

Top Quark Pair Production Cross Section in the Dilepton Channels Using *b*-tagging

- 1. Top quark physics
- 2. Signal and backgrounds
- 3. Preselection
- 4. Secondary vertex *b*-tagging
- 5. The $e\mu$ analysis.
- 6. The lepton+track analysis.

Sara Lager Stockholm University sara@physto.se

The Top Quark

• The top quark was discovered at the Tevatron in 1995.

It is interesting since it:

- Is very heavy (35 times more heavy than the bottom quark).
 - Has a very short lifetime (SM $5 \cdot 10^{-25}$ s), shorter than hadronization time.
 - Will constrain the mass region allowed for the Higgs boson in the SM.

- Top quarks can be produced either in pairs via the strong interaction or singly via the weak interaction.
- Top pair production has been observed at the Tevatron.
- Single top production is yet to be observed.
- Theoretical cross section for pair production \sim 7 pb.

Top Decay

Final states:

- All hadronic Both W bosons decay hadronically. Large BR, difficult to separate from multijet QCD.
- Dilepton Both W bosons decay leptonically. Small BR but clean signature.
- Lepton+jets One W boson decays hadronically and one leptonically.
- Experimentally most relevant final states: e+jets, μ +jets, dielectron, dimuon and $e\mu$.
- Hadronic decays of tau leptons are difficult to identify. Leptonic decays of taus are included in the above.

The Dilepton Channels

- The channels are characterized by two isolated high p_T leptons (electron or muon in our case), two *b*-jets and large $\not\!\!E_T$.
- Extra jets can arise from initial and final state radiation.

 $\begin{array}{cccc} t \bar{t} & \rightarrow & W^+ b & W^- \bar{b} \\ & & & & \downarrow \\ & & l^+ \nu_l & \downarrow \\ & l^- \bar{\nu}_l \end{array}$

• The $e\mu$ channel has a larger branching fraction and lower backgrounds than ee and $\mu\mu$.

Backgrounds to Dilepton Channels

Physics backgrounds:

- $Z \to \tau \tau$
- *WW*

Instrumental backgrounds:

- QCD multijet production (jets are misreconstructed as electrons, muons in jets appear isolated).
- $W \rightarrow l\nu$ (one isolated lepton from the W decay, the other isolated lepton is faked).

b-jet Identification

- A $t\bar{t}$ event always contains two jets from b quarks.
- Events from other physics processes very seldom contain *b*-jets.
- The *b* quark forms a long-lived *B*-meson which can travel a few mm before it decays.
- Identify a *b*-jet using secondary vertex tagging (SVT).
- A \sim 35% efficiency to tag a *b*-jet.
- The mistag rate is \sim 0.5%.

• Discriminate signal from background in top quark events by requiring at least one jet to be b-tagged.

- Start by making preselection cuts to suppress the large QCD background.
- Select events with isolated leptons of high quality.

The $e\mu$ Analysis

 $\sigma_{t\bar{t}} = 11.1^{+5.8}_{-4.3}$ (stat) ± 1.4 (syst) ± 0.7 (lumi) pb

- The statistical error dominates.
- Major systematic uncertainties are related to *b*-tagging and JES.

Summary - $e\mu$ Analysis

- First time in DØ to use b-tagging in a dilepton channel.
- Results were presented at APS in May and ICHEP in August.
- Based on 158 pb⁻¹. At present DØ has 700 pb⁻¹ on tape.
- No need to use *b*-tagging in the $e\mu$ channel to reject back-ground.

The Lepton+track Analysis

- The selection should be made looser in order to reduce the error on the cross section.
- The largest inefficiencies come from electron and muon ID.
- Move to lepton+track selection.
- Require one well identified lepton and one high p_T isolated track.
- Gain acceptance since tracker has a better coverage than the calorimeter and muon systems.
- Selection is also sensitive to taus.

• Veto $e\mu$ in the lepton+track channels, and combine with the topological $e\mu$ analysis.

Outlook - Lepton+track Analysis

- Work on this analysis started this winter, and we hope to have a result for the summer/fall.
- Expected signal with 365 pb^{-1} is show to the right.

