port to C++ of the CERNLIB[7] routine DADMUL.
This in turn was based on [11].
Defined in jbnumlib.h, implemented in jbdadmul.cc and jbdadmul2.cc.

20

5 Chiral Perturbation Theory

The classic papers introducing ChPT are [12, 13, 14]. References to lectures and intro-
ductions can be found in [15]. A review at two-loop order is [16]. The notation used here
correspond to the notation introduced by Gasser and Leutwyler, B,F, lri [13] and B0, F0, L

r
i

[14] for the two and three flavour case. In general the decay constants are defined with a
normalization of Fπ ≈ 92 MeV. The coupling constants in the higher order Lagrangians
are usually referred to as low-energy constants (LECs). Power counting is the usual dimen-
sional counting with orders referred to as pn with alternatively p2 or lowest-order (LO), p4

or next-to-leading-order (NLO) and p6 or next-to-next-to-leading order (NNLO).

6 Data structures

This section describes a number of classes to deal with input parameters and LECs. The
default value mechanism of C++ is used to give them initial values if not specified. These
are visible below as “=value” in the definitions.

6.1 Two flavour ChPT

6.1.1 Class: physmassnf2

physmassnf2(mpiin=0.135,fpiin=0.0922,muin=0.77)

mpiin,fpiin,muin: const double

Private data: double mpi,fpi,mu

Physical quantities: pion, pion-decay constant and subtraction scale µ.
Relevant physical case: two flavour ChPT, isospin limit.

Input member functions:
void setmpi(const double mpiin=0.135)

void setfpi(const double fpiin=0.0922)

void setmu(const double muiin=0.77)

Output member functions exist in two varieties. Those that return all or a subset of values
using references or those that return one value as the function value.
void out(double &mpiout, double &fpiout,

double &muout)

double getmpi(void)

double getfpi(void)

double getmu(void)

Operators defined: <<, >> and ==.
<< and >> are defined such that output and input streams work as expected. The input

21

stream should be exactly in the format provided by the output stream.
== checks for equality within relative precision of 10−7. An error will occur if any of the
data members is zero.

Defined in inputsnf2.h, implemented in inputsnf2.cc, examples of use in testinputsnf2.cc.

6.1.2 Class: lomassnf2

lomassnf2(mp0in=0.135, muin=0.77)

mp0in,muin: const double

lomassnf2(const quarkmassnf2 mass)

Private data: double mp,f,mu

Physical quantities: lowest order pion mass, lowest order pion-decay constant and subtrac-
tion scale µ.
Relevant physical case: two flavour ChPT, isospin limit.

The constructor from a quarkmassnf2 is provided such that conversions can be used.
Input member functions:
void setmp(const double mp0in=0.135) void setf(const double f0in=0.09) void

setmu(const double muin=0.77)

Output member functions exist in two varieties. Those that return all or a subset of values
using references or those that return one value as the function value.
void out(double &mp0out, double &f0out, double &muout)

double getmp(void)

double getf(void)

double getmu(void)

Operators defined: <<, >> and ==.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
== checks for equality within relative precision of 10−7. An error will occur if any of the
data members is zero.

Defined in inputsnf2.h, implemented in inputsnf2.cc, examples of use in testinputsnf2.cc.

6.1.3 Class: quarkmassnf2

quarkmassnf2(B0mhatin=0.01, f0in=0.090, muin=0.77)

B0mhatin,f0in,muin: const double

quarkmassnf2(const lomassnf2 mass)

Private data: double Bmhat,f,mu

Physical quantities: Bm̂, lowest order pion-decay constant and subtraction scale µ.

22

The quantities Bm̂ is the LEC B [13] multiplied by the average up-down quark mass and
strange quark mass respectively. These are independent of the QCD scale. The lowest
order pion mass are given by mπ LO =

√
2B0m̂.

Relevant physical case: two flavour ChPT, isospin limit.

The constructor from a lomassnf2 is provided such that conversions can be used.
Input member functions:
void setBmhat(const double B0mhatin=0.01)

void setf(const double f0in=0.09)

void setmu(const double muin=0.77)

Output member functions exist in two varieties. Those that return all or a subset of values
using references or those that return one value as the function value.
void out(double &B0mhatout, double &f0out, double &muout)

double getBmhat(void)

double getf(void)

double getmu(void)

Operators defined: <<, >> and ==.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
== checks for equality within relative precision of 10−7. An error will occur if any of the
data members is zero.

Defined in inputsnf2.h, implemented in inputsnf2.cc, examples of use in testinputsnf2.cc.

6.1.4 NLO LECs: Class li

li(l1r=0.,l2r=0.,l3r=0.,l4r=0.,l5r=0.,l6r=0.,l7r=0.,h1r=0.,h2r=0.,h3r=0.,

mu=0.77,Name="Nameless li")

li(liin, mu = 0.77, mpi= 0.13957061)

const double: l1r,...,l7r,h1r,h2r,h3r,mu,mpi

const string: Name

const libar: liin

Protected data: double l1r,l2r,l3r,l4r,l5r,l6r,l7r,h1r,h2r,h3r,mu and string

name

Physical quantities the 10 LECs, lri , h
r
i (of which three are so-called contact terms) of

two-flavour ChPT as introduced in [13] and the subtraction scale µ.
Relevant physical case: two flavour ChPT

Input member functions:
void setli(const int n, const double lin)

void setli(const double lin, const int n)

23

Set the value of the LECs with index n. n = 8, 9, 10 correspond to hr1, h
r
2, h

r
3.

setmu(const double muin)

Sets the scale µ to the value muin. This does not change the LECs, for that use changescale.
setname(const string namein) Sets the name of the set of LECs.

Output member functions:
double getmu(void) returns the subtraction scale µ.
double out(const int n) returns the value of the n’th LEC.
void out exists in many varieties, 11 double references and a string returning all private
data, 11 double references returning all LECS and the subtraction scale, 10 double refer-
ences returning all LECs, 8 double references returning lr1, . . . , l

r
8 and the subtraction scale

and 8 double references returning lr1, . . . , l
r
10.

void changescale(const double newmu)

This changes the subtraction scale to the new value given by muin and changes the LECs
according to the running derived in [13].

Operators defined: <<, >>, +, − and *.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
* allows to multiply an li by a double in either order. The resulting value has all LECs
multiplied by the value of the double.
+ and − allow to add or subtract set of LECs. The resulting value of all LECs is the sum
respectively the difference. A warning is printed of the scales are different.
Defined in linf2.h, implemented in linf2.cc, examples of use in testlinf2.cc.

6.1.5 NLO LECs: Class libar

libar(l1bar=0.,l2bar=0.,l3bar=0.,l4bar=0.,l5bar=0.,l6bar=0.,l7r=0.,h1bar=0.,

h2bar=0.,h3r=0., mu=0.77,Name="Nameless libar")

libar(liin, mpi= 0.13957061)

const double: l1bar,...,l6bar,l7r,h1bar,h2bar,h3r,mpi

const string: Name

const libar: liin

Protected data: double l1bar,l2bar,l3bar,l4bar,l5bar,l6bar,l7r,h1bar,h2bar,h3r

and string name

Physical quantities the 10 LECs, l̄i, h̄i and the two which cannot be written in the barred
form (three are so-called contact terms), of two-flavour ChPT as introduced in [13].
Relevant physical case: two flavour ChPT

Input member functions:
void setlibar(const int n, const double lin)

void setlibar(const double lin, const int n)

24

Set the value of the LECs with index n. n = 8, 9, 10 correspond to h̄1, h̄2, h
r
3.

setname(const string namein) Sets the name of the set of LECs.

Output member functions:
double out(const int n) returns the value of the n’th LEC.
void out exists in many varieties, 10 double references and a string returning all private
data, 10 double references returning all LECS, 7 double references returning l̄1, . . . , l̄6, l

r
7.

Operators defined: <<, >>. +, − and * are not defined since these operations do not make
sense for the barred LECs in a simple way.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
Defined in linf2.h, implemented in linf2.cc, examples of use in testlinf2.cc.

6.2 Three flavour ChPT

6.2.1 Class: physmass

physmass(mpiin=0.135,mkin=0.495,metain=0.548,fpiin=0.0922,muin=0.77)

mpiin,mkin,metain,fpiin,muin: const double

Private data: double mpi,mk,meta,fpi,mu

Physical quantities: pion, kaon and eta mass, pion-decay constant and subtraction scale µ.
Relevant physical case: three flavour ChPT, isospin limit.

Input member functions:
void setmpi(const double mpiin=0.135)

void setmk(const double mkin=0.495)

void setmeta(const double metain=0.548)

void setfpi(const double fpiin=0.0922)

void setmu(const double muiin=0.77)

Output member functions exist in two varieties. Those that return all or a subset of values
using references or those that return one value as the function value.
void out(double &mpiout, double &mkout, double &metaout, double &fpiout,

double &muout)

double getmpi(void)

double getmk(void)

double getmeta(void)

double getfpi(void)

double getmu(void)

Operators defined: <<, >> and ==.

25

<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
== checks for equality within relative precision of 10−7. An error will occur if any of the
data members is zero.

Defined in inputs.h, implemented in inputs.cc, examples of use in testinputs.cc.

6.2.2 Class: lomass

lomass(mp0in=0.135, mk0in=0.495, f0in=0.090, muin=0.77)

mp0in,mk0in,f0in,muin: const double

lomass(const quarkmass mass)

Private data: double mp0,mk0,f0,mu

Physical quantities: lowest order pion mass, lowest order kaon mass, lowest order pion-
decay constant and subtraction scale µ.
Relevant physical case: three flavour ChPT, isospin limit.

The constructor from a quarkmass is provided such that conversions can be used.
Input member functions:
void setmp0(const double mp0in=0.135) void setmk0(const double mk0in=0.495)

void setf0(const double f0in=0.09) void setmu(const double muin=0.77)

Output member functions exist in two varieties. Those that return all or a subset of values
using references or those that return one value as the function value.
void out(double &mp0out, double &mk0out, double &f0out, double &muout)

double getmp0(void)

double getmk0(void)

double getf0(void)

double getmu(void)

Operators defined: <<, >> and ==.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
== checks for equality within relative precision of 10−7. An error will occur if any of the
data members is zero.

Defined in inputs.h, implemented in inputs.cc, examples of use in testinputs.cc.

6.2.3 Class: quarkmass

quarkmass(B0mhatin=0.01, B0msin=0.25, f0in=0.090, muin=0.77)

B0mhatin,B0msin,f0in,muin: const double

quarkmass(const lomass mass)

26

Private data: double B0mhat,B0ms,f0,mu

Physical quantities: B0m̂, B0ms, lowest order pion-decay constant and subtraction scale µ.
The quantities B0m̂ and B0ms are the LEC B0 [14] multiplied by the average up-down
quark mass and strange quark mass respectively. These are independent of the QCD
scale. The lowest order pion and kaon masses are given by mπ LO =

√
2B0m̂ and mK LO =√

B0(m̂+ms)
Relevant physical case: three flavour ChPT, isospin limit.

The constructor from a lomass is provided such that conversions can be used.
Input member functions:
void setB0mhat(const double B0mhatin=0.01)

void setB0ms(const double B0msin=0.25)

void setf0(const double f0in=0.09)

void setmu(const double muin=0.77)

Output member functions exist in two varieties. Those that return all or a subset of values
using references or those that return one value as the function value.
void out(double &B0mhatout, double &B0msout, double &f0out, double &muout)

double getB0mhat(void)

double getB0ms(void)

double getf0(void)

double getmu(void)

Operators defined: <<, >> and ==.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
== checks for equality within relative precision of 10−7. An error will occur if any of the
data members is zero.

Defined in inputs.h, implemented in inputs.cc, examples of use in testinputs.cc.

6.2.4 NLO LECs: Class Li

Li(l1r=0.,l2r=0.,l3r=0.,l4r=0.,l5r=0.,l6r=0.,l7r=0.,l8r=0.,l9r=0.,l10r=0.,

h1r=0.,h2r=0.,mu=0.77,Name="nameless Li")

const double: l1r,...,l10r,h1r,h2r,mu

const string: Name

Private data: double L1r,L2r,L3r,L4r,L5r,L6r,L7r,L8r,L9r,L10r,H1r,H2r,mu and
string name

Physical quantities the 12 LECs, Lri , H
r
i (of which two are so-called contact terms) of

three-flavour ChPT as introduced in [14] and the subtraction scale µ.
Relevant physical case: three flavour ChPT

27

Input member functions:
void setli(const int n, const double lin)

void setli(const double lin, const int n)

Set the value of the LECs with index n. n = 11, 12 correspond to Hr
1 , H2r.

setmu(const double muin)

Sets the scale µ to the value muin. This does not change the LECs, for that use changescale.
setname(const string namein) Sets the name of the set of LECs.

Output member functions:
double out(const int n) returns the value of the n’th LEC.
void out exists in many varieties, 13 double references and a string returning all private
data, 13 double references returning all LECS and the subtraction scale, 12 double refer-
ences returning all LECs, 11 double references returning Lr1, . . . , L

r
10 and the subtraction

scale and 10 double references returning Lr1, . . . , L
r
10.

void changescale(const double newmu)

This changes the subtraction scale to the new value given by muin and changes the LECs
according to the running derived in [14].

Operators defined: <<, >>, +, − and *.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
* allows to multiply an Li by a double in either order. The resulting value has all LECs
multiplied by the value of the double.
+ and − allow to add or subtract set of LECs. The resulting value of all LECs is the sum
respectively the difference. A warning is printed of the scales are different.
Extra functions:
Li Lirandom(void)

Li LirandomlargeNc(void)

Li LirandomlargeNc2(void)

These return a set of random NLO LECs. The values are uniformly distributed between
±1/(16π2) for Lirandom. LirandomlargeNc does the same except that it leaves Lr4, L

r
6 and

Lr7 zero. LirandomlargeNc2 does the same but Lr4, L
r
6 and Lr7 get a random value between

±(1/3)/(16π2). The random numbers are generated using the system generator rand() so
initializing using something like srand(time(0)). These latter functions were used in the
random walks in the Lri in [17].
Defined in Li.h, implemented in Li.cc, examples of use in testLi.cc.
In the subdirectory test there is a file LiCiBE14.dat that contains the last fit of the LECs
[18].

28

6.2.5 NNLO LECs: Class Ci

Ci(Cr, mu=0.77,Name="nameless Ci")

Ci(mu=0.77,Name="nameless Ci")

const double: mu

const string: Name

Private data: double Cr[95], mu and string name

Physical quantities the 94 LECs, Cr
i (of which four are so-called contact terms) of three-

flavour ChPT as introduced in [19, 20] and the subtraction scale µ. The Cr
i are the

dimensionless version. Scale to the dimensionfull version with appropriate powers of F0

but in practice normally with Fπ.
Relevant physical case: three flavour ChPT

Input member functions:
void setci(const int n, const double lin)

void setci(const double lin, const int n)

Set the value of the LECs with index n.
setmu(const double muin)

Sets the scale µ to the value muin. This does not change the LECs, for that use changescale.
setname(const string namein) Sets the name of the set of LECs.

Output member functions:
double out(const int n) returns the value of the n’th LEC.
void out exists in many varieties, with a double Cit[95], a double reference and a string
returning all private data, a double Cit[95], a double reference returning all LECS and
the subtraction scale, and a double Cit[95] returning the LECs only.

void changescale(const double newmu, Li & Liin)

void changescale(Li & Liin, const double newmu)

This changes the subtraction scale to the new value given by muin and changes the LECs
according to the running derived in [20]. Note that it changes the scale of the values of
the NLO LECs Lri in Liin as well.

Operators defined: <<, >>, +, − and *.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
* allows to multiply a Ci by a double in either order. The resulting value has all LECs
multiplied by the value of the double.
+ and − allow to add or subtract set of LECs. The resulting value of all LECs is the sum
respectively the difference. A warning is printed of the scales are different.
Extra functions:
Ci Cirandom(void)

Ci CirandomlargeNc(void)

29

Ci CirandomlargeNc2(void)

These return a set of random NNLO LECs. The values are uniformly distributed between
±1/(16π2)2 for Cirandom. CirandomlargeNc does the same except that it leaves all LECs
that are not single trace terms zero. CirandomlargeNc2 does the same but the non-
single-trace terms get a LEC with a random value between ±(1/3)/(16π2)2. The random
numbers are generated using the system generator rand() so initializing using something
like srand(time(0)). These latter functions were used in the random walks in the Cr

i in
[17].
Defined in Ci.h, implemented in Ci.cc, examples of use in testCi.cc.

6.3 nF flavour ChPT

6.3.1 Class: quarkmassnf

quarkmassnf(f0in=0.090, muin=0.77, nqin=3)

quarkmassnf(const vector<double> B0mqin,f0in=0.090, muin=0.77)

quarkmassnf(const lomassnf mass)

const double: f0in,muin

const int: nfin

const vector<double> B0mqin

const lomassnf mass

Private data: vector<double> B0mq,double f0,mu, int nq.
Physical quantities: B0mi quark masses multiplied by B0, lowest order (pion-)decay con-
stant and subtraction scale µ. The quantities B0mi are the nq = nq quark masses multiplied
by the LEC B0 [14], B0 for the relevant number of quarks nF . These are independent of
the QCD scale. The lowest order charged kaon mass is given by mK LO =

√
B0(mu +ms)

Relevant physical case: nF flavour ChPT, possibly partially quenched where we need nq
different quark masses. The masses are referred to as 1,. . . ,nq (i.e. the counting does not
start with 0).
void setB0mq(const double B0miin,const int i)

void setB0mq(const int i, const double B0miin=0.)

void setB0mq(const vector<double> B0mqin)

void setf0(const double f0in=0.09)

void setmu(const double muin=0.77)

Output member functions exist in two varieties. Those that return all or a subset of values
using references or those that return one value as the function value.
void out(vector<double> &B0mq) const;

void out(vector<double> &B0mq, double &f0out, double &muout) const;

void out(vector<double> &B0mq, double &f0out, double &muout, int &nq) const;

int getnq(void) const;

vector<double> getB0mq(void) const;

double getB0mq(const int i) const;

30

double getf0(void) const;

double getmu(void) const;

Operators defined: <<, >> and ==.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
== checks for equality within relative precision of 10−7. An error will occur if any of the
data members is zero.

Defined in inputsnf.h, implemented in inputsnf.cc, examples of use in testinputsnf.cc.

6.3.2 Class: lomassnf

lomassnf(f0in=0.090, muin=0.77, nmassin=3)

lomassnf(const vector<double> massin,f0in=0.090, muin=0.77)

lomassnf(const quarkmassnf mass)

const double: f0in,muin

const int: nfin

const vector<double> massin

Private data: vector<double> mass,double f0,mu, int nmass.
Physical quantities: mii the lowest order meson masses, lowest order (pion-)decay constant
and subtraction scale µ. The quantities mii are the nmass lowest order meson masses.
They correspond to mii =

√
B0mi with the nmass quark masses multiplied by the LEC B0

[14], B0 for the relevant number of quarks nF .
Relevant physical case: nF flavour ChPT, possibly partially quenched where we need nq
different quark masses. The masses are referred to as 1,. . . ,nq (i.e. the counting does not
start with 0).
void setmass(const double massin,const int i)

void setmass(const int i, const double massin=0.)

void setmass(const vector<double> B0mqin)

void setf0(const double f0in=0.09)

void setmu(const double muin=0.77)

Output member functions exist in two varieties. Those that return all or a subset of values
using references or those that return one value as the function value.
void out(vector<double> &massout) const;

void out(vector<double> &massout, double &f0out, double &muout) const;

void out(vector<double> &massout, double &f0out, double &muout, int &nmass)

const;

int getnmass(void) const;

vector<double> getmass(void) const;

double getmass(const int i) const;

double getf0(void) const;

31

double getmu(void) const;

Operators defined: <<, >> and ==.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
== checks for equality within relative precision of 10−7. An error will occur if any of the
data members is zero.

Defined in inputsnf.h, implemented in inputsnf.cc, examples of use in testinputsnf.cc.

6.3.3 NLO LECs: Class Linf

Linf(l0r=0.,l1r=0.,l2r=0.,l3r=0.,l4r=0.,l5r=0.,l6r=0.,l7r=0.,l8r=0.,l9r=0.,

l10r=0.,l11r=0.,h1r=0.,h2r=0.,mu=0.77,Name="nameless Linf",const int nfin=3)

const double: l0r,...,l11r,h1r,h2r,mu

const string: Name

const int: nfin

Private data: double L0r,L1r,L2r,L3r,L4r,L5r,L6r,L7r,L8r,L9r,L10r,L11r,H1r,H2r,mu,
int nf and string name

Physical quantities the 13 LECs, Lri=0,10, H
r
i (of which two are so-called contact terms) and

the extra equation of motion term LEC Lr11 of nF -flavour ChPT as introduced in [20] and
the subtraction scale µ. The extra constant Lr11 is added to be able to deal with two-flavour
partially quenched ChPT.
Relevant physical case: nF flavour ChPT and partially quenched ChPT

Input member functions:
void setnf(const int nfin)

void setlinf(const int n, const double lin)

void setlinf(const double lin, const int n)

Sets the value of the LECs with index n. n = 12, 13 correspond to Hr
1 , H

r
2 .

setmu(const double muin)

Sets the scale µ to the value muin. This does not change the LECs, for that use changescale.
setname(const string namein) Sets the name of the set of LECs.

Output member functions:
double out(const int n) returns the value of the n’th LEC.
void out exists in many varieties, 15 double references, a string and an integer returning
all private data, 15 double references and an integer returning all LECS and the subtraction
scale and the number of flavours, 13 double references and an integer returning all LECs
and nF , 12 double and an integer references returning Lr1, . . . , L

r
11 and the subtraction scale

and the number of flavours, 11 double and an integer references returning Lr1, . . . , L
r
11 and

the number of flavours, and 11 double references returning Lr1, . . . , L
r
11.

int getnf(void) returns nf

32

void changescale(const double newmu)

This changes the subtraction scale to the new value given by muin and changes the LECs
according to the running derived in [14].

Operators defined: <<, >>, +, − and *.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
* allows to multiply an Li by a double in either order. The resulting value has all LECs
multiplied by the value of the double.
+ and − allow to add or subtract set of LECs. The resulting value of all LECs is the sum
respectively the difference. A warning is printed of the scales are different.
Extra functions:
Linf Linfrandom(void)

This returns a set of random NLO LECs. The values are uniformly distributed between
±1/(16π2). The random numbers are generated using the system generator rand() so
initializing using something like srand(time(0)).

Defined in Linf.h, implemented in Linf.cc, examples of use in testLinf.cc.

6.3.4 NNLO LECs: Class Ki

Ki(Kr, mu=0.77,Name="nameless Ci",nfin=3)

Ci(mu=0.77,Name="nameless Ci")

const double: mu

const string: Name

const int: nfin

Private data: double Kr[116], mu, int nf and string name

Physical quantities the 115 LECs, Kr
i (of which three are so-called contact terms) of nF -

flavour ChPT as introduced in [19, 20] and the subtraction scale µ. The Kr
i are the

dimensionless version. Scale to the dimensionfull version with appropriate powers of F0

but in practice normally with Fπ.
Relevant physical case: nF flavour ChPT

Input member functions:
void setki(const int n, const double kin)

void setki(const double kin, const int n)

Set the value of the LECs with index n.
setmu(const double muin)

Sets the scale µ to the value muin. This does not change the LECs, for that use changescale.
setname(const string namein) Sets the name of the set of LECs.

Output member functions:

33

double out(const int n) returns the value of the n’th LEC.
void out exists in many varieties, with a double Kit[116], a double reference and a
string returning all private data, a double Kit[116], a double reference returning all
LECS and the subtraction scale, and a double Kit[116] returning the LECs only.
int getnf(void) returns nf

void changescale(const double newmu, Linf & Liin)

void changescale(Linf & Liin, const double newmu)

This changes the subtraction scale to the new value given by muin and changes the LECs
according to the running derived in [20]. Note that it changes the scale of the values of
the NLO LECs Lri in Liin as well.

Operators defined: <<, >>, +, − and *.
<< and >> are defined such that output and input streams work as expected. The input
stream should be exactly in the format provided by the output stream.
* allows to multiply a Ci by a double in either order. The resulting value has all LECs
multiplied by the value of the double.
+ and − allow to add or subtract set of LECs. The resulting value of all LECs is the sum
respectively the difference. A warning is printed of the scales are different.
Extra functions:
Ki Kirandom(void)

This returns a set of random NNLO LECs. The values are uniformly distributed between
±1/(16π2)2. The random numbers are generated using the system generator rand() so
initializing using something like srand(time(0)).

Defined in Ki.h, implemented in Ki.cc, examples of use in testKi.cc.

6.4 Vectors

6.4.1 Class: fourvector

This defines a class that deals with a four vector or Lorentz vector. The data structure is
a vector of four double containing the t, x, y, z components.
fourvector(a0,a1,a2,a3)

fourvector(const vector<double> vv)

Private data: vector<double> v={0.,0.,0.,0.}
const double: a0,a1,a2,a3

vv must have four elements.

Input member functions:
void set(const int n, const double xn)

void set(cons double xn, const int n)

set the n-th coordinate to xn with n = (0, 1, 2, 3) = (t, x, y, z).

34

Output member functions:
double out(const int n) returns the n-th coordinate with n = (0, 1, 2, 3) = (t, x, y, z).
The conversion to a vector<double> is also defined, so a fourvector can be used where a
vector<double> is expected.

Operators defined: >>,<<,+, -,*,/.
<< and >> are defined with four numbers output and input as expected. * allows to multi-
ply a vector with a number from both sides. / allows a vector to be divided by a number.
+ returns the sum of two fourvectors. − exists in two varieties, it can return the opposite
fourvector as a prefix operator or the difference of two fourvectors. * also allows the prod-
uct of two fourvectors, it then returns the Lorentz invariant scalar product.

Defined in fourvector.h, implemented in fourvector.cc, examples of use in testfourvector.cc.

7 Loop integrals

Loop integrals are done with dimensional regularization and we use the standard ChPT
variant of MS. At one-loop order it was defined in [13, 14]. The definition at two-loop
order can be found in [20].
We define for subtraction purposes:

d = 4− 2ε, C = ln(4π) + 1− γ, λ0 =
1

ε
+ C, λ1 = λ0 + C, λ2 = λ2

0 + C2 . (19)

The d-dimensional Feynman integrals do not depend directly on the subtraction scale.
However, renormalization will always introduce the correct dependence. We define the
one-loop integrals multiplied by an extra factor of µ2ε and the two-loop integrals with an
extra factor of µ4ε. This introduces the µ dependence in the expressions given below.
References are to places where the integrals are defined and/or the method used elaborated.

7.1 Tadpole or one-propagator integrals

These are defined by

A(n,m2) =
µ4−d

i

∫
ddq

(2π)d
1

(q2 −m2)n
,

A(m2, µ2) =A(1,m2) , B(m2, µ2) = A(2,m2) , C(m2, µ2) = A(3,m2) . (20)

The expansions in ε are given by, see e.g. [21],

A(m2, µ2) =
λ0m

2

16π2
+ A(m2, µ2) + εAε(m2, µ2) +O(ε2) ,

35

B(m2, µ2) =
λ0

16π2
+B(m2, µ2) + εBε(m2, µ2) +O(ε2) ,

C(m2, µ2) =C(m2, µ2) + εCε(m2, µ2) +O(ε2) . (21)

The O(ε) terms are further expanded as

Aε(m2, µ2) =
m2

16π2

(
1

2
C2 − C log

m2

µ2

)
+ A

ε
(m2, µ2) ,

Bε(m2, µ2) =
1

16π2

(
1

2
C2 − C log

m2

µ2
− C

)
+B

ε
(m2, µ2) ,

Cε(m2, µ2) =
1

16π2

(
− C

2m2

)
+ C

ε
(m2, µ2) . (22)

The analytical expressions are

A(m2, µ2) =
−m2

16π2
log

m2

µ2
A
ε
(m2, µ2) =

m2

16π2

(
1

2
+
π2

12
+

1

2
log2 m

2

µ2

)
,

B(m2, µ2) =
1

16π2

(
−1− log

m2

µ2

)
B
ε
(m2, µ2) =

1

16π2

(
1

2
+
π2

12
+

1

2
log2 m

2

µ2
+ log

m2

µ2

)
,

C(m2, µ2) =
1

16π2

−1

2m2
C
ε
(m2, µ2) =

1

16π2

(
1

2m2
+

1

2m2
log

m2

µ2

)
, (23)

double Ab(const double msq, const double mu2): returns A(m2, µ2).
double Bb(const double msq, const double mu2): returns B(m2, µ2).
double Cb(const double msq, const double mu2): returns C(m2, µ2).
double Abeps(const double msq, const double mu2): returns A

ε
(m2, µ2).

double Bbeps(const double msq, const double mu2): returns B
ε
(m2, µ2).

double Cbeps(const double msq, const double mu2): returns C
ε
(m2, µ2).

double Ab(const int n,const double msq, const double mu2): returns A(m2, µ2),
B(m2, µ2), C(m2, µ2) for n = 1, 2, 3.

Defined in oneloopintegrals.h, implemented in oneloopintegrals.cc, examples of use
in testoneloopintegrals.cc.

7.2 Bubbles or two-propagator integrals

7.2.1 Definitions

We first define the abbreviation

〈X〉 =
µ4−d

i

∫
ddq

(2π)d
X

(q2 −m2
1) ((q − p)2 −m2

2)
. (24)

The bubble integrals themselves are defined by, see e.g. [22],

B(m2
1,m

2
2, p

2, µ2) = 〈1〉 ,

36

Bµ(m2
1,m

2
2, p, µ

2) = 〈qµ〉 = pµB1(m2
1,m

2
2, p

2, µ2) ,

Bµν(m
2
1,m

2
2, p, µ

2) = 〈qµqν〉 = pµpνB21(m2
1,m

2
2, p

2, µ2) + gµνB22(m2
1,m

2
2, p

2, µ2) ,

Bµνρ(m
2
1,m

2
2, p, µ

2) = 〈qµqνqρ〉 = pµpνpρB31(m2
1,m

2
2, p

2, µ2)

+ (gµνpρ + gµρpν + gρνpµ)B32(m2
1,m

2
2, p

2, µ2) . (25)

The methods of [23] can be used to deduce the relations

B1(m2
1,m

2
2, p

2, µ2) = − 1

2p2

(
A(m2

1, µ
2)− A(m2

2, µ
2) + (m2

2 −m2
1 − p2)B(m2

1,m
2
2, p

2, µ2)
)
,

B22(m2
1,m

2
2, p

2, µ2) =
1

2(d− 1)

(
A(m2

2, µ
2) + 2m2

1B(m2
1,m

2
2, p

2, µ2)

+ (m2
2 −m2

1 − p2)B1(m2
1,m

2
2, p

2, µ2)
)
,

B21(m2
1,m

2
2, p

2, µ2) =
1

p2

(
A(m2

2, µ
2) +m2

1B(m2
1,m

2
2, p

2, µ2)− dB22(m2
1,m

2
2, p

2, µ2)
)
. (26)

This allows to rewrite all in terms of B(m2
1,m

2
2, p

2, µ2). These relations are used for the
analytical evaluations given below.
The final evalaution is done by using a Feynman parameter x to combine the propagators
and use the results for the tadpoles. The x integral needed can be done analytically or
numerically.
The functions are then all expanded in terms of ε. The arguments of the various Bubble
integrals are not written out.

B =
λ0

16π2
+B + εBε +O(ε2) ,

B1 =
λ0

16π2

1

2
+B1 + εBε

1 +O(ε2) ,

B21 =
λ0

16π2

1

3
+B21 + εBε

21 +O(ε2) ,

B22 =
λ0

16π2

(
m2

1

4
+
m2

2

4
− p2

12

)
+B22 + εBε

22 +O(ε2) ,

B31 =
λ0

16π2

1

4
+B31 + εBε

31 +O(ε2) ,

B32 =
λ0

16π2

(
m2

1

12
+
m2

2

6
− p2

24

)
+B32 + εBε

32 +O(ε2) , (27)

7.2.2 Analytical implementation

The functions in this section are all implemented fully analytically.

const double: msq, m1sq, m2sq, psq, mu2 these are m2,m2
1,m

2
2, p

2, µ2.
dcomplex Bb(m1sq, m2sq, psq, mu2): returns B(m2

1,m
2
2, p

2, µ2)
dcomplex Bb(msq, psq, mu2): returns B(m2,m2, p2, µ2) using the simpler equal mass

37

formula.
dcomplex B1b(m1sq, m2sq, psq, mu2): returns B1(m2

1,m
2
2, p

2, µ2)
dcomplex B21b(m1sq, m2sq, psq, mu2): returns B21(m2

1,m
2
2, p

2, µ2)
dcomplex B22b(m1sq, m2sq, psq, mu2): returns B22(m2

1,m
2
2, p

2, µ2)
dcomplex B22b(msq, psq, mu2): returnsB22(m2,m2, p2, µ2) using the simpler equal mass
formula.

Defined in oneloopintegrals.h, implemented in oneloopintegrals.cc, examples of use
in testoneloopintegrals.cc.

7.2.3 Numerical implementation

The functions in this section are all implemented using a numerical complex integration
over x. The integration routine used can be specified using the macro WINTEGRAL which
defaults to jbwgauss. Any of the complex integration routines of jbnumlib can be used
instead.
const double: m1sq, m2sq, psq, mu2 these are m2

1,m
2
2, p

2, µ2.
dcomplex Bbnum(m1sq, m2sq, psq, mu2): returns B(m2

1,m
2
2, p

2, µ2)
dcomplex B1bnum(m1sq, m2sq, psq, mu2): returns B(m2

1,m
2
2, p

2, µ2)
dcomplex B21bnum(m1sq, m2sq, psq, mu2): returns B21(m2

1,m
2
2, p

2, µ2)
dcomplex B22bnum(m1sq, m2sq, psq, mu2): returns B22(m2

1,m
2
2, p

2, µ2)
dcomplex B31bnum(m1sq, m2sq, psq, mu2): returns B31(m2

1,m
2
2, p

2, µ2)
dcomplex B32bnum(m1sq, m2sq, psq, mu2): returns B32(m2

1,m
2
2, p

2, µ2)

The precision of the numerical integration can be set and obtained:

void setprecisiononeloopintegrals(const double eps) sets the precison to eps.
double getprecisiononeloopintegrals(void) returns the present precision. The de-
fault is 1e-10.

Defined in oneloopintegrals.h, implemented in oneloopintegrals.cc, examples of use
in testoneloopintegrals.cc:

7.3 Bubbles or two-propagator integrals with different powers of
propagators

7.3.1 Definitions

For partially quenched and quenched calculations we also need the bubble integrals with
higher powers of the propagators. These can be derived by taking the derivatives w.r.t. to
m2

1 or m2
2 of the definitions in Sect. 7.2. The definitions we use are

〈X〉k =
µ4−d

i

∫
ddq

(2π)d
X

(q2 −m2
1)
n1 ((q − p)2 −m2

2)
n2
. (28)

38

k indicates the values of (n1, n2) via

k n1 n2

1 1 1
2 2 1
3 1 2
4 2 2

The bubble integrals themselves are defined by

B(k,m2
1,m

2
2, p

2, µ2) = 〈1〉k ,
Bµ(k,m2

1,m
2
2, p, µ

2) = 〈qµ〉k = pµB1(k,m2
1,m

2
2, p

2, µ2) ,

Bµν(k,m
2
1,m

2
2, p, µ

2) = 〈qµqν〉k = pµpνB21(k,m2
1,m

2
2, p

2, µ2) + gµνB22(k,m2
1,m

2
2, p

2, µ2) ,
(29)

These integrals were derived during the work on [39].

7.3.2 Analytical implementation

The arguments of the functions are nprop which indicates k in the definition (28).

const double: msq, m1sq, m2sq, psq, mu2 these are m2,m2
1,m

2
2, p

2, µ2.

dcomplex Bb(nprop,m1sq, m2sq, psq, mu2): returns B(k,m2
1,m

2
2, p

2, µ2)
dcomplex B1b(nprop,m1sq, m2sq, psq, mu2): returns B1(k,m2

1,m
2
2, p

2, µ2)
dcomplex B21b(nprop,m1sq, m2sq, psq, mu2): returns B21(k,m2

1,m
2
2, p

2, µ2)
dcomplex B22b(nprop,m1sq, m2sq, psq, mu2): returns B22(k,m2

1,m
2
2, p

2, µ2)

At present only the cases k = 1, 2, 3 are implemented.
Defined in quenchedoneloopintegrals.h, implemented in quenchedoneloopintegrals.cc,
examples of use in testquenchedoneloopintegrals.cc.

7.4 Sunset integrals

7.4.1 Definition

We first define the abbreviation

〈〈X〉〉 =

(
µ4−d

i

)∫
ddr

(2π)d
dds

(2π)d
X

(r2 −m2
1) (s2 −m2

2) ((r + s− p)2 −m2
3)
. (30)

The sunset integrals themselves are defined by

H(m2
1,m

2
2,m

2
3, p

2, µ2) = 〈〈1〉〉 ,

39

Hµ(m2
1,m

2
2,m

2
3, p, µ

2) = 〈〈rµ〉〉 = pµH1(m2
1,m

2
2,m

2
3, p

2, µ2) ,

Hµν(m
2
1,m

2
2,m

2
3, p, µ

2) = 〈〈rµrν〉〉 = pµpνH21(m2
1,m

2
2,m

2
3, p

2, µ2)

+ gµνH22(m2
1,m

2
2,m

2
3, p

2, µ2) ,

Hµνρ(m
2
1,m

2
2,m

2
3, p, µ

2) = 〈〈rµrνrρ〉〉 = pµpνpρH31(m2
1,m

2
2,m

2
3, p

2, µ2)

+ (gµνpρ + gµρpν + gρνpµ)H32(m2
1,m

2
2,m

2
3, p

2, µ2) .
(31)

The needed integrals with sµ replacing some of the rµ in the definitions can be related to
those without sµ as descibed in [21]. The evaluation of these sunsetintegrals has been done
in [21]. Further references can be found there.
We extract the parts the divergent parts and the parts containing C via

H(m2
1,m

2
2,m

2
3, p

2, µ2) =
1

(16π2)2

[
(λ2/2)

(
m2

1 +m2
2 +m2

3

)
+ (λ1/2)

(
m2

1(1− log(m2
1/µ

2))

+m2
2(1− log(m2

2/µ
2)) +m2

3(1− log(m2
3/µ

2))− (p2/2)
)]

+HF (m2
1,m

2
2,m

2
3, p

2, µ2) +O(ε) , (32)

H1(m2
1,m

2
2,m

2
3, p

2, µ2) =
1

(16π2)2

[
(λ2/4)

(
m2

2 +m2
3

)
+ (λ1/8)

(
2m2

1

+m2
2(1− 4 log(m2

2/µ
2)) +m2

3(1− 4 log(m2
3/µ

2))− (2p2/3)
)]

+HF
1 (m2

1,m
2
2,m

2
3, p

2, µ2) +O(ε) , (33)

H21(m2
1,m

2
2,m

2
3, p

2, µ2) =
1

(16π2)2

[
(λ2/6)

(
m2

2 +m2
3

)
+ (λ1/36)

(
3m2

1

+m2
2(2− 12 log(m2

2/µ
2)) +m2

3(2− 12 log(m2
3/µ

2))

− (3p2/2)
)]

+HF
21(m2

1,m
2
2,m

2
3, p

2, µ2) +O(ε) , (34)

H31(m2
1,m

2
2,m

2
3, p

2, µ2) =
1

(16π2)2

[
(λ2/8)

(
m2

2 +m2
3

)
+ (λ1/96)

(
4m2

1

+m2
2(3− 24 log(m2

2/µ
2)) +m2

3(3− 24 log(m2
3/µ

2))

− (12p2/5)
)]

+HF
31(m2

1,m
2
2,m

2
3, p

2, µ2) +O(ε) , (35)

The routines for the sunset integrals calculate the value at p2 = 0 and the derivative there
analytically. The remainder is then calculated with a rather smoot integral valid below
threshold for the double hh functions and with a dispersive method for the dcomplex zhh

functions. The latter is valid above and below threshold. The functions returning the
derivative w.r.t. p2 calculate the value at p2 = 0 analytically and the remainder via a
numerical integration as above.

40

7.4.2 Functions

The integration routines needed can be set using the macro DINTEGRAL for the real inte-
gration, default is jbdgauss, and SINTEGRAL for the real integration with a singularity,
default is jbdcauch. Any of the similar routines in jbnumlib can be used instead.

const double: m1sq,m2sq,m3sq,psq,mu2: these are m2
1,m

2
2,m

2
3, p

2, µ2.

Valid below threshold:
double hh(m1sq, m2sq, m3sq, psq, mu2) returns HF (m2

1,m
2
2,m

2
3, p

2, µ2)
double hh1(m1sq, m2sq, m3sq, psq, mu2) returns HF

1 (m2
1,m

2
2,m

2
3, p

2, µ2)
double hh21(m1sq, m2sq, m3sq, psq, mu2) returns HF

21(m2
1,m

2
2,m

2
3, p

2, µ2)
double hh31(m1sq, m2sq, m3sq, psq, mu2) returns HF

31(m2
1,m

2
2,m

2
3, p

2, µ2)
double hhd(m1sq, m2sq, m3sq, psq, mu2) returns (∂/∂p2)HF (m2

1,m
2
2,m

2
3, p

2, µ2)
double hh1d(m1sq, m2sq, m3sq, psq, mu2) returns (∂/∂p2)HF

1 (m2
1,m

2
2,m

2
3, p

2, µ2)
double hh21d(m1sq, m2sq, m3sq, psq, mu2) returns (∂/∂p2)HF

21(m2
1,m

2
2,m

2
3, p

2, µ2)

Valid above and below threshold:
dcomplex zhh(m1sq, m2sq, m3sq, psq, mu2) returns HF (m2

1,m
2
2,m

2
3, p

2, µ2)
dcomplex zhh1(m1sq, m2sq, m3sq, psq, mu2) returns HF

1 (m2
1,m

2
2,m

2
3, p

2, µ2)
dcomplex zhh21(m1sq, m2sq, m3sq, psq, mu2) returns HF

21(m2
1,m

2
2,m

2
3, p

2, µ2)
dcomplex zhh31(m1sq, m2sq, m3sq, psq, mu2) returns HF

31(m2
1,m

2
2,m

2
3, p

2, µ2)
dcomplex zhhd(m1sq, m2sq, m3sq, psq, mu2) returns (∂/∂p2)HF (m2

1,m
2
2,m

2
3, p

2, µ2)
dcomplex zhh1d(m1sq, m2sq, m3sq, psq, mu2) returns (∂/∂p2)HF

1 (m2
1,m

2
2,m

2
3, p

2, µ2)
dcomplex zhh21d(m1sq, m2sq, m3sq, psq, mu2) returns (∂/∂p2)HF

21(m2
1,m

2
2,m

2
3, p

2, µ2)

void setprecisionsunsetintegrals(const double eps) sets the precison to eps.
double getprecisionsunsetintegrals(void) returns the present precision. The default
is 1e-10.

Defined in sunsetintegrals.h, implemented in sunsetintegrals.cc, examples of use in
testsunsetintegrals.cc:

7.5 Sunsetintegrals with different powers of propagators

7.5.1 Definition

We first define the abbreviation

〈〈X〉〉n =

(
µ4−d

i

)∫
ddr

(2π)d
dds

(2π)d
X

(r2 −m2
1)
i
(s2 −m2

2)
j
((r + s− p)2 −m2

3)
k
. (36)

The translation of n to values for i, j, k is given in Tab. 1. The sunset integrals themselves
are defined by

H(n,m2
1,m

2
2,m

2
3, p

2, µ2) = 〈〈1〉〉n ,

41

n 1 2 3 4 5 6 7 8
i 1 2 1 1 2 2 1 2
j 1 1 2 1 2 1 2 2
k 1 1 1 2 1 2 2 2

Table 1: The relation between the value of n and the powers i, j, k of the three propagators.

Hµ(n,m2
1,m

2
2,m

2
3, p, µ

2) = 〈〈rµ〉〉n = pµH1(n,m2
1,m

2
2,m

2
3, p

2, µ2) ,

Hµν(n,m
2
1,m

2
2,m

2
3, p, µ

2) = 〈〈rµrν〉〉n = pµpνH21(n,m2
1,m

2
2,m

2
3, p

2, µ2)

+ gµνH22(n,m2
1,m

2
2,m

2
3, p

2, µ2) . (37)

The needed integrals with sµ replacing some of the rµ in the definitions can be related to
those without sµ as descibed in [24, 25, 26, 27] The evaluation of these sunsetintegrals is
by the generalziation of the methods of [21]. Further references can be found there.
The divergent parts and the parts containing C via taking derivatives w.r.t. masses of
(32). We thus define the functions HF

i (n,m2
1,m

2
2,m

2
3, p

2, µ2) for all cases above, i =
0(blank), 1, 21.
The routines for the sunset integrals calculate the value at p2 = 0 and the derivative there
analytically. The remainder is then calculated with a rather smoot integral valid below
threshold for the double hh functions. The functions returning the derivative w.r.t. p2

calculate the value at p2 = 0 analytically and the remainder via a numerical integration as
above.
An added addition here is that case where the Kählén function

λ(m2
1,m

2
2,m

2
3) =

√
(m2

1 −m2
2 −m2

3)2 − 4m2
2m

2
3

vanishes, is treated correctly.

7.5.2 Functions

The integration routines needed can be set using the macro DINTEGRAL for the real inte-
gration, default is jbdgauss. Any of the similar routines in jbnumlib can be used instead.

const int n: the integer n labelling the powers of the propagators as defined in Tab. 1.
const double: m1sq,m2sq,m3sq,psq,mu2: these are m2

1,m
2
2,m

2
3, p

2, µ2.

Valid below threshold:
double hh(n,m1sq, m2sq, m3sq, psq, mu2) returns HF (n,m2

1,m
2
2,m

2
3, p

2, µ2)
double hh1(n,m1sq, m2sq, m3sq, psq, mu2) returns HF

1 (n,m2
1,m

2
2,m

2
3, p

2, µ2)
double hh21(n,m1sq, m2sq, m3sq, psq, mu2) returns HF

21(n,m2
1,m

2
2,m

2
3, p

2, µ2)
double hhd(n,m1sq, m2sq, m3sq, psq, mu2) returns (∂/∂p2)HF (n,m2

1,m
2
2,m

2
3, p

2, µ2)
double hh1d(n,m1sq, m2sq, m3sq, psq, mu2) returns (∂/∂p2)HF

1 (n,m2
1,m

2
2,m

2
3, p

2, µ2)

42

double hh21d(n,m1sq, m2sq, m3sq, psq, mu2) returns (∂/∂p2)HF
21(n,m2

1,m
2
2,m

2
3, p

2, µ2)

void setprecisionquenchedsunsetintegrals(const double eps) sets the precison to
eps.
double getprecisionquenchedsunsetintegrals(void) returns the present precision. The
default is 1e-10.

Defined in quenchedsunsetintegrals.h, implemented in quenchedsunsetintegrals.cc,
examples of use in testquenchedsunsetintegrals.cc:

7.6 Finite volume tadpole integrals: periodic boundary condi-
tions

7.6.1 Definitions

The methods used for these are derived in detail in [9], references to earlier literature can
be found there. The integrals used here are given in the Minkowski conventions as defined
in [28]. All of the integrals are available with two different methods, one using a summation
over Bessel function and the other an integral over a Jacobi theta function. The versions
included at present are using periodic boundary conditions, all three spatial sizes of the
same length L and the time direction of infinite extent.
The tadpole integrals A and Aµν are defined as{

ÃV (m2, L, µ2), ÃVµν(m
2, L, µ2)

}
=
µ4−d

i

∫
V

ddr

(2π)d
{1, rµrν}
(r2 −m2)

. (38)

The B tadpole integrals are the same but with a doubled propagator, C tadpoles are with
a tripled propagator and D tadpoles with a quadrupled propagator. The subscript V on
the integral indicates that the integral is a discrete sum over the three spatial components
and an integral over the remainder. The size of the spatial directions is L.
At finite volume, there are more Lorentz-structures possible. The tensor tµν , the spatial
part of the Minkowski metric gµν , is needed for these. The functions for ÃVµν are

ÃVµν(m
2, L, µ2) = gµνÃ

V
22(m2, L, µ2) + tµνÃ

V
23(m2, L, µ2) . (39)

Similar definitions are relevant for the B,C,D tadpoles. In infinite volume A22 is related
to A and A23 vanishes. The relations in finite volume is given by

dÃV22(m2, L, µ2) + 3ÃV23(m2, L, µ2) = m2ÃV (m2, L, µ2) . (40)

The relations for the other cases are:

dB̃V
22(m2, L, µ2) + 3B̃V

23(m2, L, µ2) = m2B̃V (m2, L, µ2) + ÃV (m2, L, µ2) ,

dC̃V
22(m2, L, µ2) + 3C̃V

23(m2, L, µ2) = m2C̃V (m2, L, µ2) + B̃V (m2, L, µ2) ,

43

dD̃V
22(m2, L, µ2) + 3D̃V

23(m2, L, µ2) = m2D̃V (m2, L, µ2) + C̃V (m2, L, µ2) . (41)

The full integrals are now split in the infinite volume part which was defined earlier in
Sect. 7.1 and the finite volume remainder as

ÃV (m2, L, µ2)=
λ0m

2

16π2
+ A(m2, µ2) + A

V
(m2, L) + ε

(
Aε(m2, µ2) + AV ε(m2, L, µ2)

)
+O(ε2) ,

B̃V (m2, L, µ2)=
λ0

16π2
+B(m2, µ2) +B

V
(m2, L) + ε

(
Bε(m2, µ2) +BV ε(m2, L, µ2)

)
+O(ε2) ,

C̃V (m2, L, µ2)=C(m2, µ2) + C
V

(m2, L) + ε
(
Cε(m2, µ2) + CV ε(m2, L, µ2)

)
+O(ε2) ,

D̃V (m2, L, µ2)=D(m2, µ2) +D
V

(m2, L) + ε
(
Dε(m2, µ2) +DV ε(m2, L, µ2)

)
+O(ε2) ,

ÃV22(m2, L, µ2)=
λ0m

4

4(16π2)
+ A22(m2, µ2) + A

V

22(m2, L) + ε
(
Aε22(m2, µ2) + AV ε22 (m2, L, µ2)

)
B̃V

22(m2, L, µ2)=
λ0m

2

2(16π2)
+B22(m2, µ2) +B

V

22(m2, L) + ε
(
Bε

22(m2, µ2) +BV ε
22 (m2, L, µ2)

)
C̃V

22(m2, L, µ2)=
λ0

4(16π2)
+ C22(m2, µ2) + C

V

22(m2, L) + ε
(
Cε

22(m2, µ2) + CV ε
22 (m2, L, µ2)

)
D̃V

22(m2, L, µ2)=D22(m2, µ2) +D
V

22(m2, L) + ε
(
Dε

22(m2, µ2) +DV ε
22 (m2, L, µ2)

)
+O(ε2) ,

ÃV23(m2, L, µ2) =A
V

23(m2, µ2) + εAV ε22 (m2, L) +O(ε2) .

B̃V
23(m2, L, µ2) =B

V

23(m2, µ2) + εBV ε
22 (m2, L) +O(ε2) .

C̃V
23(m2, L, µ2) =C

V

23(m2, µ2) + εCV ε
22 (m2, L) +O(ε2) .

D̃V
23(m2, L, µ2) =D

V

23(m2, µ2) + εDV ε
22 (m2, L) +O(ε2) . (42)

7.6.2 Functions

The integration routines needed can be set using the macro DINTEGRAL for the real inte-
gration, default is jbdgauss. Any of the similar routines in jbnumlib can be used instead.

const double: msq,L : msq is m2 and L is the size L of the spatial dimension.

Evaluated with theta functions:
double AbVt(msq,L): returns A

V
(m2, L).

double A22bVt(msq,L): returns A
V

22(m2, L).

double A23bVt(msq,L): returns A
V

23(m2, L).

double BbVt(msq,L): returns B
V

(m2, L).

double B22bVt(msq,L): returns B
V

22(m2, L).

double B23bVt(msq,L): returns B
V

23(m2, L).

double CbVt(msq,L): returns C
V

(m2, L).

double C22bVt(msq,L): returns C
V

22(m2, L).

44

double C23bVt(msq,L): returns C
V

23(m2, L).

double DbVt(msq,L): returns D
V

(m2, L).

double D22bVt(msq,L): returns D
V

22(m2, L).

double D23bVt(msq,L): returns D
V

23(m2, L).

Evaluated with Bessel functions:
double AbVb(msq,L): returns A

V
(m2, L).

double A22bVb(msq,L): returns A
V

22(m2, L).

double A23bVb(msq,L): returns A
V

23(m2, L).

double BbVb(msq,L): returns B
V

(m2, L).

double B22bVb(msq,L): returns B
V

22(m2, L).

double B23bVb(msq,L): returns B
V

23(m2, L).

double CbVb(msq,L): returns C
V

(m2, L).

double C22bVb(msq,L): returns C
V

22(m2, L).

double C23bVb(msq,L): returns C
V

23(m2, L).

double DbVb(msq,L): returns D
V

(m2, L).

double D22bVb(msq,L): returns D
V

22(m2, L).

double D23bVb(msq,L): returns D
V

23(m2, L).

The last letter indicates whether they are computed with the theta function or Bessel func-
tion method. The results were checked by comparing against each other and by comparing
when possible with the independent Bessel function implementation done in [29].

void setprecisionfinitevolumeoneloopt(const double Abacc=1e-10,

const double Bbacc=1e-9,const bool printout=true) sets the precision for the fi-
nite volume integrals evaluated with theta function to Abacc for the tadpole integrals,
Bbacc for the bubble integrals. The last variable printout is a logical variable which can
be se tto true or false, default is true. Default values are those indicated.

void setprecisionfinitevolumeoneloopb(const int maxsum=100,

const double Bbacc=1e-5,const bool printout=true) sets the precision for the fi-
nite volume integrals evaluated with Bessel functions. The first argument indicates how far
the sum over Bessel functions is taken. Maximum at present is 1000. The second argument
gives the precision of the numerical integration for the bubble integrals.

Defined in finitevolumeoneloopintegrals.h, implemented in finitevolumeoneloop-

integrals.cc, examples of use in testfinitevolumeoneloopintegrals.cc.

45

7.7 Finite volume tadpole integrals: twisted boundary condi-
tions

7.7.1 Definitions

Finite volume also allows for different boundary conditions. The integrals for twisted
boundary conditions have been derived in [35]. Twisted boundary conditions means that
for a complex field Φ we use as boundary conditions

Φ(xi + L) = eiθ
i

Φ(xi), . (43)

This can be done with different angles θi for each direction and for each field. The defini-
tions of the integrals is very similar to (38){

ÃV , ÃVµ , Ã
V
µν , Ã

V
µνρ

}
=
µ4−d

i

∫
V

ddr

(2π)d
{1, rµ, rµrν , rµrνrρ}

(r2 −m2
Φ)n

. (44)

except that with twisted boundary conditions the integrals with an odd number of momenta
in the numerator do not vanish. The direction of the momentum r is in the direction of
the propagation of the particle corresponding to Φ.
We consider the case with the three spatial directions at finite volume and with twist
angles possibly different for all angles. For all of the functions above we remove the infinite
volume parts defined in Sect. 7.1 and the finite volume part

ÃV = λ0A
inf + A+ A

V
+O(ε) . (45)

For the cases with extra powers of momenta we define in addition

A
V

µ = A
V

2µ, A
V

µν = gµνA
V

22 + A
V

23µν A
V

µνρ = A
V

33µνρ (46)

A
V

2µ and A
V

23µν are nonzero only for spatial components.

7.7.2 Functions

We use one generic interface here for all functions
double AbVtwistt(const int nprop,const int ntype, const int ncomponent,

const double msq,const double xl, const fourvector theta)

nprop is the power n of the propagator in (44).
ntype labels which of the functions it returns. It can have the values:

ntype returns

0 A
V

2 component of A
V

2

22 A
V

22

23 component of A
V

23

33 component of A
V

33

46

ncomponent is ignored for ntype = 0, 22. For ntype=2,23,33 it indicates which are the
value of µ, ν, ρ. For ntype=2 allowed values are ncomponent=0,1,2,3 and for ntype=23

allowed values are ncomponent=00,01,10,02,20,30,03,11,12,21,13,31,22,23,32,33.
For ntype=33 allowed values are ncomponent=(100 i+10 j+k) with ijk=

000,001,010,002,020,030,003,011,012,021,013,031,022,023,032,033,

100,101,110,102,120,130,103,111,112,121,113,131,122,123,132,133,

200,201,210,202,220,230,203,211,212,221,213,231,222,223,232,233,

300,301,310,302,320,330,303,311,312,321,313,331,322,323,332,333.
The convention is such that it returns the values for µ, ν, ρ as upper indices. The inter-
pretation as written above1 is needed since a literally specified number with leading zeroes
is interpreted by C++ compilers as octal, not however when it is read in from a file or a
stream.

msq is m2 of (44).
fourvector theta should contain the values of the twisting angle θi for the three spatial
directions in its three spatial components. The time component is ignored.

The integration routine needed can be set using the macro DINTEGRAL for the real inte-
gration, default is jbdgauss2. Any of the similar routines in jbnumlib can be used instead.

The precision of the numerical integration can be set with
void setprecisionAbVtwistt(const double eps=1e-10).
The present precision can be obtained from
double getprecisionAbVtwistt(void). Default value of the precision in 1e-10.

Defined in finitevolumeonelooptwist.h, implemented in finitevolumeonelooptwist.cc,
examples of use in testfinitevolumeonelooptwist.cc.

7.8 Finite volume bubble integrals: periodic boundary condi-
tions

7.8.1 Definitions

The methods used for these are derived in detail in [9], references to earlier literature can
be found there. The integrals used here are given in the Minkowski conventions as defined
in [28]. All of the integrals are available with two different methods, one using a summation
over Bessel function and the other an integral over a Jacobi theta function. The versions
included at present are using periodic boundary conditions, all three spatial sizes of the
same length L and the time direction of infinite extent.

1This comment only matters in practice for three or more indices.

47

The bubble integrals B, Bµ and Bµν are defined as{
B̃V , B̃V

µ , B̃
V
µν

}
(m2

1,m
2
2, p, L, µ

2) =
µ4−d

i

∫
V

ddr

(2π)d
{1, rµ, rµrν}

(r2 −m2
1)n1((p− r)2 −m2

2)n2
. (47)

The subscript V on the integral indicates that the integral is a discrete sum over the three
spatial components and an integral over the remainder. The size of the spatial directions
is L.
At finite volume, there are more Lorentz-structures possible. The tensor tµν , the spatial
part of the Minkowski metric gµν , is needed for these. In addition, the functions can in
principle depend on the components of the vector p as well, not only via p2.
The functions themselves are split in the infinite volume part discussed in Sect. 7.2 and a
finite volume part via

B̃V =
λ0

16π2
+B(m2, µ2) +B

V
(m2, L) + ε

(
Bε +BV ε

)
+O(ε2) ,

(48)

where all functions have as argument (m2
1,m

2
2, p, L, µ

2).

7.8.2 Functions

The integration routines needed can be set using the macro DINTEGRAL for the real inte-
gration, default is jbdgauss.

void setprecisionfinitevolumeoneloopt(const double Abacc=1e-10,

const double Bbacc=1e-9,const bool printout=true) sets the precision for the fi-
nite volume integrals evaluated with theta function to Abacc for the tadpole integrals,
Bbacc for the bubble integrals. The last variable printout is a logical variable which can
be set to true or false, default is false. Default values are those indicated.

void setprecisionfinitevolumeoneloopb(const int maxsum=100,

const double Bbacc=1e-5,const bool printout=true) sets the precision for the fi-
nite volume integrals evaluated with Bessel functions. The first argument indicates how far
the sum over Bessel functions is taken. Maximum at present is 1000. The second argument
gives the precision of the numerical integration for the bubble integrals.

Defined in finitevolumeoneloopintegrals.h, implemented in finitevolumeoneloop-

integrals.cc, examples of use in testfinitevolumeoneloopintegrals.cc.

7.8.2.1 p = 0 and periodic boundary conditions

const double: m1sq,m2sq,L. These correspond to m2
1,m

2
2, L. L is the size of the finite

dimensions.

48

Evaluated with theta functions:
double BbVt(m1sq,m2sq,L): returns B

V
(m2

1,m
2
2, p = 0, L, µ2)

double BbVt(msq,L): returns B
V

(m2,m2, p = 0, L)

Evaluated with Bessel functions:
double BbVb(m1sq,m2sq,L): return B

V
(m2

1,m
2
2, p = 0, L, µ2)

double BbVb(msq,L): returns B
V

(m2,m2, p = 0, L, µ2)

7.9 Finite volume bubble integrals: twisted boundary conditions

7.9.1 Definitions

Finite volume also allows for different boundary conditions. The integrals for twisted
boundary conditions have been derived in [35]. Twisted boundary conditions means that
for a complex field Φa we use as boundary conditions

Φ(xi + L) = eiθ
i
ΦΦ(xi), . (49)

This can be done with different angles θia for each direction and for each field. The defini-
tions of the integrals is similar to (47){

B̃V , B̃V
µ , B̃

V
µν

}
=
µ4−d

i

∫
V

ddr

(2π)d
{1, rµ, rµrν}

(r2 −m2
Φ1

)n1((p− r)2 −m2
Φ2

)n2
. (50)

The direction of the momentum r is in the direction of the propagation of the particle
corresponding to Φ1. The direction of the momentum p− r is in the direction of the prop-
agation of the particle corresponding to Φ2. This choice is made to have the interchange
of Φ1 and Φ2 work as expected. As explained in [36], the external momenta p must have
spatial components of the form

pi =
(
2πn+ θiΦ1

+ θiΦ2

)
. (51)

This way the momentum p− r satisfies the boundary conditions for Φ2.
We consider the case with the three spatial directions at finite volume and with twist angles
possibly different for all directions. For all of the functions above we remove the infinite
volume parts defined in Sect. 7.2 and the finite volume part

B̃V = λ0B
inf +B +B

V
+O(ε) . (52)

For the cases with extra powers of momenta we define in addition

Bµ = pµB
V

1 +B
V

2µ, B
V

µν = pµpνB
V

1 + gµνB
V

22 +B
V

23µν . (53)

B
V

2µ and B
V

23µν are nonzero only for spatial components.

49

7.9.2 Functions

We use one generic interface here for all functions
double BbVtwistt(const int nprop,const int ntype, const int ncomponent,

const double m1sq, const double m2sq, const double psq,

const double xl, const fourvector theta1, const fourvector p)

nprop indicates the powers n1, n2 of the propagators in (50) via

nprop n1 n2

1 1 1
2 2 1
3 1 2
4 2 2

ntype labels which of the functions it returns. It can have the values:

ntype returns

0 B
V

1 B
V

1

2 component of B
V

2

21 B
V

22

22 B
V

22

23 component of B
V

23

ncomponent is ignored for ntype = 0, 1, 21, 22. For ntype=2,23 it indicates which are
the value of µ, ν. For ntype=2 allowed values are ncomponent=0,1,2,3 and for ntype=23
allowed values are ncomponent=00,01,10,02,20,30,03,11,12,21,13,31,22,23,32,33.
m1sq,m2sq are the masses squared of Φ1,Φ2 and psq is p2.
fourvector theta1 should contain the values of the twisting angle θiΦ1

of the particle in
the first propagator for the three spatial directions in its three spatial components. The
time component is ignored.
fourvector p should contain the values of the four momentum p. No checks are done
that it satisfies the relation (51) nor that p=psq. The value of the twist angles for Φ2 are
(implicitly) deduced from (51) in the calculation.
The precision of the numerical integration can be set with
void setprecisionBbVtwistt(const double releps=1e-10).
The present precision can be obtained from
double getprecisionBbVtwistt(void). Default value of the precision in 1e-10.
The precision of the tadpole and bubble cases can be set at the same time using
void setprecisionfinitevolumeonelooptwistt(const double Aeps=1e-10,

const double Beps=1e-10, const bool printout=true)

Aeps for the tadpoles and Beps for the bubbles.

50

Defined in finitevolumeonelooptwist.h, implemented in finitevolumeonelooptwist.cc,
examples of use in testfinitevolumeonelooptwist.cc.

7.10 Finite volume sunsetintegrals

7.10.1 Definitions

The sunset integrals are defined with

〈〈X〉〉V =
µ8−2d

i2

∫
V

ddr

(2π)d
dd1

(2π)d
{1, rµ, rµrν}

(r2 −m2
1) (s2 −m2

2) ((r + s− p)2 −m2
3)
. (54)

The subscript V indicates that the spatial dimensions are a discrete sum rather than an
integral. The conventions correspond to those in infinite volume of [21] and of Sect. 7.4.
Integrals with the other momentum s in the numerator are related using the relations
shown in [21] which remain valid at finite volume in the cms frame [9].
In the cms frame we define the functions2

H̃V
µ =〈〈X〉〉V (55)

H̃V
µ =〈〈rµ〉〉V = pµH̃

V
1

H̃V
µν =〈〈rµrν〉〉V = pµpνH̃

V
21 + gµνH̃

V
22 + tµνH̃

V
27 .

The arguments of all functions in the cms frame are (m2
1,m

2
2,m

2
3, p

2, L, µ2). These functions
satisfy in finite volume [9],

H̃V
1 + H̃V

1 (m2
2,m

2
3,m

2
1, p

2, L, µ2) + H̃V
1 (m2

3,m
2
1,m

2
2, p

2, L, µ2) =H̃V ,

p2H̃V
21 + dH̃V

22 + 3H̃V
27 −m2

1H =ÃV (m2
2)ÃV (m2

3) . (56)

The arguments of the sunset functions in the relations, if not mentioned explicitly, are
(m2

1,m
2
2,m

2
3, p

2, L, µ2).
We split the functions in an infinite volume part, Hi, and a finite volume correction, HV

i ,
with H̃V

i = Hi + HV
i . The infinite volume part has been discussed above. For the finite

volume parts we define

HV =
λ0

16π2

(
A
V

(m2
1) + A

V
(m2

2) + A
V

(m2
3)
)

+
1

16π2

(
AV ε(m2

1) + AV ε(m2
2) + AV ε(m2

3)
)

+HV F +O(ε) ,

HV
1 =

λ0

16π2

1

2

(
A
V

(m2
2) + A

V
(m2

3)
)

+
1

16π2

1

2

(
AV ε(m2

2) + AV ε(m2
3)
)

+HV F
1 + =(ε) ,

HV
21 =

λ0

16π2

1

3

(
A
V

(m2
2) + A

V
(m2

3)
)

+
1

16π2

1

3

(
AV ε(m2

2) + AV ε(m2
3)
)

+HV F
21 +O(ε) ,

2In the cms frame, after the reduction to four dimensions, tµν = gµν − pµpν/p
2 but the separation

appears naturally in the calculation [9]. In addition, it avoids singularities in the limit p→ 0.

51

HV
27 =

λ0

16π2

(
A
V

23(m2
1) +

1

3
A23(m2

2) +
1

3
A
V

23(m2
3)

)
+

1

16π2

(
AV ε23 (m2

1) +
1

3
AV ε23 (m2

2) +
1

3
AV ε23 (m2

3)

)
+HV F

27 +O(ε) . (57)

The finite parts are defined differently from the infinite volume case in [21]. The parts
with AV ε are removed here as well.
The functions HV F

i can be computed with the methods of [9]. They are obtained by adding
the parts labeled with G and H in Sect. 4.3 and the part of Sect. 4.4 in [9]. The derivatives
w.r.t. p2 can be treated using a simple adaptation of that method.
The method for evaluation works only below threshold. The numerical evaluation is rather
slow. Playing with the precision settings for the specific case you need is very strongly
recommended.

7.10.2 Functions

const double: m1sq,m2sq,m3sq,psq,L,mu2. These correspond to m2
1,m

2
2,m

2
3, p

2, L, µ2.

Evaluation using theta functions:
double hhVt(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F (m2

1,m
2
2,m

2
3, p

2, L, µ2).
double hh1Vt(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

1 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh21Vt(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

21 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh22Vt(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

22 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh27Vt(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

27 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hhdVt(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F (m2

1,m
2
2,m

2
3, p

2, L, µ2).
double hh1dVt(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

1 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh21dVt(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

21 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh22dVt(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

22 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh27dVt(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

27 (m2
1,m

2
2,m

2
3, p

2, L, µ2).

Evaluation using Bessel functions:
double hhVb(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F (m2

1,m
2
2,m

2
3, p

2, L, µ2).
double hh1Vb(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

1 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh21Vb(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

21 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh22Vb(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

22 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh27Vb(m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

27 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hhdVb(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F (m2

1,m
2
2,m

2
3, p

2, L, µ2).
double hh1dVb(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

1 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh21dVb(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

21 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh22dVb(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

22 (m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh27dVb(m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

27 (m2
1,m

2
2,m

2
3, p

2, L, µ2).

For all cases discussed both methods, via Bessel or (generalized) Jacobi theta functions,

52

give the same results. The derivatives w.r.t. p2 for all the integrals were compared with
taking a numerical derivative.

Note that the sunset functions at finite volume call the tadpole integrals evaluated with
the same method. Do not forget to set precision for those as well.

void setprecisionfinitevolumesunsett(const double racc=1e-5,

const double rsacc=1e-4,const bool printout=true)

The double values sunsetracc and sunsetrsacc set the accuracies of the numerical inte-
gration needed when one or two loop-momenta “feel” the finite volume. Default values are
1e-5 and 1e-4 respectively. The bool variable printout defaults to true and sets whether
the setting is printed.

void setprecisionfinitevolumesunsetb(const int maxsum1=100,

const int maxsum2=40,racc=1e-5,rsacc=1e-4,printout=true)

The integers maxsum1 and maxsum2 give how far the sum over Bessel functions is used for
the case with one or two loop momenta “feeling” the finite volume. The first is maximum
1000, the second maximum 40 in the present implementation. In the latter case a triple
sum is needed, hence the much lower upper bound. The double values sunsetracc and
sunsetrsacc set the accuracies of the numerical integration which is still needed after the
sum for both cases.

For most applications it makes sense to have a higher precision for the case with one loop
momentum quantized, i.e. racc smaller than rsacc.

Defined in finitevolumesunsetintegrals.h, implemented in finitevolumesunsetintegrals.cc

and examples of use in testfinitevolumesunsetintegrals.cc

7.11 Finite volume sunsetintegrals with different powers of prop-
agators

7.11.1 Definitions

The sunset integrals with different powers of momenta are defined with

〈〈X〉〉nV =
µ8−2d

i2

∫
V

ddr

(2π)d
dd1

(2π)d
{1, rµ, rµrν}

(r2 −m2
1)
i
(s2 −m2

2)
j
((r + s− p)2 −m2

3)
k
. (58)

The subscript V indicates that the spatial dimensions are a discrete sum rather than an
integral. The translation of n to the powers i, j, k is given in Tab. 1.

53

In the cms frame we define the functions3

H̃V
µ =〈〈X〉〉nV (59)

H̃V
µ =〈〈rµ〉〉nV = pµH̃

V
1

H̃V
µν =〈〈rµrν〉〉nV = pµpνH̃

V
21 + gµνH̃

V
22 + tµνH̃

V
27 .

The arguments of all functions in the cms frame are (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
We split the functions in an infinite volume part, Hi, and a finite volume correction, HV

i ,
with H̃V

i = Hi + HV
i . The infinite volume part has been discussed above. Note that the

functions in the section are defined with the derivative w.r.t. m2
l for the propagators with

mass m2
l . For the finite volume parts we define the subtraction as before in (57), i.e. we

subtract the AV ε, BV ε parts.
The functions HV F

i can be computed with the methods of [9]. They are obtained by adding
the parts labeled with G and H in Sect. 4.3 and the part of Sect. 4.4 in [9]. The derivatives
w.r.t. p2 can be treated using a simple adaptation of that method.
The method for evaluation works only below threshold. The numerical evaluation is rather
slow. Playing with the precision settings for the specific case you need is very strongly
recommended.

7.11.2 Functions

const int n The propagator cases as given in Tab. 1.
const double: m1sq,m2sq,m3sq,psq,L,mu2. These correspond to m2

1,m
2
2,m

2
3, p

2, L, µ2.

Evaluation using theta functions:
double hhVt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F (n,m2

1,m
2
2,m

2
3, p

2, L, µ2).
double hh1Vt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

1 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh21Vt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

21 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh22Vt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

22 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh27Vt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

27 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hhdVt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F (n,m2

1,m
2
2,m

2
3, p

2, L, µ2).
double hh1dVt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

1 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh21dVt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

21 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh22dVt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

22 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh27dVt(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

27 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).

Evaluation using Bessel functions:
double hhVb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F (n,m2

1,m
2
2,m

2
3, p

2, L, µ2).
double hh1Vb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

1 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh21Vb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

21 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh22Vb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F

22 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).

3In the cms frame tµν = gµν − pµpν/p
2 but the separation appears naturally in the calculation [9]. In

addition, it avoids singularities in the limit p→ 0.

54

double hh27Vb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns HV F
27 (n,m2

1,m
2
2,m

2
3, p

2, L, µ2).
double hhdVb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F (n,m2

1,m
2
2,m

2
3, p

2, L, µ2).
double hh1dVb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

1 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh21dVb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

21 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh22dVb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

22 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).
double hh27dVb(n,m1sq,m2sq,m3sq,psq,L,mu2): returns (∂/∂p2)HV F

27 (n,m2
1,m

2
2,m

2
3, p

2, L, µ2).

For all cases discussed both methods, via Bessel or (generalized) Jacobi theta functions,
give the same results. The derivatives w.r.t. p2 for all the integrals were compared with
taking a numerical derivative.

Note that the sunset functions at finite volume call the tadpole integrals evaluated with
the same method. Do not forget to set precision for those as well.

void setprecisionfinitevolumesunsett(const double racc=1e-5,

const double rsacc=1e-4,const bool printout=true)

The double values sunsetracc and sunsetrsacc set the accuracies of the numerical inte-
gration needed when one or two loop-momenta “feel” the finite volume. Default values are
1e-5 and 1e-4 respectively. The bool variable printout defaults to true and sets whether
the setting is printed.

void setprecisionfinitevolumesunsetb(const int maxsum1=100,

const int maxsum2=40,racc=1e-5,rsacc=1e-4,printout=true)

The integers maxsum1 and maxsum2 give how far the sum over Bessel functions is used for
the case with one or two loop momenta “feeling” the finite volume. The first is maximum
1000, the second maximum 40 in the present implementation. In the latter case a triple
sum is needed, hence the much lower upper bound. The double values sunsetracc and
sunsetrsacc set the accuracies of the numerical integration which is still needed after the
sum for both cases.

For most applications it makes sense to have a higher precision for the case with one loop
momentum quantized, i.e. racc smaller than rsacc.

Defined in finitevolumesunsetintegrals.h, implemented in finitevolumesunsetintegrals.cc

and examples of use in testfinitevolumesunsetintegrals.cc

55

8 Two flavour isospin conserving results

8.1 Mass, decay constant and vacuum-expectation-value: in phys-
ical

The exansions in this subsection are defined in terms of the physical mass, mπ, and the
physical pion decay constant Fπ.

8.1.1 Mass

The pion mass at two-loops in two flavour ChPT was evaluated in [43, 42, 40, 41], one-loop
in [13]. The expressions as given here are in [44].
The expression for the physical mass is given by

m2
π = m2

π 0

(
1 +m2(4)

π

)
. (60)

The superscripts indicate the order of the diagrams in p that each contribution comes from.
The lowest order mass is

m2
π 0 = 2Bm̂ . (61)

The higher order contributions are split in the parts depending on the NLO LECs lri , on
the NNLO LECs cri and the remainder as

m2(4)
π = m

2(4)
π l +m2(4)

π r , (62)

Note that when combining these with results from other sources one should be sure to use
a compatible LO and NLO.

double mpi4nf2(physmassnf2,libar) returns m
2(4)
π

double mpi4nf2(physmassnf2,li) returns m
2(4)
π

double mpi4lnf2(physmassnf2,li) returns m
2(4)
π l

double mpi4rnf2(physmassnf2) returns m
2(4)
π r

The functions are defined in massesdecayvevnf2.h, implemented in massesdecayvevnf2.cc

and examples of use are in testmassdecayvevnf2.cc.

8.1.2 Decay constant

The pion decay constant at two-loops in two flavour ChPT was evaluated in [43, 42, 40, 41],
one-loop in [13]. The expressions as given here are in [44].
The expression for the physical decay constant is given by

Fπ = F
(
1 + F (4)

π

)
. (63)

The superscripts indicate the order of the diagrams in p that each contribution comes from.

56

The higher order contributions are split in the parts depending on the NLO LECs lri , on
the NNLO LECs cri and the remainder as

F (4)
π = F

(4)
π l + F (4)

π r , (64)

Note that when combining these with results from other sources one should be sure to use
a compatible LO and NLO.

double fpi4nf2(physmassnf2,libar) returns F
(4)
π

double fpi4nf2(physmassnf2,li) returns F
(4)
π

double fpi4lnf2(physmassnf2,li) returns F
2(4)
π l

double fpi4rnf2(physmassnf2) returns F
(4)
π r

The functions are defined in massesdecayvevnf2.h, implemented in massesdecayvevnf2.cc

and examples of use are in testmassdecayvevnf2.cc.

8.1.3 vacuum-expectation-value

The vacuum-expectation-value 〈0|ūu|0〉 ≡ 〈ūu〉 was evaluated at one-loop in [13] in two-
flavour ChPT.
The expression for the vacuum-expectation-value is given by

〈ūu〉 = −BF 2
(
1 + 〈ūu〉(4)

)
. (65)

The superscripts indicate the order of the diagrams in p that each contribution comes from.
The higher order contributions are split in the parts depending on the NLO LECs lri , on
the NNLO LECs cri and the remainder as

〈ūu〉(4) = 〈ūu〉(4)
l + 〈ūu〉(4)

r , (66)

Note that when combining these with results from other sources one should be sure to use
a compatible LO and NLO.

double qqup4nf2(physmassnf2,libar) returns 〈ūu〉(4)

double qqup4nf2(physmassnf2,li) returns 〈ūu〉(4)

double qqup4lnf2(physmassnf2,li) returns 〈ūu〉2(4)
l

double qqup4rnf2(physmassnf2) returns 〈ūu〉(4)
r

The functions are defined in massesdecayvevnf2.h, implemented in massesdecayvevnf2.cc

and examples of use are in testmassdecayvevnf2.cc.

8.2 Mass, decay constant and vacuum-expectation-value at finite
volume: in physical

The expressions treated in this section have been derived in [28] and the one-loop results
in [45]. The pion mass at two-loops was done earlier in [46]. A general remark is that

57

care should be taken to set the precision in the loop integrals sufficiently high. For the
one-loop integrals setting it very high is usually no problem. For the sunset integrals the
evaluation can become very slow. It is strongly recommended to play around with the
settings and compare the outputs for the two ways to evaluate the integral. The theta
and Bessel function evaluation approach the correct answer differently. For most cases it
is possible to have rsacc set smaller than racc.
For many applications it is useful to calculate the very time consuming parts, those labeled
6rnf2V, once and store them. They only depend nontrivially on the masses and size of
the finite volume. The decay constant dependence is very simple, an overall factor at each
order, and there is no dependence on the NLO LECs lri .
The results presented in this section are with periodic boundary conditions and an infinite
extension in the time direction. They are also restricted to the case where the particle is
at rest, i.e. ~p = 0.

8.2.1 Mass at finite volume: in physical

The finite volume corrections to the masses squared4 are defined as the difference of the
mass squared in finite volume and in infinite volume:

∆Vm2
π = m2V

π −m2V=∞
π = m2V (4)

π +m2V (6)
π ,

m2V (6)
π = m

2V (6)
π l +m

2V (6)
pi r . (67)

m
2V (6)
π l is the part depending on the NLO LECs lri .

Pion mass (theta function method):

double mpi4nf2Vt(const physmassnf2 massin,const double L) returns m
2V (4)
π .

double mpi6nf2Vt(const physmassnf2 massin, const li liiin, const double L)

returns m
2V (6)
π .

double mpi6lnf2Vt(const physmassnf2 massin, const li liiin, const double L)

returns m
2V (6)
π l .

double mpi6rnf2Vt(const physmassnf2 massin, const double L) returns m
2V (6)
π r .

Pion mass (Bessel function method):

double mpi4nf2Vb(const physmassnf2 massin,const double L) returns m
2V (4)
π .

double mpi6nf2Vb(const physmassnf2 massin, const li liiin, const double L)

returns m
2V (6)
π .

double mpi6lnf2Vb(const physmassnf2 massin, const li liiin, const double L)

returns m
2V (6)
π l .

double mpi6rnf2Vb(const physmassnf2 massin, const double L) returns m
2V (6)
π r .

4Note that in other papers the corrections to the mass itself are sometimes quoted.

58

All these are defined in massdecayvevnf2V.h and implemented in massdecayvevnf2V.h.
Examples of use are in testmassdecayvevnf2V.cc.

8.2.2 Decay constant at finite volume: in physical

The finite volume corrections to the decay constants are defined as the difference of the
decay constant in finite volume and in infinite volume:

∆V Fπ = F V
π − F V=∞

π = F V (4)
π + F V (6)

π .

F V (6)
π = F

V (6)
π l + F V (6)

π r . (68)

Note that the correction is defined to the value of the decay constant, not divided by the
the lowest order decay constant as in (73).

Pion decay constant (theta function method):

double fpi4nf2Vt(const physmassnf2 massin,const double L) returns F
V (4)
π .

double fpi6nf2Vt(const physmassnf2 massin,const li liin,const double L)

returns F
V (6)
π .

double fpi6lnf2Vt(const physmassnf2 massin,const li liin,const double L)

returns F
V (6)
π l .

double fpi6rnf2Vt(const physmassnf2 massin,const double L) returns F
V (6)
π r .

Pion decay constant (Bessel function method):

double fpi4nf2Vb(const physmassnf2 massin,const double L) returns F
V (4)
π .

double fpi6nf2Vb(const physmassnf2 massin,const li liin,const double L)

returns F
V (6)
π .

double fpi6lnf2Vb(const physmassnf2 massin,const li liin,const double L)

returns F
V (6)
π l .

double fpi6rnf2Vb(const physmassnf2 massin,const double L) returns F
V (6)
π r .

All these are defined in massdecayvevnf2V.h and implemented in massdecayvevnf2V.h.
Examples of use are in testmassdecayvevnf2V.cc.

8.2.3 Vacuum-expectation-value at finite volume: in physical

The finite volume corrections to the vev 〈ūu〉 are defined as the difference of the decay
constant in finite volume and in infinite volume:

∆V 〈ūu〉 = 〈ūu〉V − 〈ūu〉V=∞ = 〈ūu〉V=∞ (1 + 〈ūu〉V (4)
π

)
. (69)

Note that the correction is defined relative to the value in infinite volume not to the lowest
order value.

59

〈ūu〉 (theta function method):

double qqup4nf2Vt(const physmassnf2 massin,const double L) returns 〈ūu〉V (4)
π .

〈ūu〉 (Bessel function method):

double qqup4nf2Vb(const physmassnf2 massin,const double L) returns 〈ūu〉V (4)
π .

All these are defined in massdecayvevnf2V.h and implemented in massdecayvevnf2V.h.
Examples of use are in testmassdecayvevnf2V.cc.

9 Three flavour isospin conserving results

9.1 Masses, decay constants and vacuum-expectation-values: in
physical

The exansions in this subsection are defined in terms of the physical masses, mπ,mK ,mη

and the physical pion decay constant Fπ.

9.1.1 Masses

The masses of the pion, kaon and eta at two-loops in three flavour ChPT were evaluated
in [21]. The pion and eta mass were done earlier with a different subtraction scheme and
a different way to perform the sunset integrals in [30].
The expressions for the physical masses for a = π,K, η are given by

m2
aphys = m2

a 0 +m2(4)
a +m2(6)

a . (70)

The superscripts indicate the order of the diagrams in p that each contribution comes from.
The lowest order masses are

m2
π 0 = 2B0m̂ , m2

K 0 = B0 (m̂+ms) , m2
η 0 =

2

3
(m̂+ 2m2) . (71)

The higher order contributions are split in the parts depending on the NLO LECs Lri , on
the NNLO LECs Cr

i and the remainder as

m2(4)
a = m

2(4)
aL +m

2(4)
aR , m2(6)

a = m
2(6)
aL +m

2(6)
aC +m

2(6)
aR . (72)

The expressions for these can be found in [21] and on [15]. Note that when combining
these with results from other sources one should be sure to use a compatible LO and NLO.

Pion mass:
double mpi4(physmass,Li) returns m

2(4)
π

double mpi4L(physmass,Li) returns m
2(4)
π L

double mpi4R(physmass,Li) returns m
2(4)
π R

60

double mpi6(physmass,Li,Ci) returns m
2(6)
π

double mpi6L(physmass,Li) returns m
2(6)
π L

double mpi6C(physmass,Ci) returns m
2(6)
π C

double mpi6R(physmass) returns m
2(6)
π R

Kaon mass:
double mk4(physmass,Li) returns m

2(4)
K

double mk4L(physmass,Li) returns m
2(4)
K L

double mk4R(physmass,Li) returns m
2(4)
KR

double mk6(physmass,Li,Ci) returns m
2(6)
K

double mk6L(physmass,Li) returns m
2(6)
K L

double mk6C(physmass,Ci) returns m
2(6)
K C

double mk6R(physmass) returns m
2(6)
KR

Eta mass:
double meta4(physmass,Li) returns m

2(4)
η

double meta4L(physmass,Li) returns m
2(4)
η L

double meta4R(physmass,Li) returns m
2(4)
η R

double meta6(physmass,Li,Ci) returns m
2(6)
η

double meta6L(physmass,Li) returns m
2(6)
η L

double meta6C(physmass,Ci) returns m
2(6)
η C

double meta6R(physmass) returns m
2(6)
η R

The functions are defined in massesdecayvev.h, implemented in massesdecayvev.cc and
examples of use are in testmassdecayvev.cc.

9.1.2 Decay constants

The decay constants of the pion, kaon and eta at two-loops in three flavour ChPT were
obtained in [21]. The pion and eta decay constants were done earlier with a different
subtraction scheme and a different way to perform the sunset integrals in [30].
The expressions for the decay constants for a = π,K, η are given by

Faphys = F0

(
1 + F (4)

a + F (6)
a

)
. (73)

The superscripts indicate the order of the diagrams in p that each contribution comes
from. F0 denotes the decay constant in the three-flavour chiral limit. The expressions were
originally derived in [21], but note the description in the erratum of [31]. The expressions
corrected for the error can be found in the website [15]. The normalization is such that
Fπ ≈ 92 MeV.
The contributions themselves are divided into the parts depending on the NLO LECs Lri ,

61

on the NNLO LECs Cr
i and the remainder as

F (4)
a = F

(4)
aL + F

(4)
aR , F (6)

a = F
(6)
aL + F

(6)
aC + F

(6)
aR . (74)

For the η the decay constant has been defined with the octet axial-vector current.

Pion decay constant:
double fpi4(physmass,Li) returns F

(4)
π

double fpi4L(physmass,Li) returns F
(4)
π L

double fpi4R(physmass,Li) returns F
(4)
π R

double fpi6(physmass,Li,Ci) returns F
(6)
π

double fpi6L(physmass,Li) returns F
(6)
π L

double fpi6C(physmass,Ci) returns F
(6)
π C

double fpi6R(physmass) returns F
(6)
π R

Kaon decay constant:
double fk4(physmass,Li) returns F

(4)
K

double fk4L(physmass,Li) returns F
(4)
K L

double fk4R(physmass,Li) returns F
(4)
KR

double fk6(physmass,Li,Ci) returns F
(6)
K

double fk6L(physmass,Li) returns F
(6)
K L

double fk6C(physmass,Ci) returns F
(6)
K C

double fk6R(physmass) returns F
(6)
KR

Eta decay constant:
double feta4(physmass,Li) returns F

(4)
η

double feta4L(physmass,Li) returns F
(4)
η L

double feta4R(physmass,Li) returns F
(4)
η R

double feta6(physmass,Li,Ci) returns F
(6)
η

double feta6L(physmass,Li) returns F
(6)
η L

double feta6C(physmass,Ci) returns F
(6)
η C

double feta6R(physmass) returns F
(6)
η R

The functions are defined in massesdecayvev.h, implemented in massesdecayvev.cc and
examples of use are in testmassdecayvev.cc.

9.1.3 getfpimeta

A problem that occurs in trying to compare to lattice QCD is that many of the routines
are written in terms of the physical pion decay constant and physical masses. In particular,
the eta mass is treated as physical. One thus needs a consistent eta mass and pion decay

62

constant when varying the input pion and kaon mass. This assumes we have fitted the
LECs Lri and Cr

i with a known set of mπ,mK ,mη, Fπ.
With that input we can obtain an eta mass and pion decay constant with as input values
the original Liin, Ciin and the massin. The formulas used are (72) and (74) up to order
p6 and p4. The solution is obtained by iteration and stops when six digits of precision are
reached. This method was used in [28] to obtain the consistent set of masses and decay
constants used there.

physmass getfpimeta6(const double mpiin, const double mkin,

const physmass massin,const Li Liin, const Ci Ciin)

returns a physmass containing mpiin,mkin and the calculated compatibe meta,fpi with
the formulas including order p6, i.e. to NNLO.
physmass getfpimeta4(const double mpiin, const double mkin,

const physmass massin,const Li Liin)

returns a physmass containing mpiin,mkin and the calculated compatibe meta,fpi with
the formulas including order p4, i.e. to NLO.
The functions are defined in getfpimeta.h, implemented in getfpimeta.cc and examples
of use are in testgetfpimeta.cc.

9.1.4 Vacuum-expectation-values

The corrections to the vacuum expectation values (vevs) 〈0|qq|0〉 for up, down and strange
quarks in the isospin limit were calculated at two-loops in three flavour ChPT in [31]. The
expression for the up and down quark vev are identical since we are in the isospin limit.
We write the expressions in a form analoguous to the decay constant treatment:

〈0|qq|0〉aphys = −F 2
0B0

(
1 + 〈0|qq|0〉(4)

a + 〈0|qq|0〉(6)
a

)
. (75)

The superscripts indicate the order of the diagrams in p that each contribution comes from.
The lowest order values are −F 2

0B0.
Note that the vevs are not directly measurable quantities. They depend on exactly the
way the scalar densities are defined in QCD. ChPT can be used for them when a massin-
dependent, chiral symmetry respecting subtraction scheme is used. MS in QCD satisfies
this, but there are other possibilities. Even within a scheme, B0 and the quark masses
depend on the QCD subtraction scale µQCD in such a way that B0mq is independent of it.
The higher order corrections in this case also depend on the LECs for fully local counter-
terms, Hr

1 , H
r
2 at order p4 and Cr

91, . . . , C
r
94 at p6. When the scalar density is fully defined,

measuring these quantities in e.g. lattice QCD and comparing with the ChPT expressions
is a well defined procedure.
The contributions at the different orders themselves are split in the parts depending on
the NLO LECs Lri , on the NNLO LECs Cr

i and the remainder as

〈0|qq|0〉(4)
a = 〈0|qq|0〉(4)

aL + 〈0|qq|0〉(4)
aR ,

〈0|qq|0〉(6)
a = 〈0|qq|0〉(6)

aL + 〈0|qq|0〉(6)
aC + 〈0|qq|0〉(6)

aR . (76)

63

These are defined for q = u, s.

〈0|qq|0〉uphys:

double qqup4(physmass,Li) returns 〈0|qq|0〉(4)
u

double qqup4L(physmass,Li) returns 〈0|qq|0〉(4)
uL

double qqup4R(physmass) returns 〈0|qq|0〉(4)
uR

double qqup6(physmass,Li,Ci) returns 〈0|qq|0〉(6)
u

double qqup6L(physmass,Li) returns 〈0|qq|0〉(6)
uL

double qqup6C(physmass,Li) returns 〈0|qq|0〉(6)
uC

double qqup6R(physmass) returns 〈0|qq|0〉(6)
uR

〈0|qq|0〉sphys:

double qqstrange4(physmass,Li) returns 〈0|qq|0〉(4)
s

double qqstrange4L(physmass,Li) returns 〈0|qq|0〉(4)
sL

double qqstrange4R(physmass) returns 〈0|qq|0〉(4)
sR

double qqstrange6(physmass,Li,Ci) returns 〈0|qq|0〉(6)
s

double qqstrange6L(physmass,Li) returns 〈0|qq|0〉(6)
sL

double qqstrange6C(physmass,Li) returns 〈0|qq|0〉(6)
sC

double qqstrange6R(physmass) returns 〈0|qq|0〉(6)
sR

The functions are defined in massesdecayvev.h, implemented in massesdecayvev.cc and
examples of use are in testmassesdecayvev.cc

9.2 Masses, decay constants and vacuum-expectation-values: in
lowest order

The exansions in this subsection are defined in terms of the lowest order masses, mπ 0,mK 0,
mη =

√
(4m2

K 0 −m2
π 0)/3 and the lowest order, or chiral limit, pion decay constant F0.

9.2.1 Masses: in lowest order

The masses of the pion, kaon and eta at two-loops in three flavour ChPT were evaluated
in [21]. The pion and eta mass were done earlier with a different subtraction scheme and
a different way to perform the sunset integrals in [30].
The expressions for the physical masses for a = π,K, η are given by

m2
aphys = m2

a 0 +m2(4)0
a +m2(6)0

a . (77)

The superscripts indicate the order of the diagrams in p that each contribution comes from
and the extra 0 that it is defined in terms of lowest-order quantities.
The lowest order masses are

m2
π 0 = 2B0m̂ , m2

K 0 = B0 (m̂+ms) , m2
η 0 =

2

3
(m̂+ 2m2) . (78)

64

The higher order contributions are split in the parts depending on the NLO LECs Lri , on
the NNLO LECs Cr

i and the remainder as

m2(4)0
a = m

2(4)0
aL +m

2(4)0
aR , m2(6)0

a = m
2(6)0
aL +m

2(6)0
aC +m

2(6)0
aR . (79)

The expressions for were derived during the work for [21] and on [15]. Note that when
combining these with results from other sources one should be sure to use a compatible
LO and NLO.

Pion mass:
double mpi4lo(lomass,Li) returns m

2(4)0
π

double mpi4Llo(lomass,Li) returns m
2(4)0
π L

double mpi4Rlo(lomass,Li) returns m
2(4)0
π R

double mpi6lo(lomass,Li,Ci) returns m
2(6)0
π

double mpi6Llo(lomass,Li) returns m
2(6)0
π L

double mpi6Clo(lomass,Ci) returns m
2(6)0
π C

double mpi6Rlo(lomass) returns m
2(6)0
π R

Kaon mass:
double mk4lo(lomass,Li) returns m

2(4)0
K

double mk4Llo(lomass,Li) returns m
2(4)0
K L

double mk4Rlo(lomass,Li) returns m
2(4)0
KR

double mk6lo(lomass,Li,Ci) returns m
2(6)0
K

double mk6Llo(lomass,Li) returns m
2(6)0
K L

double mk6Clo(lomass,Ci) returns m
2(6)0
K C

double mk6Rlo(lomass) returns m
2(6)0
KR

Eta mass:
double meta4lo(lomass,Li) returns m

2(4)0
η

double meta4Llo(lomass,Li) returns m
2(4)0
η L

double meta4Rlo(lomass,Li) returns m
2(4)0
η R

double meta6lo(lomass,Li,Ci) returns m
2(6)0
η

double meta6Llo(lomass,Li) returns m
2(6)0
η L

double meta6Clo(lomass,Ci) returns m
2(6)0
η C

double meta6Rlo(lomass) returns m
2(6)0
η R

The functions are defined in massesdecayvevlo.h, implemented in massesdecayvevlo.cc

and examples of use are in testmassdecayvevlo.cc.

65

9.2.2 Decay constants: in lowest order

The decay constants of the pion, kaon and eta at two-loops in three flavour ChPT were
obtained in [21]. The pion and eta decay constants were done earlier with a different
subtraction scheme and a different way to perform the sunset integrals in [30].
The expressions for the decay constants for a = π,K, η are given by

Faphys = F0

(
1 + F (4)0

a + F (6)0
a

)
. (80)

The superscripts indicate the order of the diagrams in p that each contribution comes from.
The extra 0 indicates that the expansion is in terms of lowest-order quantities. F0 denotes
the decay constant in the three-flavour chiral limit. The expressions were originally derived
during the work for [21] and can be found in the website [15]. The normalization is such
that Fπ ≈ 92 MeV.
The contributions themselves are divided into the parts depending on the NLO LECs Lri ,
on the NNLO LECs Cr

i and the remainder as

F (4)0
a = F

(4)0
aL + F

(4)0
aR , F (6)0

a = F
(6)0
aL + F

(6)0
aC + F

(6)0
aR . (81)

For the η the decay constant has been defined with the octet axial-vector current.

Pion decay constant:
double fpi4lo(lomass,Li) returns F

(4)0
π

double fpi4Llo(lomass,Li) returns F
(4)0
π L

double fpi4Rlo(lomass,Li) returns F
(4)0
π R

double fpi6lo(lomass,Li,Ci) returns F
(6)0
π

double fpi6Llo(lomass,Li) returns F
(6)0
π L

double fpi6Clo(lomass,Ci) returns F
(6)0
π C

double fpi6Rlo(lomass) returns F
(6)0
π R

Kaon decay constant:
double fk4lo(lomass,Li) returns F

(4)0
K

double fk4Llo(lomass,Li) returns F
(4)0
K L

double fk4Rlo(lomass,Li) returns F
(4)0
KR

double fk6lo(lomass,Li,Ci) returns F
(6)0
K

double fk6Llo(lomass,Li) returns F
(6)0
K L

double fk6Clo(lomass,Ci) returns F
(6)0
K C

double fk6Rlo(lomass) returns F
(6)0
KR

Eta decay constant:
double feta4lo(lomass,Li) returns F

(4)0
η

double feta4Llo(lomass,Li) returns F
(4)0
η L

double feta4Rlo(lomass,Li) returns F
(4)0
η R

66

double feta6lo(lomass,Li,Ci) returns F
(6)0
η

double feta6Llo(lomass,Li) returns F
(6)0
η L

double feta6Clo(lomass,Ci) returns F
(6)0
η C

double feta6Rlo(lomass) returns F
(6)0
η R

The functions are defined in massesdecayvevlo.h, implemented in massesdecayvevlo.cc

and examples of use are in testmassdecayvevlo.cc.

9.2.3 Vacuum-expectation-values: in lowest order

The corrections to the vacuum expectation values (vevs) 〈0|qq|0〉 for up, down and strange
quarks in the isospin limit were calculated at two-loops in three flavour ChPT in [31]. The
expression for the up and down quark vev are identical since we are in the isospin limit.
We write the expressions in a form analoguous to the decay constant treatment:

〈0|qq|0〉a phys = −F 2
0B0

(
1 + 〈0|qq|0〉(4)0

a + 〈0|qq|0〉(6)0
a

)
. (82)

The superscripts indicate the order of the diagrams in p that each contribution comes from.
The extra 0 indicates that the expansion is defined in terms of lowest-order quantities. The
lowest order values are −F 2

0B0.
Note that the vevs are not directly measurable quantities. They depend on exactly the
way the scalar densities are defined in QCD. ChPT can be used for them when a massin-
dependent, chiral symmetry respecting subtraction scheme is used. MS in QCD satisfies
this, but there are other possibilities. Even within a scheme, B0 and the quark masses
depend on the QCD subtraction scale µQCD in such a way that B0mq is independent of it.
The higher order corrections in this case also depend on the LECs for fully local counter-
terms, Hr

1 , H
r
2 at order p4 and Cr

91, . . . , C
r
94 at p6. When the scalar density is fully defined,

measuring these quantities in e.g. lattice QCD and comparing with the ChPT expressions
is a well defined procedure.
The contributions at the different orders themselves are split in the parts depending on
the NLO LECs Lri , on the NNLO LECs Cr

i and the remainder as

〈0|qq|0〉(4)0
a = 〈0|qq|0〉(4)0

aL + 〈0|qq|0〉(4)0
aR ,

〈0|qq|0〉(6)0
a = 〈0|qq|0〉(6)0

aL + 〈0|qq|0〉(6)0
aC + 〈0|qq|0〉(6)0

aR . (83)

These are defined for q = u, s.

〈0|qq|0〉uphys:

double qqup4lo(lomass,Li) returns 〈0|qq|0〉(4)0
u

double qqup4Llo(lomass,Li) returns 〈0|qq|0〉(4)0
uL

double qqup4Rlo(lomass) returns 〈0|qq|0〉(4)0
uR

double qqup6lo(lomass,Li,Ci) returns 〈0|qq|0〉(6)0
u

double qqup6Llo(lomass,Li) returns 〈0|qq|0〉(6)0
uL

67

double qqup6Clo(lomass,Li) returns 〈0|qq|0〉(6)0
uC

double qqup6Rlo(lomass) returns 〈0|qq|0〉(6)0
uR

〈0|qq|0〉sphys:

double qqstrange4lo(lomass,Li) returns 〈0|qq|0〉(4)0
s

double qqstrange4Llo(lomass,Li) returns 〈0|qq|0〉(4)0
sL

double qqstrange4Rlo(lomass) returns 〈0|qq|0〉(4)0
sR

double qqstrange6lo(lomass,Li,Ci) returns 〈0|qq|0〉(6)0
s

double qqstrange6Llo(lomass,Li) returns 〈0|qq|0〉(6)0
sL

double qqstrange6Clo(lomass,Li) returns 〈0|qq|0〉(6)0
sC

double qqstrange6Rlo(lomass) returns 〈0|qq|0〉(6)0
sR

The functions are defined in massesdecayvevlo.h, implemented in massesdecayvevlo.cc

and examples of use are in testmassesdecayvevlo.cc

9.3 Masses and decay constants at finite volume: in physical

The expressions treated in this section have been derived in [28]. A general remark is that
care should be taken to set the precision in the loop integrals sufficiently high. For the
one-loop integrals setting it very high is usually no problem. For the sunset integrals the
evaluation can become very slow. It is strongly recommended to play around with the
settings and compare the outputs for the two ways to evaluate the integral. The theta
and Bessel function evaluation approach the correct answer differently. For most cases it
is possible to have rsacc set smaller than racc.
For many applications it is useful to calculate the very time consuming parts, those labeled
6RV, once and store them. They only depend nontrivially on the masses and size of the
finite volume. The decay constant dependence is very simple, an overall factor at each
order, and there is no dependence on the NLO LECs Lri .
The results presented in this section are with periodic boundary conditions and an infinite
extension in the time direction. They are also restricted to the case where the particle is
at rest, i.e. ~p = 0.

9.3.1 Masses at finite volume: in physical

The finite volume corrections to the masses squared5 are defined as the difference of the
mass squared in finite volume and in infinite volume:

∆Vm2
a = m2V

a −m2V=∞
a = m2V (4)

a +m2V (6)
a .

m2V (6)
a = m

2V (6)
aL +m

2V (6)
aR . (84)

These definitions are for a = π,K, η.

5Note that in other papers the corrections to the mass itself are sometimes quoted.

68

Pion mass (theta function method):

double mpi4Vt(const physmass massin,const double L) returns m
2V (4)
π .

double mpi6Vt(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
π .

double mpi6VLt(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
π L .

double mpi6VRt(const physmass massin,const double L) returns m
2V (6)
π R .

Pion mass (Bessel function method):

double mpi4Vb(const physmass massin,const double L) returns m
2V (4)
π .

double mpi6Vb(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
π .

double mpi6VLb(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
π L .

double mpi6VRb(const physmass massin,const double L) returns m
2V (6)
π R .

Kaon mass (theta function method):

double mk4Vt(const physmass massin,const double L) returns m
2V (4)
K .

double mk6Vt(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
K .

double mk6VLt(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
K L .

double mk6VRt(const physmass massin,const double L) returns m
2V (6)
KR .

Kaon mass (Bessel function method):

double mk4Vb(const physmass massin,const double L) returns m
2V (4)
K .

double mk6Vb(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
K .

double mk6VLb(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
K L .

double mk6VRb(const physmass massin,const double L) returns m
2V (6)
KR .

Eta mass (theta function method):

double meta4Vt(const physmass massin,const double L) returns m
2V (4)
η .

double meta6Vt(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
η .

double meta6VLt(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
η L .

double meta6VRt(const physmass massin,const double L) returns m
2V (6)
η R .

Eta mass (Bessel function method):

double meta4Vb(const physmass massin,const double L) returns m
2V (4)
η .

double meta6Vb(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
η .

double meta6VLb(const physmass massin,const Li Liin,const double L) returnsm
2V (6)
η L .

double meta6VRb(const physmass massin,const double L) returns m
2V (6)
η R .

All these are defined in massdecayvevV.h and implemented in massdecayvevV.h. Exam-
ples of use are in testmassdecayvevV.cc.

69

9.3.2 Decay constants at finite volume: in physical

The finite volume corrections to the decay constants are defined as the difference of the
decay constant in finite volume and in infinite volume:

∆V Fa = F V
a − F V=∞

a = F V (4)
a + F V (6)

a .

F V (6)
a = F

V (6)
aL + F

V (6)
aR . (85)

These definitions are for a = π,K, η. Note that the correction is defined to the value of
the decay constant, not divided by the the lowest order decay constant as in (73). The eta
decay constant is defined with the octet axial current.

Pion decay constant (theta function method):

double fpi4Vt(const physmass massin,const double L) returns F
V (4)
π .

double fpi6Vt(const physmass massin,const Li Liin,const double L) returns F
V (6)
π .

double fpi6VLt(const physmass massin,const Li Liin,const double L) returns F
V (6)
π L .

double fpi6VRt(const physmass massin,const double L) returns F
V (6)
π R .

Pion decay constant (Bessel function method):

double fpi4Vb(const physmass massin,const double L) returns F
V (4)
π .

double fpi6Vb(const physmass massin,const Li Liin,const double L) returns F
V (6)
π .

double fpi6VLb(const physmass massin,const Li Liin,const double L) returns F
V (6)
π L .

double fpi6VRb(const physmass massin,const double L) returns F
V (6)
π R .

Kaon decay constant (theta function method):

double fk4Vt(const physmass massin,const double L) returns F
V (4)
K .

double fk6Vt(const physmass massin,const Li Liin,const double L) returns F
V (6)
K .

double fk6VLt(const physmass massin,const Li Liin,const double L) returns F
V (6)
K L .

double fk6VRt(const physmass massin,const double L) returns F
V (6)
KR .

Kaon decay constant (Bessel function method):

double fk4Vb(const physmass massin,const double L) returns F
V (4)
K .

double fk6Vb(const physmass massin,const Li Liin,const double L) returns F
V (6)
K .

double fk6VLb(const physmass massin,const Li Liin,const double L) returns F
V (6)
K L .

double fk6VRb(const physmass massin,const double L) returns F
V (6)
KR .

Eta decay constant (theta function method):

double feta4Vt(const physmass massin,const double L) returns F
V (4)
η .

double feta6Vt(const physmass massin,const Li Liin,const double L) returns F
V (6)
η .

double feta6VLt(const physmass massin,const Li Liin,const double L) returns F
V (6)
η L .

double feta6VRt(const physmass massin,const double L) returns F
V (6)
η R .

70

Eta decay constant (Bessel function method):

double feta4Vb(const physmass massin,const double L) returns F
V (4)
η .

double feta6Vb(const physmass massin,const Li Liin,const double L) returns F
V (6)
η .

double feta6VLb(const physmass massin,const Li Liin,const double L) returns F
V (6)
η L .

double feta6VRb(const physmass massin,const double L) returns F
V (6)
η R .

All these are defined in massdecayvevV.h and implemented in massdecayvevV.h. Exam-
ples of use are in testmassdecayvevV.cc.

9.4 Masses, decay constants and vacuum expectation values at
finite volume: in lowest order

The expressions treated in this section have been derived in [28]. A general remark is that
care should be taken to set the precision in the loop integrals sufficiently high. For the
one-loop integrals setting it very high is usually no problem. For the sunset integrals the
evaluation can become very slow. It is strongly recommended to play around with the
settings and compare the outputs for the two ways to evaluate the integral. The theta
and Bessel function evaluation approach the correct answer differently. For most cases it
is possible to have rsacc set smaller than racc.
For many applications it is useful to calculate the very time consuming parts, those labeled
6RV, once and store them. They only depend nontrivially on the masses and size of the
finite volume. The decay constant dependence is very simple, an overall factor at each
order, and there is no dependence on the NLO LECs Lri .
The results presented in this section are with periodic boundary conditions and an infinite
extension in the time direction. They are also restricted to the case where the particle is
at rest, i.e. ~p = 0.

9.4.1 Masses at finite volume: in lowest order

The finite volume corrections to the masses squared6 are defined as the difference of the
mass squared in finite volume and in infinite volume:

∆Vm2
a = m2V

a −m2V=∞
a = m2V (4)0

a +m2V (6)0
a .

m2V (6)0
a = m

2V (6)0
aL +m

2V (6)0
aR . (86)

These definitions are for a = π,K, η.

Pion mass (theta function method):

double mpi4loVt(const lomass massin,const double L) returns m
2V (4)0
π .

double mpi6loVt(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
π .

double mpi6LloVt(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
π L .

6Note that in other papers the corrections to the mass itself are sometimes quoted.

71

double mpi6RloVt(const lomass massin,const double L) returns m
2V (6)0
π R .

Pion mass (Bessel function method):

double mpi4loVb(const lomass massin,const double L) returns m
2V (4)0
π .

double mpi6loVb(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
π .

double mpi6LloVb(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
π L .

double mpi6RloVb(const lomass massin,const double L) returns m
2V (6)0
π R .

Kaon mass (theta function method):

double mk4loVt(const lomass massin,const double L) returns m
2V (4)0
K .

double mk6loVt(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
K .

double mk6LloVt(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
K L .

double mk6RloVt(const lomass massin,const double L) returns m
2V (6)0
KR .

Kaon mass (Bessel function method):

double mk4loVb(const lomass massin,const double L) returns m
2V (4)0
K .

double mk6loVb(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
K .

double mk6LloVb(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
K L .

double mk6RloVb(const lomass massin,const double L) returns m
2V (6)
KR .

Eta mass (theta function method):

double meta4loVt(const lomass massin,const double L) returns m
2V (4)0
η .

double meta6loVt(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
η .

double meta6LloVt(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
η L .

double meta6RloVt(const lomass massin,const double L) returns m
2V (6)0
η R .

Eta mass (Bessel function method):

double meta4loVb(const lomass massin,const double L) returns m
2V (4)0
η .

double meta6loVb(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
η .

double meta6LloVb(const lomass massin,const Li Liin,const double L) returnsm
2V (6)0
η L .

double meta6RloVb(const lomass massin,const double L) returns m
2V (6)0
η R .

All these are defined in massdecayvevloV.h and implemented in massdecayvevloV.h.
Examples of use are in testmassdecayvevloV.cc.

9.4.2 Decay constants at finite volume: in lowest order

The finite volume corrections to the decay constants are defined as the difference of the
decay constant in finite volume and in infinite volume:

∆V Fa = F V
a − F V=∞

a = F0

(
F V (4)0
a + F V (6)0

a

)
.

72

F V (6)0
a = F

V (6)0
aL + F

V (6)0
aR . (87)

Note that this is a different normalization compared to the expressions in terms of physical
masses and the physical Fπ. This was done to have the same normalization as the partially
quenched results. These definitions are for a = π,K, η. The correction is defined to the
value of the decay constant divided by the the lowest order decay constant as in (73). The
eta decay constant is defined with the octet axial current.

Pion decay constant (theta function method):

double fpi4loVt(const lomass massin,const double L) returns F
V (4)0
π .

double fpi6loVt(const lomass massin,const Li Liin,const double L) returns F
V (6)0
π .

double fpi6LloVt(const lomass massin,const Li Liin,const double L) returns F
V (6)0
π L .

double fpi6RloVt(const lomass massin,const double L) returns F
V (6)0
π R .

Pion decay constant (Bessel function method):

double fpi4loVb(const lomass massin,const double L) returns F
V (4)0
π .

double fpi6loVb(const lomass massin,const Li Liin,const double L) returns F
V (6)0
π .

double fpi6LloVb(const lomass massin,const Li Liin,const double L) returns F
V (6)0
π L .

double fpi6RloVb(const lomass massin,const double L) returns F
V (6)0
π R .

Kaon decay constant (theta function method):

double fk4loVt(const lomass massin,const double L) returns F
V (4)0
K .

double fk6loVt(const lomass massin,const Li Liin,const double L) returns F
V (6)0
K .

double fk6LloVt(const lomass massin,const Li Liin,const double L) returns F
V (6)0
K L .

double fk6RloVt(const lomass massin,const double L) returns F
V (6)0
KR .

Kaon decay constant (Bessel function method):

double fk4loVb(const lomass massin,const double L) returns F
V (4)0
K .

double fk6loVb(const lomass massin,const Li Liin,const double L) returns F
V (6)0
K .

double fk6LloVb(const lomass massin,const Li Liin,const double L) returns F
V (6)0
K L .

double fk6RloVb(const lomass massin,const double L) returns F
V (6)0
KR .

Eta decay constant (theta function method):

double feta4loVt(const lomass massin,const double L) returns F
V (4)0
η .

double feta6loVt(const lomass massin,const Li Liin,const double L) returns F
V (6)0
η .

double feta6LloVt(const lomass massin,const Li Liin,const double L) returns F
V (6)0
η L .

double feta6RloVt(const lomass massin,const double L) returns F
V (6)0
η R .

Eta decay constant (Bessel function method):

double feta4loVb(const lomass massin,const double L) returns F
V (4)0
η .

double feta6loVb(const lomass massin,const Li Liin,const double L) returns F
V (6)0
η .

73

double feta6LloVb(const lomass massin,const Li Liin,const double L) returns F
V (6)0
η L .

double feta6RloVb(const lomass massin,const double L) returns F
V (6)0
η R .

All these are defined in massdecayvevloV.h and implemented in massdecayvevloV.h.
Examples of use are in testmassdecayvevloV.cc.

9.4.3 Vacuum-expectation-values at finite volume: in lowest order

The finite volume corrections to the vacuum expectation values (vevs) 〈0|qq|0〉 for up,
down and strange quarks in the isospin limit were calculated at two-loops in three flavour
ChPT in [29]. The expression for the up and down quark vev are identical since we are
in the isospin limit. The finite volume correction is defined as the difference between the
infinite and finite volume value.
We write the expressions in a form analoguous to the decay constant treatment:

∆V 〈0|qq|0〉 ≡ 〈0|qq|0〉Vaphys − 〈0|qq|0〉V=∞
aphys = −F 2

0B0

(
〈0|qq|0〉V (4)0

a + 〈0|qq|0〉V (6)0
a

)
. (88)

The superscripts indicate the order of the diagrams in p that each contribution comes from.
The extra 0 indicates that the expansion is defined in terms of lowest-order quantities. The
lowest order values are −F 2

0B0.
Note that the vevs are not directly measurable quantities. They depend on exactly the
way the scalar densities are defined in QCD. ChPT can be used for them when a massin-
dependent, chiral symmetry respecting subtraction scheme is used. MS in QCD satisfies
this, but there are other possibilities. Even within a scheme, B0 and the quark masses
depend on the QCD subtraction scale µQCD in such a way that B0mq is independent of it.
When the scalar density is fully defined, measuring these quantities in e.g. lattice QCD
and comparing with the ChPT expressions is a well defined procedure.
The contributions at the different orders themselves are split in the parts depending on
the NLO LECs Lri and the remainder as

〈0|qq|0〉(6)0
a = 〈0|qq|0〉(6)0

aL + 〈0|qq|0〉(6)0
aR . (89)

These are defined for q = u, s.

The last letter x is b when the finite volume integrals are calculated using the Bessel finction
method is t when the theta function method is used. Do not forget to set the precision
wanted for the finite volume integrals. L is the length of the three spatial directions.
∆V 〈0|qq|0〉uphys:

double qqup4loVx(lomass,L) returns 〈0|qq|0〉V (4)0
u

double qqup6loVx(lomass,Li,L) returns 〈0|qq|0〉V (6)0
u

double qqup6LloVx(lomass,Li,L) returns 〈0|qq|0〉V (6)0
uL

double qqup6RloVx(lomass,L) returns 〈0|qq|0〉V (6)0
uR

74

∆V 〈0|qq|0〉sphys:

double qqstrange4loVx(lomass,L) returns 〈0|qq|0〉V (4)0
s

double qqstrange6loVx(lomass,Li,L) returns 〈0|qq|0〉V (6)0
s

double qqstrange6LloVx(lomass,Li,L) returns 〈0|qq|0〉V (6)0
sL

double qqstrange6RloVx(lomass,L) returns 〈0|qq|0〉V (6)0
sR

The functions are defined in massesdecayvevloV.h, implemented in massesdecayvevloV.cc

and examples of use are in testmassesdecayvevloV.cc

9.5 Masses, decay constants and vacuum expectation values at
finite volume with twisted boundary conditions: in lowest
order

Twisted boundary conditions for a given field are defined by (43) or

Φ(xi + L) = eiθ
i

Φ(xi), . (90)

Chiral perturbation theory with twisted boundary conditions was discussed in [36]. The
formulas in this section give the finite volume correction in terms of lowest order masses
and decay constant for the case mu = md 6= ms. These formulas contain the case of a
moving frame as the cases with twist-angles zero.

The subroutines expect as input the lowest order mass of π and K, F0 and µ via a lomass,
the length of the spatial volume, fourvectors containing in the spatial components the
twist-angles for up, down and strange quark and a fourvector containing the momentum
which should be compatible (not checked!) with the twist angles and length of the finite
volume.
As an example, the spatial momentum components of a K0 consisting of a down and
antistrange quark must be of the form

pi =
1

L

(
2πni + θid − θis

)
, (91)

with ni positive or negative integers.

9.5.1 Masses

The masses were derived in [35], see there for earlier work. The result gives the full finite
volume correction to one-loop order ∆Vm2(4)0. The infinite volume correction, Sect. 9.2.1,
must be added separately. So up to one-loop order the masses are

m2
a = m2

a(2)0 +m2(4)0
a + ∆Vm2(4)0

a . (92)

Note that the mass of the anti-particle is the same as the particle with the spatial momen-
tum of the opposite sign, we have not added functions for π−, K− and K0.

75

const lomass mass(mp0, mk0, F0, mu): lowest order pion and kaon mass, pion decay
constant and subtractions scale
const double L: The length of the spatial volume, assumed to be the same in all three
directions.
const fourvector p: The four-momentum of the particle. Only the spatial components
are used and must be consistent with the twist angles and the size of the volumes.
const fourvector thetu,thetad,thetas: The spatial components contain the twist an-
gles for the up, down and strange quark in the three spatial directions.

π+, π0, K+, K0, η:
double mpipp4TV(mass, L, p, thetau, thetad, thetas) returns ∆Vm

2(4)0

π+

double mpiop4TV(mass, L, p, thetau, thetad, thetas) returns ∆Vm
2(4)0

π0

double mkpp4TV(mass, L, p, thetau, thetad, thetas) returns ∆Vm
2(4)0

K+

double mkop4TV(mass, L, p, thetau, thetad, thetas) returns ∆Vm
2(4)0

K0

double metap4TV(mass, L, p, thetau, thetad, thetas) returns ∆Vm
2(4)0
η

Defined in massdecayvevTV.h, implemented in massdecayvevTV.cc and examples of use
in testmassdecayvevTV.cc.

9.6 Vector form-factors: in lowest order

9.6.1 Electromagnetic form-factors

The electromagnetic form-factors are defined by

〈M(p′)|2
3
uγµu(0)− 1

3
dγµd(0)− 1

3
sγµs(0)|M(p)〉 =

(
p′µ + pµ

)
FM
V (t) , (93)

with t = (p′ − p)2. The electromagnetic form-factor vanishes identically for M = π0, η
because of charge conjugation.
These were first calculated at one-loop in ChPT [37], the two-loop expressions were ob-
tained in [22].
The form-factors are (up to order p4) given as

FM
V (t) =F

M(2)0
V + F

M(4)0
V (t) ,

F
M(4)0
V (t) =F

M(4)0
V L (t) + F

M(4)0
V R (t), . (94)

The p4 part is split in an Lri dependent part and the remainder. The lowest order is either

one or zero and F
M(4)0
V L (t) is similarly simple

F
π+(2)0
V =F

K+(2)0
V = 1 , F

K0(2)0
V = 0 .

F
π+(4)0
V L (t) =F

K+(4)0
V L (t) = 2tLr9 , F

K0(4)0
V L = 0 . (95)

76

The form-factors for π−, K−, K
0

are given by charge conjugation and are the opposite sign
of those for π+, K+, K0. The p4 then depends on whether you have pulled out that overall
sign or not in your conventions.

9.6.1.1 Functions

Inputs are: const double t, const lomass mass, const Li Liin.
π+:
dcomplex fvpipp4lo(t,mass,Liin) returns F

π+(4)0
V (t)

double fvpipp4Llo(t,mass,Liin) returns F
π+(4)0
V L (t)

dcomplex fvpipp4Rlo(t,mass) returns F
π+(4)0
V R (t)

K+:
dcomplex fvkpp4lo(t,mass,Liin) returns F

K+(4)0
V (t)

double fvkpp4Llo(t,mass,Liin) returns F
K+(4)0
V L (t)

dcomplex fvkpp4Rlo(t,mass) returns F
K+(4)0
V R (t)

K0:
dcomplex fvkop4lo(t,mass,Liin) returns F

K0(4)0
V (t)

double fvkop4Llo(t,mass,Liin) returns F
K0(4)0
V L (t) = 0

dcomplex fvkop4Rlo(t,mass) returns F
K0(4)0
V R (t)

Defined in vectorformlo.h, implemented in vectorformlo.cc and examples of use in
testvectorformlo.cc

9.6.2 K → π and K`3 form-factors

The K → π and K`3 form-factors are defined by

〈π−(p′)|sγµu(0)|K0(p)〉 =
(
p′µ + pµ

)
fKπ+ (t) +

(
p′µ − pµ

)
fKπ− (t) , (96)

with t = (p′ − p)2. The form-factors for the decay K+ → π0 are the same up to an overall
factor of 1/

√
2.

These were first calculated at one-loop in ChPT [37], the two-loop expressions were ob-
tained in [38].
The form-factors are (up to order p4) given as

fKπ± (t) =f
Kπ(2)0
± + f

Kπ(4)0
± (t) ,

f
Kπ(4)0
± (t) =f

Kπ(4)0
±L (t) + f

Kπ(4)0
±R (t), . (97)

The p4 part is split in an Lri dependent part and the remainder. The lowest order is one
for fKπ+ zero for fKπ− . Note that the definition of the scalar form-factor

fKπ0 (t) = fKπ+ (t) +
t

m2
K −m2

π

fKπ− (t) (98)

77

involves the physical masses. To one-loop order this is not relevant but it is when working
to p6 or two-loops.

The form-factors for K−, K
0

are given by charge conjugation and are the opposite sign of
those for K+, K0. The p4 then depends on whether you have pulled out that overall sign
or not in your conventions.

9.6.2.1 Functions

Inputs are: const double t, const lomass mass, const Li Liin.
dcomplex fvpkpip4lo(t,mass,Liin) returns f

Kπ(4)0
+ (t)

double fvpkpip4Llo(t,mass,Liin) returns f
Kπ(4)0
+L (t)

dcomplex fvpkpip4Rlo(t,mass) returns f
Kπ(4)0
+R (t)

dcomplex fvmkpip4lo(t,mass,Liin) returns f
Kπ(4)0
− (t)

double fvmkpip4Llo(t,mass,Liin) returns f
Kπ(4)0
−L (t)

dcomplex fvmkpip4Rlo(t,mass) returns f
Kπ(4)0
−R (t)

Defined in vectorformlo.h, implemented in vectorformlo.cc and examples of use in
testvectorformlo.cc

10 Three flavour partially quenched results

This section contains the routines used for the partially quenched results with three sea
quark flavours of [24, 26, 27]. The formulas used are analytically equivalent to those in
the published papers, but are longer and avoid some of the 0/0 problems that can appear.
The finite volume expressions were derived in [32].
Do not forget to set the precision for the needed sunset integrals with
setprecisionquenchedsunsetintegral and the finite volume equivalents.
The interface is always defined with the nF flavour NLO and NNLO LECs Linf and Ki

with nF = 3. The routines also expect a quarkmassnf with precisely the number of quark
masses needed for each case.
The reason why the quarkmasses or alternatively lowest-order meson masses are used is
that in these cases there are very many physical masses compared to the number of quark
masses. There would thus have been a very large ambiguity in expressing the results in
physical masses.
The inputs used are Bm1 = m2

11/2, Bm2 = m2
22/2, Bm3 = m2

33/2, Bm4 = m2
44/2, Bm5 =

m2
55/2, Bm6 = m2

66/2.
We give the cases for equal or different valence quark mass ,cases v1 or v2, and one, two or
three different sea quark masses, cases s1, s2, s3 for always three sea flavours, case nf3.
For the one sea mass case we have Bm4 = Bm5 = Bm6 and for the two sea mass case
Bm4 = Bm5.

78

The quark masses The masses are labelled starting with m and the decay constants starting
with f. f0 is F0 the three flavour chiral limit decay constant and mu is the subtraction
scale µ.
For the finite volume cases the names have an additional V and a b or t dependending
on whether the Bessel function or the theta function method is used for the finite volume
integrals. L is the spatial extent of the finite directions.

10.1 Masses

The expansion are defined similar to (77) via

m2
aphys = m2

a 0 +m2(4)0
a +m2(6)0

a . (99)

The masses are for the off-diagonal or charged meson with two different valence quarks but
the masses can be equal or different.

m2(4)0
a = m

2(4)0
aL +m

2(4)0
aR , m2(6)0

a = m
2(6)0
aL +m

2(6)0
aK +m

2(6)0
aR . (100)

One valence mass, one sea mass:
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double mv1s1nf3p4(quarkmassnf mass, Linf Liin) returns m

2(4)0
a

double mv1s1nf3p4L(quarkmassnf mass, Linf Liin) returns m
2(4)0
aL

double mv1s1nf3p4R(quarkmassnf mass) returns m
2(4)0
aR

double mv1s1nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns m
2(6)0
a

double mv1s1nf3p6L(quarkmassnf mass, Linf Liin) returns m
2(6)0
aL

double mv1s1nf3p6K(quarkmassnf mass, Ki Kiin) returns m
2(6)0
aK

double mv1s1nf3p6R(quarkmassnf mass) returns m
2(6)0
aR

Two valence mass, one sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4},f0,mu,3)
double mv2s1nf3p4(quarkmassnf mass, Linf Liin) returns m

2(4)0
a

double mv2s1nf3p4L(quarkmassnf mass, Linf Liin) returns m
2(4)0
aL

double mv2s1nf3p4R(quarkmassnf mass) returns m
2(4)0
aR

double mv2s1nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns m
2(6)0
a

double mv2s1nf3p6L(quarkmassnf mass, Linf Liin) returns m
2(6)0
aL

double mv2s1nf3p6K(quarkmassnf mass, Ki Kiin) returns m
2(6)0
aK

double mv2s1nf3p6R(quarkmassnf mass) returns m
2(6)0
aR

One valence mass, two sea mass:
mass=quarkmassnf({Bm1,Bm4,Bm6},f0,mu,3)

79

double mv1s1nf3p4(quarkmassnf mass, Linf Liin) returns m
2(4)0
a

double mv1s1nf3p4L(quarkmassnf mass, Linf Liin) returns m
2(4)0
aL

double mv1s1nf3p4R(quarkmassnf mass) returns m
2(4)0
aR

double mv1s1nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns m
2(6)0
a

double mv1s1nf3p6L(quarkmassnf mass, Linf Liin) returns m
2(6)0
aL

double mv1s1nf3p6K(quarkmassnf mass, Ki Kiin) returns m
2(6)0
aK

double mv1s1nf3p6R(quarkmassnf mass) returns m
2(6)0
aR

Two valence mass, two sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm6},f0,mu,4)
double mv2s2nf3p4(quarkmassnf mass, Linf Liin) returns m

2(4)0
a

double mv2s2nf3p4L(quarkmassnf mass, Linf Liin) returns m
2(4)0
aL

double mv2s2nf3p4R(quarkmassnf mass) returns m
2(4)0
aR

double mv2s2nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns m
2(6)0
a

double mv2s2nf3p6L(quarkmassnf mass, Linf Liin) returns m
2(6)0
aL

double mv2s2nf3p6K(quarkmassnf mass, Ki Kiin) returns m
2(6)0
aK

double mv2s2nf3p6R(quarkmassnf mass) returns m
2(6)0
aR

One valence mass, three sea mass:
mass=quarkmassnf({Bm1,Bm4,Bm5,Bm6},f0,mu,4)
double mv1s3nf3p4(quarkmassnf mass, Linf Liin) returns m

2(4)0
a

double mv1s3nf3p4L(quarkmassnf mass, Linf Liin) returns m
2(4)0
aL

double mv1s3nf3p4R(quarkmassnf mass) returns m
2(4)0
aR

double mv1s3nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns m
2(6)0
a

double mv1s3nf3p6L(quarkmassnf mass, Linf Liin) returns m
2(6)0
aL

double mv1s3nf3p6K(quarkmassnf mass, Ki Kiin) returns m
2(6)0
aK

double mv1s3nf3p6R(quarkmassnf mass) returns m
2(6)0
aR

Two valence mass, three sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm5,Bm6},f0,mu,5)
double mv2s3nf3p4(quarkmassnf mass, Linf Liin) returns m

2(4)0
a

double mv2s3nf3p4L(quarkmassnf mass, Linf Liin) returns m
2(4)0
aL

double mv2s3nf3p4R(quarkmassnf mass) returns m
2(4)0
aR

double mv2s3nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns m
2(6)0
a

double mv2s3nf3p6L(quarkmassnf mass, Linf Liin) returns m
2(6)0
aL

double mv2s3nf3p6K(quarkmassnf mass, Ki Kiin) returns m
2(6)0
aK

double mv2s3nf3p6R(quarkmassnf mass) returns m
2(6)0
aR

Defined in massdecayvevPQ.h, implemented in massdecayvevPQ.cc and examples of use

80

in testmassdecayvevPQ.cc.

10.2 Decay constants

The expansion are defined similar to (81) via

Faphys = F0

(
1 + F (4)0

a + F (6)0
a

)
. (101)

The decay constants are for the off-diagonal or charged meson with two different valence
quarks but the masses can be equal or different. The normalization corresponds to the
pion decay constant Fπ ≈ 92 MeV.

F (4)0
a = F

(4)0
aL + F

(4)0
aR , F (6)0

a = F
(6)0
aL + F

(6)0
aK + F

(6)0
aR . (102)

One valence mass, one sea mass:
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double fv1s1nf3p4(quarkmassnf mass, Linf Liin) returns F

(4)0
a

double fv1s1nf3p4L(quarkmassnf mass, Linf Liin) returns F
(4)0
aL

double fv1s1nf3p4R(quarkmassnf mass) returns F
(4)0
aR

double fv1s1nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns F
(6)0
a

double fv1s1nf3p6L(quarkmassnf mass, Linf Liin) returns F
(6)0
aL

double fv1s1nf3p6K(quarkmassnf mass, Ki Kiin) returns F
(6)0
aK

double fv1s1nf3p6R(quarkmassnf mass) returns F
(6)0
aR

Two valence mass, one sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4},f0,mu,3)
double fv2s1nf3p4(quarkmassnf mass, Linf Liin) returns F

(4)0
a

double fv2s1nf3p4L(quarkmassnf mass, Linf Liin) returns F
(4)0
aL

double fv2s1nf3p4R(quarkmassnf mass) returns F
(4)0
aR

double fv2s1nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns F
(6)0
a

double fv2s1nf3p6L(quarkmassnf mass, Linf Liin) returns F
(6)0
aL

double fv2s1nf3p6K(quarkmassnf mass, Ki Kiin) returns F
(6)0
aK

double fv2s1nf3p6R(quarkmassnf mass) returns F
(6)0
aR

One valence mass, two sea mass:
mass=quarkmassnf({Bm1,Bm4,Bm6},f0,mu,3)
double fv1s1nf3p4(quarkmassnf mass, Linf Liin) returns F

(4)0
a

double fv1s1nf3p4L(quarkmassnf mass, Linf Liin) returns F
(4)0
aL

double fv1s1nf3p4R(quarkmassnf mass) returns F
(4)0
aR

double fv1s1nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns F
(6)0
a

double fv1s1nf3p6L(quarkmassnf mass, Linf Liin) returns F
(6)0
aL

double fv1s1nf3p6K(quarkmassnf mass, Ki Kiin) returns F
(6)0
aK

81

double fv1s1nf3p6R(quarkmassnf mass) returns F
(6)0
aR

Two valence mass, two sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm6},f0,mu,4)
double fv2s2nf3p4(quarkmassnf mass, Linf Liin) returns F

(4)0
a

double fv2s2nf3p4L(quarkmassnf mass, Linf Liin) returns F
(4)0
aL

double fv2s2nf3p4R(quarkmassnf mass) returns F
(4)0
aR

double fv2s2nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns F
(6)0
a

double fv2s2nf3p6L(quarkmassnf mass, Linf Liin) returns F
(6)0
aL

double fv2s2nf3p6K(quarkmassnf mass, Ki Kiin) returns F
(6)0
aK

double fv2s2nf3p6R(quarkmassnf mass) returns F
(6)0
aR

One valence mass, three sea mass:
mass=quarkmassnf({Bm1,Bm4,Bm5,Bm6},f0,mu,4)
double fv1s3nf3p4(quarkmassnf mass, Linf Liin) returns F

(4)0
a

double fv1s3nf3p4L(quarkmassnf mass, Linf Liin) returns F
(4)0
aL

double fv1s3nf3p4R(quarkmassnf mass) returns F
(4)0
aR

double fv1s3nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns F
(6)0
a

double fv1s3nf3p6L(quarkmassnf mass, Linf Liin) returns F
(6)0
aL

double fv1s3nf3p6K(quarkmassnf mass, Ki Kiin) returns F
(6)0
aK

double fv1s3nf3p6R(quarkmassnf mass) returns F
(6)0
aR

Two valence mass, three sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm5,Bm6},f0,mu,5)
double fv2s3nf3p4(quarkmassnf mass, Linf Liin) returns F

(4)0
a

double fv2s3nf3p4L(quarkmassnf mass, Linf Liin) returns F
(4)0
aL

double fv2s3nf3p4R(quarkmassnf mass) returns F
(4)0
aR

double fv2s3nf3p6(quarkmassnf mass, Linf Liin, Ki Kiin) returns F
(6)0
a

double fv2s3nf3p6L(quarkmassnf mass, Linf Liin) returns F
(6)0
aL

double fv2s3nf3p6K(quarkmassnf mass, Ki Kiin) returns F
(6)0
aK

double fv2s3nf3p6R(quarkmassnf mass) returns F
(6)0
aR

Defined in massdecayvevPQ.h, implemented in massdecayvevPQ.cc and examples of use
in testmassdecayvevPQ.cc.

10.3 Masses at finite volume

The expressions treated in this section have been derived in [32]. It contains the routines
for the finite volume corrections for the masses of the off-diagonal or charged mesons in
partially quenched ChPT with three sea quark flavours.

82

A general remark is that care should be taken to set the precision in the loop integrals
sufficiently high. For the one-loop integrals setting it very high is usually no problem. For
the sunset integrals the evaluation can become very slow. It is strongly recommended to
play around with the settings and compare the outputs for the two ways to evaluate the
integral. The theta and Bessel function evaluation approach the correct answer differently.
For most cases it is possible to have rsacc set smaller than racc.
For many applications it is useful to calculate the very time consuming parts, those labeled
6RV, once and store them. They only depend nontrivially on the masses and size of the
finite volume. The decay constant dependence is very simple, an overall factor at each
order, and there is no dependence on the NLO LECs Lri .
The results presented in this section are with periodic boundary conditions and an infinite
extension in the time direction. They are also restricted to the case where the particle is
at rest, i.e. ~p = 0.
The expansion are defined similar to (86) via

∆Vm2
a = m2V

a −m2V=∞
a = m2V (4)0

a +m2V (6)0
a .

m2V (6)0
a = m

2V (6)0
aL +m

2V (6)0
aR . (103)

The masses are for the off-diagonal or charged meson with two different valence quarks but
the masses can be equal or different.
x should be b or t depening on whether you want to use the finite volume integrals using
bessel functions or theta functions.

One valence mass, one sea mass:
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double mv1s1nf3p4Vx(quarkmassnf mass, double L) returns m

2V (4)0
a

double mv1s1nf3p6Vx(quarkmassnf mass, Linf Liin,double L) returns m
2V (6)0
a

double mv1s1nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
aL

double mv1s1nf3p6RVx(quarkmassnf mass, double L) returns m
2V (6)0
aR

Two valence mass, one sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4},f0,mu,3)
double mv2s1nf3p4Vx(quarkmassnf mass, double L) returns m

2V (4)0
a

double mv2s1nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
a

double mv2s1nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
aL

double mv2s1nf3p6RVx(quarkmassnf mass, double L) returns m
2V (6)0
aR

One valence mass, two sea mass:
mass=quarkmassnf({Bm1,Bm4,Bm6},f0,mu,3)
double mv1s1nf3p4Vx(quarkmassnf mass, double L) returns m

2V (4)0
a

double mv1s1nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
a

double mv1s1nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
aL

83

double mv1s1nf3p6RVx(quarkmassnf mass, double L) returns m
2V (6)0
aR

Two valence mass, two sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm6},f0,mu,4)
double mv2s2nf3p4Vx(quarkmassnf mass, double L) returns m

2V (4)0
a

double mv2s2nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
a

double mv2s2nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
aL

double mv2s2nf3p6RVx(quarkmassnf mass, double L) returns m
2V (6)0
aR

One valence mass, three sea mass:
mass=quarkmassnf({Bm1,Bm4,Bm5,Bm6},f0,mu,4)
double mv1s3nf3p4Vx(quarkmassnf mass, double L) returns m

2V (4)0
a

double mv1s3nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
a

double mv1s3nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
aL

double mv1s3nf3p6RVx(quarkmassnf mass, double L) returns m
2V (6)0
aR

Two valence mass, three sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm5,Bm6},f0,mu,5)
double mv2s3nf3p4Vx(quarkmassnf mass, double L) returns m

2V (4)0
a

double mv2s3nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
a

double mv2s3nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns m
2V (6)0
aL

double mv2s3nf3p6RVx(quarkmassnf mass, double L) returns m
2V (6)0
aR

Defined in massdecayvevPQV.h, implemented in massdecayvevPQV.cc and examples of
use in testmassdecayvevPQV.cc.

10.4 Decay constants at finite volume

The expressions treated in this section have been derived in [32]. It contains the routines
for the finite volume corrections for the decay constants of the off-diagonal or charged
mesons in partially quenched ChPT with three sea quark flavours.
A general remark is that care should be taken to set the precision in the loop integrals
sufficiently high. For the one-loop integrals setting it very high is usually no problem. For
the sunset integrals the evaluation can become very slow. It is strongly recommended to
play around with the settings and compare the outputs for the two ways to evaluate the
integral. The theta and Bessel function evaluation approach the correct answer differently.
For most cases it is possible to have rsacc set smaller than racc.
For many applications it is useful to calculate the very time consuming parts, those labeled
6RV, once and store them. They only depend nontrivially on the masses and size of the
finite volume. The decay constant dependence is very simple, an overall factor at each
order, and there is no dependence on the NLO LECs Lri .

84

The results presented in this section are with periodic boundary conditions and an infinite
extension in the time direction. They are also restricted to the case where the particle is
at rest, i.e. ~p = 0.
The expansion are defined similar to (87) via

∆V Fa = F V
a − F V=∞

a = F0

(
F V (4)0
a + F V (6)0

a

)
.

F V (6)0
a = F

V (6)0
aL + F

V (6)0
aR . (104)

The decay constants are for the off-diagonal or charged meson with two different valence
quarks but the masses can be equal or different.
x should be b or t depening on whether you want to use the finite volume integrals using
bessel functions or theta functions.

One valence mass, one sea mass:
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double fv1s1nf3p4Vx(quarkmassnf mass, double L) returns F

V (4)0
a

double fv1s1nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
a

double fv1s1nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
aL

double fv1s1nf3p6RVx(quarkmassnf mass, double L) returns F
V (6)0
aR

Two valence mass, one sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4},f0,mu,3)
double fv2s1nf3p4Vx(quarkmassnf mass, double L) returns F

V (4)0
a

double fv2s1nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
a

double fv2s1nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
aL

double fv2s1nf3p6RVx(quarkmassnf mass, double L) returns F
V (6)0
aR

One valence mass, two sea mass:
mass=quarkmassnf({Bm1,Bm4,Bm6},f0,mu,3)
double fv1s1nf3p4Vx(quarkmassnf mass, double L) returns F

V (4)0
a

double fv1s1nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
a

double fv1s1nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
aL

double fv1s1nf3p6RVx(quarkmassnf mass, double L) returns F
V (6)0
aR

Two valence mass, two sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm6},f0,mu,4)
double fv2s2nf3p4(quarkmassnf mass, double L) returns F

V (4)0
a

double fv2s2nf3p6(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
a

double fv2s2nf3p6L(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
aL

double fv2s2nf3p6R(quarkmassnf mass, double L) returns F
V (6)0
aR

85

One valence mass, three sea mass:
mass=quarkmassnf({Bm1,Bm4,Bm5,Bm6},f0,mu,4)
double fv1s3nf3p4Vx(quarkmassnf mass, double L) returns F

V (4)0
a

double fv1s3nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
a

double fv1s3nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
aL

double fv1s3nf3p6RVx(quarkmassnf mass, double L) returns F
V (6)0
aR

Two valence mass, three sea mass:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm5,Bm6},f0,mu,5)
double fv2s3nf3p4Vx(quarkmassnf mass, double L) returns F

V (4)0
a

double fv2s3nf3p6Vx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
a

double fv2s3nf3p6LVx(quarkmassnf mass, Linf Liin, double L) returns F
V (6)0
aL

double fv2s3nf3p6RVx(quarkmassnf mass, double L) returns F
V (6)0
aR

Defined in massdecayvevPQV.h, implemented in massdecayvevPQV.cc and examples of
use in testmassdecayvevPQV.cc.

10.5 Vector form-factors

10.5.1 K → π or K`3 form-factors

We define the form-factors connecting an off-diagonal or charged meson consisting of va-
lence quark content qval2q̄val3 to another off-diagonal or charged meson with valence quark
content qval2q̄val1 similar to (96).

〈πqval2q̄val1
(p′)|q̄val3γµqval1(0)|πqval2q̄val3

(p)〉 =
(
p′µ + pµ

)
fPQ+ (t) +

(
p′µ − pµ

)
fPQ− (t) , (105)

with t = (p′−p)2. With 1 the up valence, 2 the down valence and three the strange valence
quark this corresponds to the form-factors for K0 → π−. Note that all three valence quarks
are different but can have the same masses.
The formfactor fPQ+ to order p4 is

fPQ+ (t) =1 + f
PQ(4)
+ (t) ,

f
PQ(4)
+ (t) =f

PQ(4)
L+ (t) + f

PQ(4)
R+ (t) (106)

The p4 is split in the Lri dependent part and the remainder.
The results for the fPQ+ to order p4 were derived in [39].

10.5.2 Functions

The Lri dependent part is to order p4 independent of the masses and is 2Lr9t/F
2
0 .

The inputs are all defined as const.

86

All mass cases:
mass=quarkmassnf({Bm1,...,Bm6},f0,mu,2)
double fvpnf3p4LV(double t, quarkmassnf mass, Linf Liin) returns f

PQ(4)
L+ (t)

2 valence and 2 sea quark masses, note Bm2 = Bm1, Bm5 = Bm4:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm6},f0,mu,2)
double fvpv2s2nf3p4R(double t, quarkmassnf mass) returns f

PQ(4)
R+ (t)

2 valence and 3 sea quark masses, note Bm2 = Bm1:
mass=quarkmassnf({Bm1,Bm3,Bm4,Bm5,Bm6},f0,mu,2)
double fvpv2s3nf3p4R(double t, quarkmassnf mass) returns f

PQ(4)
R+ (t)

3 valence and 2 sea quark masses, note Bm5 = Bm4:
mass=quarkmassnf({Bm1,Bm2,Bm3,Bm4,Bm6},f0,mu,2)
double fvpv3s2nf3p4R(double t, quarkmassnf mass) returns f

PQ(4)
R+ (t)

3 valence and 3 sea quark masses:
mass=quarkmassnf({Bm1,Bm2,Bm3,Bm4,Bm5,Bm6},f0,mu,2)
double fvpv3s3nf3p4R(double t, quarkmassnf mass) returns f

PQ(4)
R+ (t)

Note that since f
PQ(4)
+ does not depend on the mass of the spectator valence quark mass

(Bm2) the three valence mass case simply calls the two valence mass case with Bm2 re-
moved.

Defined in vectorformPQ.h, implemented in testvectorformPQ.h and examples of use in
testvectorformPQ.cc.

11 QCD like theories for NF flavours

There are other symmetry breaking patterns possible then the one used in two and three-
flavour ChPT. With NF Dirac fermions in a complex, real or pseudoreal representation
the global symmetries are SU(NF)× SU(NF), SU(2NF) and SU(2NF). This is described
in [33] and references therein. The symmetry breaking pattern in these case is down to
the subgroups the diagonal SU(NF), SO(2NF) and Sp(2NF) respectyively. An additional
case is nF Majorana fermions in a real representation. In this case the global symmetry
group is SU(nF) which is expected to be spontaneously broken to SO(nF), see [34] and
references therein. The formulas for the two cases with real fermions are identical with
nF = 2NF , the reason is that the two cases are related by a U(2NF) rotation as explained
in [34].
The number of flavours NF in this section refers to the symmetry breaking patterns
SU(NF) × SU(NF) → SU(NF), SU(NF) → SO(NF) and SU(2NF) → Sp(2NF). The

87

number of flavours for the real representation case thus counts the number of Majorana
fermions and is in the case twice the NF used in [33]. The extension to finite volume and
partially quenched was done in [34].
For all cases we only treat the simplest mass case. It means that for the unquenched case
we have a single mass given by B0m1 or the lowest order meson mass is m2

LO = 2B0m1.
For the partially quenched case the sea quark mass is given by B0m4 or the lowest order
mass for sea quark mesons is m2

LO = 2B0m4.
The standard C++ conversions allow the routines to be called using a lomassnf instead
of a quarkmassnf.

11.1 Mass, decay constant and vacuum-expectation-value: in
lowest order

The functions in this section return the corrections to the mass-squared in terms of the
quarkmassnf structure. It is assumed that all the quarks have the same mass. The label
XXX=SUN,SON,SPN refers to the three possible patterns of symmetry breaking, SU(NF) ×
SU(NF) → SU(NF), SU(NF) → SO(NF) and SU(2NF) → Sp(2NF) and nf=NF as
defined in this way.
The mass is defined as in [33] as

M2
phys =M2 +M (4)2 +M (6)2 ,

M (4)2 =M
(4)2
L +M

(4)2
R ,

M (6)2 =M
(6)2
K +M

(6)2
L +M

(6)2
R , (107)

The expressions are defined in terms of lowest order masses and decay constant.
mass=quarkmassnf({Bm1},f0,mu,1)
double mnfXXXp4(int nf, quarkmassnf mass, Liinf Liin) returns M (4)2

double mnfXXXp4L(int nf, quarkmassnf mass, Liinf Liin) returns M
(4)2
L

double mnfXXXp4R(int nf, quarkmassnf mass) returns M
(4)2
R

double mnfXXX6(int nf, quarkmassnf mass, Liinf Liin, Ki Kiin) returns M (6)2

double mnfXXXp6K(int nf, quarkmassnf mass, Ki Kiin) returns M
(6)2
K

double mnfXXXp6L(int nf, quarkmassnf mass, Liinf Liin) returns M
(6)2
L

double mnfXXXp6R(int nf, quarkmassnf mass) returns M
(6)2
R

The functions mnfXXXp6K for XXX=SON,SPN simply return 0. The Lagrangians for these
cases have not been classified at NNLO or order p6. The interface used here is also with
the nF -flavour ChPT data structures. This is correct for XXX=SUN and the results are in-
dependent of the subtraction scale as is needed. However, the extra constant Lr11 is always
included even if it plays no role. In addition the running of the LECs is not correct for
XXX=SON,SPN.

88

The decay constant is defined as in [33] as

Fphys =F0

(
1 + F (4)2 + F (6)2

)
,

F (4) =F
(4)
L + F

(4)
R ,

F (6) =F
(6)
K + F

(6)
L +M

(6)
R . (108)

The expressions are defined in terms of lowest order masses and decay constant.
mass=quarkmassnf({Bm1},f0,mu,1)
double fnfXXXp4(int nf, quarkmassnf mass, Liinf Liin) returns F (4)

double fnfXXXp4L(int nf, quarkmassnf mass, Liinf Liin) returns F
(4)
L

double fnfXXXp4R(int nf, quarkmassnf mass) returns F
(4)
R

double fnfXXX6(int nf, quarkmassnf mass, Liinf Liin, Ki Kiin) returns F (6)

double fnfXXXp6K(int nf, quarkmassnf mass, Ki Kiin) returns F
(6)
K

double fnfXXXp6L(int nf, quarkmassnf mass, Liinf Liin) returns F
(6)
L

double fnfXXXp6R(int nf, quarkmassnf mass) returns F
(6)
R

The functions fnfXXXp6K for XXX=SON,SPN simply return 0. The Lagrangians for these
cases have not been classified at NNLO or order p6. The interface used here is also with
the nF -flavour ChPT data structures. This is correct for XXX=SUN and the results are in-
dependent of the subtraction scale as is needed. However, the extra constant Lr11 is always
included even if it plays no role. In addition the running of the LECs is not correct for
XXX=SON,SPN.

The vacuum expectation value is defined for a single quark similar to [33] as

〈q̄q〉phys =−B0F
2
0

(
1 + 〈q̄q〉(4) + 〈q̄q〉(6)

)
,

〈q̄q〉(4) =〈q̄q〉(4)
L + 〈q̄q〉(4)

R ,

〈q̄q〉(6) =〈q̄q〉(6)
K + 〈q̄q〉(6)

L + 〈q̄q〉(6)
R . (109)

The expressions are defined in terms of lowest order masses and decay constant.
mass=quarkmassnf({Bm1},f0,mu,1)
double qnfXXXp4(int nf, quarkmassnf mass, Liinf Liin) returns 〈q̄q〉(4)

double qnfXXXp4L(int nf, quarkmassnf mass, Liinf Liin) returns 〈q̄q〉(4)
L

double qnfXXXp4R(int nf, quarkmassnf mass) returns 〈q̄q〉(4)
R

double qnfXXX6(int nf, quarkmassnf mass, Liinf Liin, Ki Kiin) returns 〈q̄q〉(6)

double qnfXXXp6K(int nf, quarkmassnf mass, Ki Kiin) returns 〈q̄q〉(6)
K

double qnfXXXp6L(int nf, quarkmassnf mass, Liinf Liin) returns 〈q̄q〉(6)
L

double qnfXXXp6R(int nf, quarkmassnf mass) returns 〈q̄q〉(6)
R

The functions qnfXXXp6K for XXX=SON,SPN simply return 0. The Lagrangians for these
cases have not been classified at NNLO or order p6. The interface used here is also with

89

the nF -flavour ChPT data structures. This is correct for XXX=SUN and the results are in-
dependent of the subtraction scale as is needed. However, the extra constant Lr11 is always
included even if it plays no role. In addition the running of the LECs is not correct for
XXX=SON,SPN.

Defined in massdecayvevnf.h, implemented in massdecayvevnf.cc and examples of use
in testmassdecayvevnf.cc.

11.2 Mass, decay constant and vacuum-expectation-value at fi-
nite volume: in lowest order

The functions in this section return the finite volume corrections to the mass-squared in
terms of the quarkmassnf structure. It is assumed that all the quarks have the same mass.
The label XXX=SUN,SON,SPN refers to the three possible patterns of symmetry breaking,
SU(NF) × SU(NF) → SU(NF), SU(NF) → SO(NF) and SU(2NF) → Sp(2NF) and
nf=NF as defined in this way.
The last letter x is b for the finite volume integrals evaluated using the Bessel function
method or t when they are evaluated using the theta function method.

The finite volume correction to the mass is defined as in [34] as

∆VM2
phys ≡M2V

phys −M2V=∞
phys = MV (4)2 +MV (6)2 ,

MV (6)2 =M
V (6)2
L +M

V (6)2
R , (110)

The expressions are defined in terms of lowest order masses and decay constant. L is the
size of the spatial directions.
mass=quarkmassnf({Bm1},f0,mu,1)
double mnfXXXp4Vx(int nf, quarkmassnf mass, double L) returns MV (4)2

double mnfXXX6Vx(int nf, quarkmassnf mass, Liinf Liin, double L) returnsMV (6)2

double mnfXXXp6LVx(int nf, quarkmassnf mass, Liinf Liin, double L) returnsM
V (6)2
L

double mnfXXXp6RVx(int nf, quarkmassnf mass, double L) returns M
V (6)2
R

The interface used here is with the nF -flavour ChPT data structures. This is correct for
XXX=SUN and the results are independent of the subtraction scale as is needed. However,
the extra constant Lr11 is always included even if it plays no role. In addition the running
of the LECs is not correct for XXX=SON,SPN.

The finite volume correction to the decay constant is defined as in [34] as

∆V Fphys ≡F V
phys − F V=∞

phys = F0

(
F V (4)2 + F V (6)2

)
,

F V (6) =F
V (6)
L +M

V (6)
R . (111)

The expressions are defined in terms of lowest order masses and decay constant.

90

mass=quarkmassnf({Bm1},f0,mu,1)
double fnfXXXp4Vx(int nf, quarkmassnf mass, double L) returns F V (4)

double fnfXXX6Vx(int nf, quarkmassnf mass, Liinf Liin, double L) returns F V (6)

double fnfXXXp6LVx(int nf, quarkmassnf mass, Liinf Liin, double L) returns F
V (6)
L

double fnfXXXp6RVx(int nf, quarkmassnf mass, double L) returns F
V (6)
R

The interface used here is with the nF -flavour ChPT data structures. This is correct for
XXX=SUN and the results are independent of the subtraction scale as is needed. However,
the extra constant Lr11 is always included even if it plays no role. In addition the running
of the LECs is not correct for XXX=SON,SPN.

The vacuum expectation value is defined for a single quark similar to [34] as

∆V 〈q̄q〉phys ≡〈q̄q〉Vphys − 〈q̄q〉V=∞
phys = −B0F

2
0

(
〈q̄q〉V (4) + 〈q̄q〉V (6)

)
,

〈q̄q〉(6) =〈q̄q〉(6)
L + 〈q̄q〉(6)

R . (112)

The expressions are defined in terms of lowest order masses and decay constant.
mass=quarkmassnf({Bm1},f0,mu,1)
double qnfXXXp4Vx(int nf, quarkmassnf mass, double L) returns 〈q̄q〉V (4)

double qnfXXX6Vx(int nf, quarkmassnf mass, Liinf Liin, Ki Kiin) returns 〈q̄q〉V (6)

double qnfXXXp6LVx(int nf, quarkmassnf mass, Liinf Liin) returns 〈q̄q〉V (6)
L

double qnfXXXp6RVx(int nf, quarkmassnf mass) returns 〈q̄q〉V (6)
R

The interface used here is with the nF -flavour ChPT data structures. This is correct for
XXX=SUN and the results are independent of the subtraction scale as is needed. However,
the extra constant Lr11 is always included even if it plays no role. In addition the running
of the LECs is not correct for XXX=SON,SPN.

Defined in massdecayvevnfV.h, implemented in massdecayvevnfV.cc and examples of
use in testmassdecayvevnf.cc.

11.3 Partially quenched mass, decay constant and vacuum-expectation-
value: in lowest order

The functions in this section return the corrections to the mass-squared in terms of the
quarkmassnf structure. It is assumed that all the valence quarks have the same mass and
all the sea quarks have the same mass but different from the valence quarks.
The label XXX=SUN,SON,SPN refers to the three possible patterns of symmetry breaking,
SU(NF) × SU(NF) → SU(NF), SU(NF) → SO(NF) and SU(2NF) → Sp(2NF) and
nf=NF as defined in this way.
The mass is defined as in [34] as

M2
phys =M2 +M (4)2 +M (6)2 ,

91

M (4)2 =M
(4)2
L +M

(4)2
R ,

M (6)2 =M
(6)2
K +M

(6)2
L +M

(6)2
R , (113)

The expressions are defined in terms of lowest order masses and decay constant.
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double mnfXXXp4PQ(int nf, quarkmassnf mass, Liinf Liin) returns M (4)2

double mnfXXXp4LPQ(int nf, quarkmassnf mass, Liinf Liin) returns M
(4)2
L

double mnfXXXp4RPQ(int nf, quarkmassnf mass) returns M
(4)2
R

double mnfXXX6PQ(int nf, quarkmassnf mass, Liinf Liin, Ki Kiin) returns M (6)2

double mnfXXXp6KPQ(int nf, quarkmassnf mass, Ki Kiin) returns M
(6)2
K

double mnfXXXp6LPQ(int nf, quarkmassnf mass, Liinf Liin) returns M
(6)2
L

double mnfXXXp6RPQ(int nf, quarkmassnf mass) returns M
(6)2
R

The functions mnfXXXp6KPQ for XXX=SON,SPN simply return 0. The Lagrangians for these
cases have not been classified at NNLO or order p6. The interface used here is also with
the nF -flavour ChPT data structures. This is correct for XXX=SUN and the results are in-
dependent of the subtraction scale as is needed. However, the extra constant Lr11 is always
included even if it plays no role. In addition the running of the LECs is not correct for
XXX=SON,SPN.

The decay constant is defined as in [34] as

Fphys =F0

(
1 + F (4)2 + F (6)2

)
,

F (4) =F
(4)
L + F

(4)
R ,

F (6) =F
(6)
K + F

(6)
L +M

(6)
R . (114)

The expressions are defined in terms of lowest order masses and decay constant.
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double fnfXXXp4PQ(int nf, quarkmassnf mass, Liinf Liin) returns F (4)

double fnfXXXp4LPQ(int nf, quarkmassnf mass, Liinf Liin) returns F
(4)
L

double fnfXXXp4RPQ(int nf, quarkmassnf mass) returns F
(4)
R

double fnfXXX6PQ(int nf, quarkmassnf mass, Liinf Liin, Ki Kiin) returns F (6)

double fnfXXXp6KPQ(int nf, quarkmassnf mass, Ki Kiin) returns F
(6)
K

double fnfXXXp6LPQ(int nf, quarkmassnf mass, Liinf Liin) returns F
(6)
L

double fnfXXXp6RPQ(int nf, quarkmassnf mass) returns F
(6)
R

The functions fnfXXXp6KPQ for XXX=SON,SPN simply return 0. The Lagrangians for these
cases have not been classified at NNLO or order p6. The interface used here is also with
the nF -flavour ChPT data structures. This is correct for XXX=SUN and the results are in-
dependent of the subtraction scale as is needed. However, the extra constant Lr11 is always
included even if it plays no role. In addition the running of the LECs is not correct for

92

XXX=SON,SPN.

The vacuum expectation value is defined for a single quark similar to [34] as

〈q̄q〉phys =−B0F
2
0

(
1 + 〈q̄q〉(4) + 〈q̄q〉(6)

)
,

〈q̄q〉(4) =〈q̄q〉(4)
L + 〈q̄q〉(4)

R ,

〈q̄q〉(6) =〈q̄q〉(6)
K + 〈q̄q〉(6)

L + 〈q̄q〉(6)
R . (115)

The expressions are defined in terms of lowest order masses and decay constant.
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double qnfXXXp4PQ(int nf, quarkmassnf mass, Liinf Liin) returns 〈q̄q〉(4)

double qnfXXXp4LPQ(int nf, quarkmassnf mass, Liinf Liin) returns 〈q̄q〉(4)
L

double qnfXXXp4RPQ(int nf, quarkmassnf mass) returns 〈q̄q〉(4)
R

double qnfXXX6PQ(int nf, quarkmassnf mass, Liinf Liin, Ki Kiin) returns 〈q̄q〉(6)

double qnfXXXp6KPQ(int nf, quarkmassnf mass, Ki Kiin) returns 〈q̄q〉(6)
K

double qnfXXXp6LPQ(int nf, quarkmassnf mass, Liinf Liin) returns 〈q̄q〉(6)
L

double qnfXXXp6RPQ(int nf, quarkmassnf mass) returns 〈q̄q〉(6)
R

The functions qnfXXXp6KPQ for XXX=SON,SPN simply return 0. The Lagrangians for these
cases have not been classified at NNLO or order p6. The interface used here is also with
the nF -flavour ChPT data structures. This is correct for XXX=SUN and the results are in-
dependent of the subtraction scale as is needed. However, the extra constant Lr11 is always
included even if it plays no role. In addition the running of the LECs is not correct for
XXX=SON,SPN.

Defined in massdecayvevnfPQ.h, implemented in massdecayvevnfPQ.cc and examples of
use in testmassdecayvevnf.cc.

11.4 Partially quenched mass, decay constant and vacuum-expectation-
value at finite volume: in lowest order

The functions in this section return the finite volume corrections to the mass-squared in
terms of the quarkmassnf structure for the partially quenched case. It is assumed that all
the quarks have the same mass. The label XXX=SUN,SON,SPN refers to the three possible
patterns of symmetry breaking, SU(NF)× SU(NF)→ SU(NF), SU(NF)→ SO(NF) and
SU(2NF)→ Sp(2NF) and nf=NF as defined in this way.
The last letter x is b for the finite volume integrals evaluated using the Bessel function
method or t when they are evaluated using the theta function method.

The finite volume correction to the mass is defined as in [34] as

∆VM2
phys ≡M2V

phys −M2V=∞
phys = MV (4)2 +MV (6)2 ,

93

MV (6)2 =M
V (6)2
L +M

V (6)2
R , (116)

The expressions are defined in terms of lowest order masses and decay constant. L is the
size of the spatial directions.
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double mnfXXXp4PQVx(int nf, quarkmassnf mass, double L) returns MV (4)2

double mnfXXX6PQVx(int nf, quarkmassnf mass, Liinf Liin, double L) returnsMV (6)2

double mnfXXXp6LPQVx(int nf, quarkmassnf mass, Liinf Liin, double L) returns

M
V (6)2
L

double mnfXXXp6RPQVx(int nf, quarkmassnf mass, double L) returns M
V (6)2
R

The interface used here is with the nF -flavour ChPT data structures. This is correct for
XXX=SUN and the results are independent of the subtraction scale as is needed. However,
the extra constant Lr11 is always included even if it plays no role. In addition the running
of the LECs is not correct for XXX=SON,SPN.

The finite volume correction to the decay constant is defined as in [34] as

∆V Fphys ≡F V
phys − F V=∞

phys = F0

(
F V (4)2 + F V (6)2

)
,

F V (6) =F
V (6)
L +M

V (6)
R . (117)

The expressions are defined in terms of lowest order masses and decay constant.
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double fnfXXXp4PQVx(int nf, quarkmassnf mass, double L) returns F V (4)

double fnfXXX6PQVx(int nf, quarkmassnf mass, Liinf Liin, double L) returns F V (6)

double fnfXXXp6LPQVx(int nf, quarkmassnf mass, Liinf Liin, double L) returns

F
V (6)
L

double fnfXXXp6RPQVx(int nf, quarkmassnf mass, double L) returns F
V (6)
R

The interface used here is with the nF -flavour ChPT data structures. This is correct for
XXX=SUN and the results are independent of the subtraction scale as is needed. However,
the extra constant Lr11 is always included even if it plays no role. In addition the running
of the LECs is not correct for XXX=SON,SPN.

The vacuum expectation value is defined for a single quark similar to [34] as

∆V 〈q̄q〉phys ≡〈q̄q〉Vphys − 〈q̄q〉V=∞
phys = −B0F

2
0

(
〈q̄q〉V (4) + 〈q̄q〉V (6)

)
,

〈q̄q〉(6) =〈q̄q〉(6)
L + 〈q̄q〉(6)

R . (118)

The expressions are defined in terms of lowest order masses and decay constant.
mass=quarkmassnf({Bm1,Bm4},f0,mu,2)
double qnfXXXp4PQVx(int nf, quarkmassnf mass, double L) returns 〈q̄q〉V (4)

double qnfXXX6PQVx(int nf, quarkmassnf mass, Liinf Liin, Ki Kiin) returns 〈q̄q〉V (6)

94

double qnfXXXp6LPQVx(int nf, quarkmassnf mass, Liinf Liin) returns 〈q̄q〉V (6)
L

double qnfXXXp6RPQVx(int nf, quarkmassnf mass) returns 〈q̄q〉V (6)
R

The interface used here is with the nF -flavour ChPT data structures. This is correct for
XXX=SUN and the results are independent of the subtraction scale as is needed. However,
the extra constant Lr11 is always included even if it plays no role. In addition the running
of the LECs is not correct for XXX=SON,SPN.

Defined in massdecayvevnfPQV.h, implemented in massdecayvevnfPQV.cc and examples
of use in testmassdecayvevnf.cc.

Acknowledgements

This work is or has been supported, in part, by the Swedish Research Council grants
621-2011-5080, 621-2013-4287 and 2015-04089. I thank all my collaborators in the various
applications for which my version of the program made it into this collection and especially
Ilaria Jemos who has tested many of the earlier versions in the course of [17].

A GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

95

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.
Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution
and Modification

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

96

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

97

(b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source dis-
tribution, a complete machine-readable copy of the corresponding source code,
to be distributed under the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

98

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For

99

software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is no warranty
for the program, to the extent permitted by applicable law. Except
when otherwise stated in writing the copyright holders and/or other
parties provide the program “as is” without warranty of any kind,
either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.
The entire risk as to the quality and performance of the program is
with you. Should the program prove defective, you assume the cost
of all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to in writ-
ing will any copyright holder, or any other party who may modify
and/or redistribute the program as permitted above, be liable to you
for damages, including any general, special, incidental or consequen-
tial damages arising out of the use or inability to use the program
(including but not limited to loss of data or data being rendered inac-
curate or losses sustained by you or third parties or a failure of the
program to operate with any other programs), even if such holder
or other party has been advised of the possibility of such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New

Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

100

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.
This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever suits
your program.
You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

101

B Creative Commons Attribution 4.0 International

Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (”Public
License”). To the extent this Public License may be interpreted as a contract, You are granted
the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the
Licensor grants You such rights in consideration of benefits the Licensor receives from making
the Licensed Material available under these terms and conditions.

Section 1 – Definitions.

a Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated,
altered, arranged, transformed, or otherwise modified in a manner requiring permission
under the Copyright and Similar Rights held by the Licensor. For purposes of this Public
License, where the Licensed Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is synched in timed
relation with a moving image.

b Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of
this Public License.

c Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui
Generis Database Rights, without regard to how the rights are labeled or categorized. For
purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright
and Similar Rights.

d Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of
the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international
agreements.

e Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g Licensed Rights means the rights granted to You subject to the terms and conditions of this
Public License, which are limited to all Copyright and Similar Rights that apply to Your
use of the Licensed Material and that the Licensor has authority to license.

h Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i Share means to provide material to the public by any means or process that requires permis-
sion under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available

102

to the public including in ways that members of the public may access the material from a
place and at a time individually chosen by them.

j Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal pro-
tection of databases, as amended and/or succeeded, as well as other essentially equivalent
rights anywhere in the world.

j You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You
a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise
the Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with
its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exer-
cise the Licensed Rights in all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The Licensor waives and/or agrees
not to assert any right or authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including technical modifications necessary to
circumvent Effective Technological Measures. For purposes of this Public License, simply
making modifications authorized by this Section 2(a)(4) never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under
the terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different
terms or conditions on, or apply any Effective Technological Measures to, the Licensed
Material if doing so restricts exercise of the Licensed Rights by any recipient of the
Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permis-
sion to assert or imply that You are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by, the Licensor or others designated
to receive attribution as provided in Section 3(a)(1)(A)(i).

103

b Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are
publicity, privacy, and/or other similar personality rights; however, to the extent possible,
the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the
limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any
voluntary or waivable statutory or compulsory licensing scheme. In all other cases the
Licensor expressly reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated
to receive attribution, in any reasonable manner requested by the Licensor (in-
cluding by pseudonym if designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the
text of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it
may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource
that includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

104

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis
Database Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible,
the Licensor offers the Licensed Material as-is and as-available, and makes no
representations or warranties of any kind concerning the Licensed Material,
whether express, implied, statutory, or other. This includes, without limi-
tation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence
or absence of errors, whether or not known or discoverable. Where disclaimers
of warranties are not allowed in full or in part, this disclaimer may not apply
to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal
theory (including, without limitation, negligence) or otherwise for any direct,
special, indirect, incidental, consequential, punitive, exemplary, or other losses,
costs, expenses, or damages arising out of this Public License or use of the
Licensed Material, even if the Licensor has been advised of the possibility of
such losses, costs, expenses, or damages. Where a limitation of liability is not
allowed in full or in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be
interpreted in a manner that, to the extent possible, most closely approximates
an absolute disclaimer and waiver of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public
License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

105

1. automatically as of the date the violation is cured, provided it is cured within 30 days
of Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may
have to seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing
so will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communi-
cated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could
lawfully be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the
provision cannot be reformed, it shall be severed from this Public License without affecting
the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from
the legal processes of any jurisdiction or authority.

References

[1] J. Bijnens, Eur. Phys. J. C 75 (2015) 1, 27 [arXiv:1412.0887 [hep-ph]].

[2] http://creativecommons.org/licenses/by/4.0/.

[3] http://en.wikipedia.org/wiki/Chiron

[4] http://www.gnu.org/licenses/gpl-2.0.htmlhttp://www.gnu.org/licenses/gpl-2.0.html

[5] http://www.thep.lu.se/~bijnens/chiron/

106

http://creativecommons.org/licenses/by/4.0/
http://en.wikipedia.org/wiki/Chiron
http://www.gnu.org/licenses/gpl-2.0.html
http://www.thep.lu.se/%7Ebijnens/chiron/

[6] G. ’t Hooft, M. J. G. Veltman, Nucl. Phys. B153 (1979) 365-401.

[7] http://cernlib.web.cern.ch

[8] H. Frellesvig, D. Tommasini and C. Wever, JHEP 1603 (2016) 189
doi:10.1007/JHEP03(2016)189 [arXiv:1601.02649 [hep-ph]].

[9] J. Bijnens, E. Boström and T. A. Lähde, JHEP 1401 (2014) 019 [arXiv:1311.3531 [hep-lat]].

[10] J.C.P. Bus and T.J. Dekker, ACM Trans. Math. Software 1 (1975) 330-345.

[11] A. van Doren and L. de Ridder, J. Comput. Appl. Math. 2 (1976) 207-217.

[12] S. Weinberg, Physica A 96 (1979) 327.

[13] J. Gasser and H. Leutwyler, Annals Phys. 158 (1984) 142.

[14] J. Gasser and H. Leutwyler, Nucl. Phys. B 250 (1985) 465.

[15] http://www.thep.lu.se/∼bijnens/chpt/

[16] J. Bijnens, Prog. Part. Nucl. Phys. 58 (2007) 521 [hep-ph/0604043].

[17] J. Bijnens and I. Jemos, Nucl. Phys. B 854 (2012) 631 [arXiv:1103.5945 [hep-ph]].

[18] J. Bijnens and G. Ecker, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149 doi:10.1146/annurev-nucl-
102313-025528 [arXiv:1405.6488 [hep-ph]].

[19] J. Bijnens, G. Colangelo and G. Ecker, JHEP 9902 (1999) 020 [hep-ph/9902437].

[20] J. Bijnens, G. Colangelo and G. Ecker, Annals Phys. 280 (2000) 100 [hep-ph/9907333].

[21] G. Amorós, J. Bijnens and P. Talavera, Nucl. Phys. B 568 (2000) 319 [hep-ph/9907264].

[22] J. Bijnens and P. Talavera, JHEP 0203 (2002) 046 [hep-ph/0203049].

[23] G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151.

[24] J. Bijnens, N. Danielsson and T. A. Lähde, Phys. Rev. D 73 (2006) 074509 [hep-lat/0602003].

[25] J. Bijnens and T. A. Lähde, Phys. Rev. D 72 (2005) 074502 [hep-lat/0506004].

[26] J. Bijnens and T. A. Lähde, Phys. Rev. D 71 (2005) 094502 [hep-lat/0501014].

[27] J. Bijnens, N. Danielsson and T. A. Lähde, Phys. Rev. D 70 (2004) 111503 [hep-lat/0406017].

[28] J. Bijnens and T. Rössler, JHEP 1501 (2015) 034 [arXiv:1411.6384 [hep-lat]].

[29] J. Bijnens and K. Ghorbani, Phys. Lett. B 636 (2006) 51 [hep-lat/0602019].

[30] E. Golowich and J. Kambor, Phys. Rev. D 58 (1998) 036004 [hep-ph/9710214].

[31] G. Amorós, J. Bijnens and P. Talavera, Nucl. Phys. B 585 (2000) 293 [Erratum-ibid. B 598
(2001) 665] [hep-ph/0003258].

107

http://cernlib.web.cern.ch
http://www.thep.lu.se/~bijnens/chpt/

[32] J. Bijnens and T. Rössler, arXiv:1508.07238 [hep-lat].

[33] J. Bijnens and J. Lu, JHEP 0911 (2009) 116 [arXiv:0910.5424 [hep-ph]].

[34] J. Bijnens and T. Rössler, JHEP 1511 (2015) 017 [arXiv:1509.04082 [hep-lat]].

[35] J. Bijnens and J. Relefors, JHEP 1405 (2014) 015 [arXiv:1402.1385 [hep-lat]].

[36] C. T. Sachrajda and G. Villadoro, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033].

[37] J. Gasser and H. Leutwyler, Nucl. Phys. B 250 (1985) 517.

[38] J. Bijnens and P. Talavera, Nucl. Phys. B 669 (2003) 341 [hep-ph/0303103].

[39] C. Bernard, J. Bijnens and E. Gámiz, Phys. Rev. D 89 (2014) 5, 054510 [arXiv:1311.7511
[hep-lat]].

[40] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M. E. Sainio, Phys. Lett. B 374 (1996)
210 doi:10.1016/0370-2693(96)00165-7 [hep-ph/9511397].

[41] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M. E. Sainio, Nucl. Phys. B 508
(1997) 263 Erratum: [Nucl. Phys. B 517 (1998) 639] doi:10.1016/S0550-3213(97)80013-2,
10.1016/S0550-3213(97)00621-4, 10.1016/S0550-3213(98)00127-8 [hep-ph/9707291].

[42] U. Burgi, Nucl. Phys. B 479 (1996) 392 doi:10.1016/0550-3213(96)00454-3 [hep-ph/9602429].

[43] U. Burgi, Phys. Lett. B 377 (1996) 147 doi:10.1016/0370-2693(96)00304-8 [hep-ph/9602421].

[44] J. Bijnens, G. Colangelo and P. Talavera, JHEP 9805 (1998) 014 doi:10.1088/1126-
6708/1998/05/014 [hep-ph/9805389].

[45] J. Gasser and H. Leutwyler, Phys. Lett. B 184 (1987) 83. doi:10.1016/0370-2693(87)90492-8

[46] G. Colangelo and C. Haefeli, Nucl. Phys. B 744 (2006) 14
doi:10.1016/j.nuclphysb.2006.03.010 [hep-lat/0602017].

108

Index

+, 21, 22, 26, 27
−, 21, 22, 26, 27
*, 21, 22, 26–28
+, 28
-, 28
/, 28
<<, 19–22, 24–28
==, 19, 20, 24, 25
>>, 19–22, 24–28
A22bVb, 38
A22bVt, 37
A23bVb, 38
A23bVt, 37
AbVb, 38
AbVtwistt, 39
AbVt, 37
Abeps, 29
Ab, 29
B1bnum, 31
B1b, 31, 32
B21bnum, 31
B21b, 31, 32
B22bVb, 38
B22bVt, 37
B22bnum, 31
B22b, 31, 32
B23bVb, 38
B23bVt, 37
B31bnum, 31
B32bnum, 31
BbVb, 38, 41
BbVtwistt, 42
BbVt, 37, 41
Bbeps, 29
Bbnum, 31
Bb, 29, 30, 32
C22bVb, 38
C22bVt, 37
C23bVb, 38
C23bVt, 38
CbVb, 38

CbVt, 37
Cbeps, 29
Cb, 29
CirandomlargeNc2, 23
CirandomlargeNc, 23
Cirandom, 23
Ci, 22
D22bVb, 38
D22bVt, 38
D23bVb, 38
D23bVt, 38
DINTEGRAL, 34, 35, 37, 40, 41
DbVb, 38
DbVt, 38
Kirandom, 27
Ki, 26, 66
LiCiBE14.dat, 22
Linfrandom, 26
Linf, 25, 66
LirandomlargeNc2, 21
LirandomlargeNc, 21
Lirandom, 21
Li, 20
SINTEGRAL, 34
WINTEGRAL, 31
changescale, 21, 22, 26, 27
dcomplex, 7
feta4Llo, 55
feta4L, 51
feta4Rlo, 55
feta4R, 51
feta4Vb, 59
feta4Vt, 59
feta4loVb, 62
feta4loVt, 62
feta4lo, 55
feta4, 51
feta6Clo, 55
feta6C, 51
feta6LloVb, 62
feta6LloVt, 62

109

feta6Llo, 55
feta6L, 51
feta6RloVb, 62
feta6RloVt, 62
feta6Rlo, 55
feta6R, 51
feta6VLb, 59
feta6VLt, 59
feta6VRb, 59
feta6VRt, 59
feta6Vb, 59
feta6Vt, 59
feta6loVb, 62
feta6loVt, 62
feta6lo, 55
feta6, 51
finitevolumeoneloopintegrals.cc, 38, 41
finitevolumeoneloopintegrals.h, 38, 41
finitevolumeonelooptwist.cc, 40, 43
finitevolumeonelooptwist.h, 40, 43
finitevolumesunsetintegrals.cc, 46, 48
finitevolumesunsetintegrals.h, 46, 48
fk4Llo, 55
fk4L, 50
fk4Rlo, 55
fk4R, 50
fk4Vb, 59
fk4Vt, 59
fk4loVb, 62
fk4loVt, 62
fk4lo, 55
fk4, 50
fk6Clo, 55
fk6C, 50
fk6LloVb, 62
fk6LloVt, 62
fk6Llo, 55
fk6L, 50
fk6RloVb, 62
fk6RloVt, 62
fk6Rlo, 55
fk6R, 51
fk6VLb, 59
fk6VLt, 59
fk6VRb, 59

fk6VRt, 59
fk6Vb, 59
fk6Vt, 59
fk6loVb, 62
fk6loVt, 62
fk6lo, 55
fk6, 50
fnfXXX6PQVx, 81
fnfXXX6PQ, 80
fnfXXX6Vx, 78
fnfXXX6, 76
fnfXXXp4LPQ, 79
fnfXXXp4L, 76
fnfXXXp4PQVx, 81
fnfXXXp4PQ, 79
fnfXXXp4RPQ, 80
fnfXXXp4R, 76
fnfXXXp4Vx, 78
fnfXXXp4, 76
fnfXXXp6KPQ, 80
fnfXXXp6K, 76
fnfXXXp6LPQVx, 81
fnfXXXp6LPQ, 80
fnfXXXp6LVx, 78
fnfXXXp6L, 76
fnfXXXp6RPQVx, 81
fnfXXXp6RPQ, 80
fnfXXXp6RVx, 78
fnfXXXp6R, 76
fourvector, 27
fpi4Llo, 55
fpi4L, 50
fpi4Rlo, 55
fpi4R, 50
fpi4Vb, 58
fpi4Vt, 58
fpi4loVb, 61
fpi4loVt, 61
fpi4lo, 54
fpi4, 50
fpi6Clo, 55
fpi6C, 50
fpi6LloVb, 62
fpi6LloVt, 61
fpi6Llo, 55

110

fpi6L, 50
fpi6RloVb, 62
fpi6RloVt, 61
fpi6Rlo, 55
fpi6R, 50
fpi6VLb, 59
fpi6VLt, 58
fpi6VRb, 59
fpi6VRt, 58
fpi6Vb, 59
fpi6Vt, 58
fpi6loVb, 61
fpi6loVt, 61
fpi6lo, 55
fpi6, 50
fv1s1nf3p4L, 68, 69
fv1s1nf3p4R, 68, 69
fv1s1nf3p4Vx, 72, 73
fv1s1nf3p4, 68, 69
fv1s1nf3p6K, 68, 69
fv1s1nf3p6LVx, 72, 73
fv1s1nf3p6L, 68, 69
fv1s1nf3p6RVx, 72, 73
fv1s1nf3p6R, 68, 69
fv1s1nf3p6Vx, 72, 73
fv1s1nf3p6, 68, 69
fv1s3nf3p4L, 69
fv1s3nf3p4R, 69
fv1s3nf3p4Vx, 73
fv1s3nf3p4, 69
fv1s3nf3p6K, 69
fv1s3nf3p6LVx, 73
fv1s3nf3p6L, 69
fv1s3nf3p6RVx, 73
fv1s3nf3p6R, 69
fv1s3nf3p6Vx, 73
fv1s3nf3p6, 69
fv2s1nf3p4L, 68
fv2s1nf3p4R, 68
fv2s1nf3p4Vx, 72
fv2s1nf3p4, 68
fv2s1nf3p6K, 69
fv2s1nf3p6LVx, 72
fv2s1nf3p6L, 69
fv2s1nf3p6RVx, 72

fv2s1nf3p6R, 69
fv2s1nf3p6Vx, 72
fv2s1nf3p6, 68
fv2s2nf3p4L, 69
fv2s2nf3p4R, 69
fv2s2nf3p4, 69, 73
fv2s2nf3p6K, 69
fv2s2nf3p6L, 69, 73
fv2s2nf3p6R, 69, 73
fv2s2nf3p6, 69, 73
fv2s3nf3p4L, 69
fv2s3nf3p4R, 69
fv2s3nf3p4Vx, 73
fv2s3nf3p4, 69
fv2s3nf3p6K, 70
fv2s3nf3p6LVx, 73
fv2s3nf3p6L, 70
fv2s3nf3p6RVx, 73
fv2s3nf3p6R, 70
fv2s3nf3p6Vx, 73
fv2s3nf3p6, 70
fvkop4Llo, 64
fvkop4Rlo, 64
fvkop4lo, 64
fvkpp4Llo, 64
fvkpp4Rlo, 64
fvkpp4lo, 64
fvmkpip4Llo, 65
fvmkpip4Rlo, 65
fvmkpip4lo, 65
fvpipp4Llo, 64
fvpipp4Rlo, 64
fvpipp4lo, 64
fvpkpip4Llo, 65
fvpkpip4Rlo, 65
fvpkpip4lo, 65
fvpnf3p4LV, 74
fvpv2s2nf3p4R, 74
fvpv2s3nf3p4R, 74
fvpv3s2nf3p4R, 74
fvpv3s3nf3p4R, 74
getB0mhat, 20
getB0mq, 24
getB0ms, 20
getf0, 19, 20, 24, 25

111

getfpimeta.cc, 51
getfpimeta.h, 51
getfpimeta4, 51
getfpimeta6, 51
getfpimeta, 51
getfpi, 19
getmass, 25
getmeta, 19
getmk0, 19
getmk, 19
getmp0, 19
getmpi, 19
getmu, 19, 20, 24, 25
getnf, 26, 27
getnmass, 25
getnq, 24
getprecisionAbVtwistt, 40
getprecisionBbVtwistt, 43
getprecisiononeloopintegrals, 31
getprecisionquenchedsunsetintegrals, 36
getprecisionsunsetintegrals, 34
hh1Vb, 45, 47
hh1Vt, 45, 47
hh1dVb, 45, 47
hh1dVt, 45, 47
hh1d, 34, 35
hh1, 34, 35
hh21Vb, 45, 47
hh21Vt, 45, 47
hh21dVb, 45, 47
hh21dVt, 45, 47
hh21d, 34, 36
hh21, 34, 35
hh22Vb, 45, 47
hh22Vt, 45, 47
hh22dVb, 45, 47
hh22dVt, 45, 47
hh27Vb, 45, 47
hh27Vt, 45, 47
hh27dVb, 45, 47
hh27dVt, 45, 47
hh31, 34
hhVb, 45, 47
hhVt, 45, 47
hhdVb, 45, 47

hhdVt, 45, 47
hhd, 34, 35
hh, 34, 35
jbdad2, 17
jbdad3, 17
jbdbesi0, 7
jbdbesi1, 8
jbdbesk0, 8
jbdbesk1, 8
jbdbesk2, 8
jbdbesk3, 8
jbdbesk4, 8
jbdcauch2, 14
jbdcauch, 14
jbderiv2utheta3, 10
jbderivutheta3, 10
jbdgauss2, 13
jbdgauss, 12
jbdli2, 7
jbdquad15, 13
jbdquad21, 13
jbdrteq3, 12
jbdsing15, 14
jbdsing21, 15
jbdtheta2d02, 11
jbdtheta2d0m1, 11
jbdtheta2d0, 11
jbdtheta30m1, 9
jbdtheta30, 9
jbdtheta32, 9
jbdtheta34, 10
jbdtheta3, 10
jbnumlib, 7
jbwgauss2, 16
jbwgauss, 15
jbwquad15, 16
jbwquad21, 16
lomassnf, 24
lomass, 19
massdecayvevPQ.cc, 68, 70
massdecayvevPQ.h, 68, 70
massdecayvevPQV.cc, 71, 73
massdecayvevPQV.h, 71, 73
massdecayvevV.h, 58, 59
massdecayvevloV.h, 61, 62

112

massdecayvevnf.cc, 77
massdecayvevnf.h, 77
massdecayvevnfPQ.cc, 80
massdecayvevnfPQ.h, 80
massdecayvevnfPQV.cc, 82
massdecayvevnfPQV.h, 82
massdecayvevnfV.cc, 78
massdecayvevnfV.h, 78
massesdecayvev.cc, 50, 51, 53
massesdecayvev.h, 50, 51, 53
massesdecayvevlo.cc, 54–56
massesdecayvevlo.h, 54–56
massesdecayvevloV.cc, 63
massesdecayvevloV.h, 63
meta4Llo, 54
meta4L, 49
meta4Rlo, 54
meta4R, 49
meta4Vb, 58
meta4Vt, 58
meta4loVb, 61
meta4loVt, 61
meta4lo, 54
meta4, 49
meta6Clo, 54
meta6C, 49
meta6LloVb, 61
meta6LloVt, 61
meta6Llo, 54
meta6L, 49
meta6RloVb, 61
meta6RloVt, 61
meta6Rlo, 54
meta6R, 50
meta6VLb, 58
meta6VLt, 58
meta6VRb, 58
meta6VRt, 58
meta6Vb, 58
meta6Vt, 58
meta6loVb, 61
meta6loVt, 61
meta6lo, 54
meta6, 49
mk4Llo, 54

mk4L, 49
mk4Rlo, 54
mk4R, 49
mk4Vb, 58
mk4Vt, 57
mk4loVb, 60
mk4loVt, 60
mk4lo, 53
mk4, 49
mk6Clo, 54
mk6C, 49
mk6LloVb, 61
mk6LloVt, 60
mk6Llo, 54
mk6L, 49
mk6RloVb, 61
mk6RloVt, 60
mk6Rlo, 54
mk6R, 49
mk6VLb, 58
mk6VLt, 57
mk6VRb, 58
mk6VRt, 57
mk6Vb, 58
mk6Vt, 57
mk6loVb, 60
mk6loVt, 60
mk6lo, 54
mk6, 49
mnfXXX6PQVx, 81
mnfXXX6PQ, 79
mnfXXX6Vx, 77
mnfXXX6, 76
mnfXXXp4LPQ, 79
mnfXXXp4L, 75
mnfXXXp4PQVx, 81
mnfXXXp4PQ, 79
mnfXXXp4RPQ, 79
mnfXXXp4R, 76
mnfXXXp4Vx, 77
mnfXXXp4, 75
mnfXXXp6KPQ, 79
mnfXXXp6K, 76
mnfXXXp6LPQVx, 81
mnfXXXp6LPQ, 79

113

mnfXXXp6LVx, 77
mnfXXXp6L, 76
mnfXXXp6RPQVx, 81
mnfXXXp6RPQ, 79
mnfXXXp6RVx, 78
mnfXXXp6R, 76
mpi4Llo, 53
mpi4L, 49
mpi4Rlo, 53
mpi4R, 49
mpi4Vb, 57
mpi4Vt, 57
mpi4loVb, 60
mpi4loVt, 60
mpi4lo, 53
mpi4, 49
mpi6Clo, 53
mpi6C, 49
mpi6LloVb, 60
mpi6LloVt, 60
mpi6Llo, 53
mpi6L, 49
mpi6RloVb, 60
mpi6RloVt, 60
mpi6Rlo, 53
mpi6R, 49
mpi6VLb, 57
mpi6VLt, 57
mpi6VRb, 57
mpi6VRt, 57
mpi6Vb, 57
mpi6Vt, 57
mpi6loVb, 60
mpi6loVt, 60
mpi6lo, 53
mpi6, 49
mv1s1nf3p4L, 66, 67
mv1s1nf3p4R, 66, 67
mv1s1nf3p4Vx, 70, 71
mv1s1nf3p4, 66, 67
mv1s1nf3p6K, 66, 67
mv1s1nf3p6LVx, 70, 71
mv1s1nf3p6L, 66, 67
mv1s1nf3p6RVx, 70, 71
mv1s1nf3p6R, 66, 67

mv1s1nf3p6Vx, 70, 71
mv1s1nf3p6, 66, 67
mv1s3nf3p4L, 67
mv1s3nf3p4R, 67
mv1s3nf3p4Vx, 71
mv1s3nf3p4, 67
mv1s3nf3p6K, 67
mv1s3nf3p6LVx, 71
mv1s3nf3p6L, 67
mv1s3nf3p6RVx, 71
mv1s3nf3p6R, 67
mv1s3nf3p6Vx, 71
mv1s3nf3p6, 67
mv2s1nf3p4L, 67
mv2s1nf3p4R, 67
mv2s1nf3p4Vx, 71
mv2s1nf3p4, 67
mv2s1nf3p6K, 67
mv2s1nf3p6LVx, 71
mv2s1nf3p6L, 67
mv2s1nf3p6RVx, 71
mv2s1nf3p6R, 67
mv2s1nf3p6Vx, 71
mv2s1nf3p6, 67
mv2s2nf3p4L, 67
mv2s2nf3p4R, 67
mv2s2nf3p4Vx, 71
mv2s2nf3p4, 67
mv2s2nf3p6K, 67
mv2s2nf3p6LVx, 71
mv2s2nf3p6L, 67
mv2s2nf3p6RVx, 71
mv2s2nf3p6R, 67
mv2s2nf3p6Vx, 71
mv2s2nf3p6, 67
mv2s3nf3p4L, 68
mv2s3nf3p4R, 68
mv2s3nf3p4Vx, 71
mv2s3nf3p4, 68
mv2s3nf3p6K, 68
mv2s3nf3p6LVx, 71
mv2s3nf3p6L, 68
mv2s3nf3p6RVx, 71
mv2s3nf3p6R, 68
mv2s3nf3p6Vx, 71

114

mv2s3nf3p6, 68
oneloopintegrals.cc, 29, 31
oneloopintegrals.h, 29, 31
out, 18–25, 27, 28
physmass, 18
qnfXXX6PQVx, 82
qnfXXX6PQ, 80
qnfXXX6Vx, 78
qnfXXX6, 77
qnfXXXp4LPQ, 80
qnfXXXp4L, 77
qnfXXXp4PQVx, 82
qnfXXXp4PQ, 80
qnfXXXp4RPQ, 80
qnfXXXp4R, 77
qnfXXXp4Vx, 78
qnfXXXp4, 77
qnfXXXp6KPQ, 80
qnfXXXp6K, 77
qnfXXXp6LPQVx, 82
qnfXXXp6LPQ, 80
qnfXXXp6LVx, 78
qnfXXXp6L, 77
qnfXXXp6RPQVx, 82
qnfXXXp6RPQ, 80
qnfXXXp6RVx, 78
qnfXXXp6R, 77
qqstrange4Llo, 56
qqstrange4L, 52
qqstrange4Rlo, 56
qqstrange4R, 52
qqstrange4loVx, 63
qqstrange4lo, 56
qqstrange4, 52
qqstrange6Clo, 56
qqstrange6C, 52
qqstrange6LloVx, 63
qqstrange6Llo, 56
qqstrange6L, 52
qqstrange6RloVx, 63
qqstrange6Rlo, 56
qqstrange6R, 52
qqstrange6loVx, 63
qqstrange6lo, 56
qqstrange6, 52

qqup4Llo, 56
qqup4L, 52
qqup4Rlo, 56
qqup4R, 52
qqup4loVx, 63
qqup4lo, 56
qqup4, 52
qqup6Clo, 56
qqup6C, 52
qqup6LloVx, 63
qqup6Llo, 56
qqup6L, 52
qqup6RloVx, 63
qqup6Rlo, 56
qqup6R, 52
qqup6loVx, 63
qqup6lo, 56
qqup6, 52
quarkmassnf, 23, 66
quarkmass, 20
quenchedoneloopintegrals.cc, 32
quenchedoneloopintegrals.h, 32
quenchedsunsetintegrals.cc, 36
quenchedsunsetintegrals.h, 36
setB0mhat, 20
setB0mq, 23
setB0ms, 20
setci, 22
setf0, 19, 20, 23, 24
setfpi, 18
setki, 26
setlinf, 25
setli, 21
setmass, 24
setmeta, 18
setmk0, 19
setmk, 18
setmp0, 19
setmpi, 18
setmu, 18–25, 27
setname, 21, 22, 25, 27
setnf, 25
setprecisionAbVtwistt, 40
setprecisionBbVtwistt, 43
setprecisionfinitevolumeoneloopb, 38, 41

115

setprecisionfinitevolumeonelooptwistt, 43
setprecisionfinitevolumeoneloopt, 38, 41
setprecisionfinitevolumesunsetb, 46, 48
setprecisionfinitevolumesunsett, 46, 48
setprecisiononeloopintegrals, 31
setprecisionquenchedsunsetintegrals, 36
setprecisionsunsetintegrals, 34
sunsetintegrals.cc, 34
sunsetintegrals.h, 34
testfinitevolumeoneloopintegrals.cc, 38, 41
testfinitevolumeonelooptwist.cc, 40, 43
testfinitevolumesunsetintegrals.cc, 46, 48
testgetfpimeta.cc, 51
testintegralscomplex.cc, 15
testintegralsreal.cc, 12
testintegralsrealsingular.cc, 14
testmassdecayvev.cc, 50, 51
testmassdecayvevPQ.cc, 68, 70
testmassdecayvevPQV.cc, 71, 73
testmassdecayvevV.cc, 58, 59
testmassdecayvevlo.cc, 54, 55
testmassdecayvevloV.cc, 61, 62
testmassdecayvevnf.cc, 77, 78, 80, 82
testmassesdecayvev.cc, 53
testmassesdecayvevlo.cc, 56
testmassesdecayvevloV.cc, 63
testoneloopintegrals.cc, 29, 31
testquenchedoneloopintegrals.cc, 32
testquenchedsunsetintegrals.cc, 36
testsunsetintegrals.cc, 34
testvectorformPQ.cc, 74
testvectorformPQ.h, 74
testvectorformlo.cc, 64, 65
vectorformPQ.h, 74
vectorformlo.cc, 64, 65
vectorformlo.h, 64, 65
zhh1d, 34
zhh1, 34
zhh21d, 34
zhh21, 34
zhh31, 34
zhhd, 34
zhh, 34

Bubbles, 29

Files, 6

Guidelines, 5

Installation, 6
Introduction, 4

Loop integrals, 28

Quenched bubbles, 31
Quenched sunsets, 34

Sunsets, 32

Tadpoles, 28
Testroutines, 7

Vectors, 27

116

	Contents
	Introduction
	Guidelines
	Main comments
	Some caution for use

	Files, installation and testroutines
	Files
	Installation
	testroutines

	jbnumlib
	Complex numbers
	Special functions
	Polylogarithms
	jbdli2p
	jbdli2
	jbdli3
	jbdli4

	Bessel functions
	jbdbesi0
	jbdbesi1
	jbdbesk0
	jbdbesk1
	jbdbesk2
	jbdbesk3
	jbdbesk4

	Theta and related functions
	jbdtheta30
	jbdtheta30m1
	jbdtheta32
	jbdtheta34
	jbdtheta3
	jbderivutheta3
	jbderiv2utheta3
	jbderiv3utheta3
	jbdtheta2d0
	jbdtheta2d0m1
	jbdtheta2d02

	Root finders
	Zero of a real function of one variable
	jbdzerox

	Roots of a cubic equation
	jbdrteq3

	Integration routines
	One dimension, real
	jbdgauss
	jbdgauss2
	jbdquad15
	jbdquad21

	One dimension, real with singularity
	jbdcauch
	jbdcauch2
	jbdsing15
	jbdsing21

	One dimension, complex
	jbwgauss
	jbwgauss2
	jbwquad15
	jbwquad21

	Two dimensions, real
	jbdad2

	Three dimensions, real
	jbdad3

	Chiral Perturbation Theory
	Data structures
	Two flavour ChPT
	Class: physmassnf2
	Class: lomassnf2
	Class: quarkmassnf2
	NLO LECs: Class li
	NLO LECs: Class libar

	Three flavour ChPT
	Class: physmass
	Class: lomass
	Class: quarkmass
	NLO LECs: Class Li
	NNLO LECs: Class Ci

	nF flavour ChPT
	Class: quarkmassnf
	Class: lomassnf
	NLO LECs: Class Linf
	NNLO LECs: Class Ki

	Vectors
	Class: fourvector

	Loop integrals
	Tadpole or one-propagator integrals
	Bubbles or two-propagator integrals
	Definitions
	Analytical implementation
	Numerical implementation

	Bubbles or two-propagator integrals with different powers of propagators
	Definitions
	Analytical implementation

	Sunset integrals
	Definition
	Functions

	Sunsetintegrals with different powers of propagators
	Definition
	Functions

	Finite volume tadpole integrals: periodic boundary conditions
	Definitions
	Functions

	Finite volume tadpole integrals: twisted boundary conditions
	Definitions
	Functions

	Finite volume bubble integrals: periodic boundary conditions
	Definitions
	Functions
	p=0 and periodic boundary conditions

	Finite volume bubble integrals: twisted boundary conditions
	Definitions
	Functions

	Finite volume sunsetintegrals
	Definitions
	Functions

	Finite volume sunsetintegrals with different powers of propagators
	Definitions
	Functions

	Two flavour isospin conserving results
	Mass, decay constant and vacuum-expectation-value: in physical
	Mass
	Decay constant
	vacuum-expectation-value

	Mass, decay constant and vacuum-expectation-value at finite volume: in physical
	Mass at finite volume: in physical
	Decay constant at finite volume: in physical
	Vacuum-expectation-value at finite volume: in physical

	Three flavour isospin conserving results
	Masses, decay constants and vacuum-expectation-values: in physical
	Masses
	Decay constants
	getfpimeta
	Vacuum-expectation-values

	Masses, decay constants and vacuum-expectation-values: in lowest order
	Masses: in lowest order
	Decay constants: in lowest order
	Vacuum-expectation-values: in lowest order

	Masses and decay constants at finite volume: in physical
	Masses at finite volume: in physical
	Decay constants at finite volume: in physical

	Masses, decay constants and vacuum expectation values at finite volume: in lowest order
	Masses at finite volume: in lowest order
	Decay constants at finite volume: in lowest order
	Vacuum-expectation-values at finite volume: in lowest order

	Masses, decay constants and vacuum expectation values at finite volume with twisted boundary conditions: in lowest order
	Masses

	Vector form-factors: in lowest order
	Electromagnetic form-factors
	Functions

	K and K3 form-factors
	Functions

	Three flavour partially quenched results
	Masses
	Decay constants
	Masses at finite volume
	Decay constants at finite volume
	Vector form-factors
	K or K3 form-factors
	Functions

	QCD like theories for NF flavours
	Mass, decay constant and vacuum-expectation-value: in lowest order
	Mass, decay constant and vacuum-expectation-value at finite volume: in lowest order
	Partially quenched mass, decay constant and vacuum-expectation-value: in lowest order
	Partially quenched mass, decay constant and vacuum-expectation-value at finite volume: in lowest order

	GNU GENERAL PUBLIC LICENSE
	Creative Commons Attribution 4.0 International Public License
	References
	Index

