ChPT loops for the lattice: pion mass and decay constant; HVP at finite volume and $n\bar{n}$-oscillations

Johan Bijnens
Lund University

bijnens@thep.lu.se
http://thep.lu.se/~bijnens
http://thep.lu.se/~bijnens/chpt/
http://thep.lu.se/~bijnens/chiron/
Overview

1. Introduction
2. Vector two-point functions for a_μ LO-HVP
 - Connected and disconnected in infinite volume
 - Finite volume
 - Twisting
 - Results
3. Pion mass and decay constant
4. $n\bar{n}$ oscillations
5. Conclusions
Chiral Perturbation Theory

- ChPT = Effective field theory describing the lowest order pseudo-scalar representation
- or the (pseudo) Goldstone bosons from spontaneous breaking of chiral symmetry.
- The number of degrees of freedom depend on the case we look at
- Treat π, η, K as light and pointlike with a derivative and quark-mass expansion
- Recent review of LECs:

Why

Muon: $a_\mu = (g - 2)/2$ and $a_\mu^{\text{LO,HVP}} = \int_0^\infty dQ^2 f(Q^2) \hat{\Pi}(Q^2)$

plot: $f(Q^2) \hat{\Pi}(Q^2)$ with $Q^2 = -q^2$ in GeV2

Aubin, Blum, Chau, Golterman, Peris, Tu,

Low energy quantity so ChPT should be useful
Two-point: Connected versus disconnected

\[\Pi_{ab}^{\mu\nu}(q) \equiv i \int d^4x e^{iq \cdot x} \langle T(j_\alpha^\mu(x)j_\alpha^{\nu\dagger}(0)) \rangle \]

\[j_{\pi^+}^\mu = \bar{d}\gamma^\mu u \]

\[j_u^\mu = \bar{u}\gamma^\mu u, \quad j_d^\mu = \bar{d}\gamma^\mu d, \quad j_s^\mu = \bar{s}\gamma^\mu s \]

\[j_e^\mu = \frac{2}{3} \bar{u}\gamma^\mu u - \frac{1}{3} \bar{d}\gamma^\mu d - \frac{1}{3} \bar{s}\gamma^\mu s \]

Two-point: Connected versus disconnected

Include also singlet part of the vector current
There are new terms in the Lagrangian
\(p^4 \) only one more:
\[
\left\langle L_{\mu\nu} \right\rangle \left\langle L^{\mu\nu} \right\rangle + \left\langle R_{\mu\nu} \right\rangle \left\langle R^{\mu\nu} \right\rangle
\]
(drops out when subtracting \(\Pi(0) \))

\[\Rightarrow \] The pure singlet vector current does not couple to mesons until \(p^6 \)

\[\Rightarrow \] Loop diagrams involving the pure singlet vector current only appear at \(p^8 \) (implies relations)

\(p^6 \) (no full classification, just some examples)
\[
\left\langle D_\rho L_{\mu\nu} \right\rangle \left\langle D_\rho L^{\mu\nu} \right\rangle + \left\langle D_\rho R_{\mu\nu} \right\rangle \left\langle D_\rho R^{\mu\nu} \right\rangle,
\]
\[
\left\langle L_{\mu\nu} \right\rangle \left\langle L^{\mu\nu} \chi^\dagger U \right\rangle + \left\langle R_{\mu\nu} \right\rangle \left\langle R^{\mu\nu} \chi U^\dagger \right\rangle, \ldots
\]

Results at two-loop order, unquenched isospin limit
Two-point: Connected versus disconnected

- $\Pi_{\pi^+\pi^+}^{\mu\nu}$: only connected
- $\Pi_{ud}^{\mu\nu}$: only disconnected
- $\Pi_{uu}^{\mu\nu} = \Pi_{\pi^+\pi^+}^{\mu\nu} + \Pi_{ud}^{\mu\nu}$
- $\Pi_{ee}^{\mu\nu} = \frac{5}{9}\Pi_{\pi^+\pi^+}^{\mu\nu} + \frac{1}{9}\Pi_{ud}^{\mu\nu}$

Infinite volume (and the ab considered here):

$$\Pi_{ab}^{\mu\nu} = (q^{\mu}q^{\nu} - q^2 g^{\mu\nu}) \Pi_{ab}^{(1)}$$

Large $N_c +$ VMD estimate:

$$\Pi_{\pi^+\pi^+}^{(1)} = \frac{4F_\pi^2}{M_{V}^2 - q^2}$$

Plots on next pages are for $\Pi_{ab0}^{(1)}(q^2) = \Pi_{ab}^{(1)}(q^2) - \Pi_{ab}^{(1)}(0)$

At p^4 the extra LEC cancels, at p^6 there are new LEC contributions, but no new ones in the loop parts
Two-point: Connected versus disconnected

- Connected
- p^6 is large
- Due to the L_i^r loops

\[\Pi_{\pi^+\pi^0}^{(1)} \]
Two-point: Connected versus disconnected

- **Disconnected**
- p^6 is large
- Due to the L_i^r loops
- about $-\frac{1}{2}$ connected
- $-\frac{1}{10}$ is from

\[
\Pi_{ee}^{(1)} = \frac{5}{9} \Pi_{\pi^+\pi^+}^{(1)} + \frac{1}{9} \Pi_{ud}^{(1)}
\]
Two-point: with strange, electromagnetic current

\begin{itemize}
 \item π
 \item connected u,d
 \item ud
 \item disconnected u,d
 \item ss
 \item strange current
 \item us
 \item mixed $s-u,d$
 \item new p^6 LEC cancels
 \item Disconnected strange $\approx -15\%$
 \item of total strange
\end{itemize}

JB, Relefors, LU TP 16-51 to appear
One-loop calculation in finite volume done by
and found to fit lattice data well

Two-loop in partially quenched
JB, Relefors, LU TP 16-51 to appear

I will stay with ChPT and the p regime ($M_\pi L >> 1$)

$1/m_\pi = 1.4$ fm
may need to (and I will) go beyond leading $e^{-m_\pi L}$ terms
“around the world as often as you like”

Convergence of ChPT is given by $1/m_\rho \approx 0.25$ fm
Finite volume and Twisted boundary conditions

- On a lattice at finite volume $p^i = 2\pi n^i / L$: very few momenta directly accessible
- Put a constraint on certain quark fields in some directions: $q(x^i + L) = e^{i\theta^i_q} q(x^i)$
- Then momenta are $p^i = \theta^i / L + 2\pi n^i / L$. Allows to map out momentum space on the lattice much better
 Bedaque, …
- Small note:
 - Beware what people call momentum: is θ^i / L included or not?
 - Reason: a colour singlet gauge transformation $G^S_{\mu} \rightarrow G^S_{\mu} - \partial_{\mu} \epsilon(x)$, $q(x) \rightarrow e^{i\epsilon(x)} q(x)$, $\epsilon(x) = -\theta_q x^i / L$
 - Boundary condition
 Twisted \Leftrightarrow constant background field + periodic
Finite volume and twisting: Drawbacks

Drawbacks:
- Box: Rotation invariance → cubic invariance
- Twisting: reduces symmetry further

Consequences:
- $m^2(\bar{p}^2) = E^2 - \bar{p}^2$ is not constant
- There are typically more form-factors
- In general: quantities depend on more (all) components of the momenta
- Charge conjugation involves a change in momentum
Two-point function: twisted boundary conditions

\begin{itemize}
 \item \[\int_V \frac{d^d k}{(2\pi)^d} \frac{k_\mu}{k^2 - m^2} \neq 0 \]
 \item \[\langle \bar{u} \gamma^\mu u \rangle \neq 0 \]
 \item \[j^\mu_{\pi^+} = \bar{d} \gamma^\mu u \]
 satisfies \[\partial_\mu \langle T(j^\mu_{\pi^+}(x) j^{\nu \dagger}_{\pi^+}(0)) \rangle = \delta^{(4)}(x) \langle \bar{d} \gamma^\nu d - \bar{u} \gamma^\nu u \rangle \]
 \item \[\Pi^{\mu\nu}_a(q) \equiv i \int d^4 x e^{i q \cdot x} \langle T(j^\mu_a(x) j^{\nu \dagger}_a(0)) \rangle \]
 Satisfies WT identity. \[q_\mu \Pi^\mu\nu_{\pi^+} = \langle \bar{u} \gamma^\mu u - \bar{d} \gamma^\mu d \rangle \]
 \item ChPT at one-loop satisfies this
 \item two-loop in partially quenched
 JB, Relefors, LU TP 16-51, to appear
 satisfies the WT identity (as it should)
\end{itemize}
\[\langle \bar{u} \gamma^\mu u \rangle \]

- Fully twisted
 \(\theta_u = (0, \theta_u, 0, 0) \), all others untwisted
 \(m_\pi L = 4 \)

- Partially twisted
 (ratio at \(p^4 \equiv 2 \) up to kaon loops)

For comparison:
\[\langle \bar{u}u \rangle^V \approx -2.4 \times 10^{-5} \text{ GeV}^3 \]
\[\langle \bar{u}u \rangle \approx -1.2 \times 10^{-2} \text{ GeV}^3 \]
Two-point partially twisted: components

Twisting spatially symmetric

Twisting in x-direction

- Small p^6 corrections (thin lines: p^4 only)
- $m_{\pi 0} L = 4 \ m_{\pi 0} = 0.135 \ \text{GeV}$
- $-q^2 \Pi^{(1)}_{\text{VMD}} = \frac{-4q^2F^2_\pi}{M^2_V - q^2} \approx 5 e^{-3} \cdot \frac{q^2}{0.1} \implies \text{Correction at } \% \text{ level}$
- Can use the difference between different twists with same q^2 to check the finite volume corrections
Two-point partially twisted: spatial average

- Plotted: volume correction to $\Pi = \frac{1}{3} \sum_{i=x,y,z} \Pi_{ii}$
- Small p^6 corrections: compare left and right
- Can use the difference between different twists with same q^2 to check the finite volume corrections
Two flavour ChPT: mass and decay constant

- First step towards finding out why hard-pion ChPT does not work at three-loops
- Lowest order: Gell-Mann, Oakes, Renner (1968)
- Chiral logarithm Langacker, Pagels (1973)
- Full NLO (and properly starting ChPT) Gasser-Leutwyler (1984)
- NNNLO JB, Hermansson-Truedsson (2017)
Methods used

- LO and Chiral logs: current algebra
- NLO: Feynman diagrams (by hand) and direct expansion of functional integral (with REDUCE)
- NNLO: Feynman diagrams (with a little help from FORM)
- NNLO: Feynman diagrams purely with FORM
- Main stumbling block: integrals
 - Reduction to master integrals with REDUCE Studerus (2009)
 - Master Integrals known
 Laporta-Remiddi (1996); Melnikov, van Ritbergen (2001)
- Lots of book-keeping: FORM
- Checks:
 - All nonlocal divergences must cancel
 - Use different parametrizations of the Lagrangian
 - Agree with known leading log result JB, Carloni (2009)
Methods used

- LO and Chiral logs: current algebra
- NLO: Feynman diagrams (by hand) and direct expansion of functional integral (with REDUCE)
- NNLO: Feynman diagrams (with a little help from FORM)
- NNLO: Feynman diagrams purely with FORM
- Main stumbling block: integrals
 - Reduction to master integrals with REDUCE Studerus (2009)
 - Master Integrals known
 - Laporta-Remiddi (1996); Melnikov, van Ritbergen (2001)
- Lots of book-keeping: FORM
- Checks:
 - All nonlocal divergences must cancel
 - Use different parametrizations of the Lagrangian
 - Agree with known leading log result JB, Carloni (2009)
Diagrams

\(p^2; \quad \bullet p^4; \quad \Box p^6; \quad \bigcirc p^8 \)
Results: LO or x-expansion/physical or ξ-expansion

- $x = \frac{M^2}{16\pi^2 F^2}$, \quad $L_x = \log \frac{M^2}{\mu^2}$, \quad $M^2 = 2B\hat{m}$

- $\frac{M^2_\pi}{M^2} = 1 + x \left(a_{11}^M L_x + a_{10}^M \right) + x^2 \left(a_{22}^M L_x^2 + a_{21}^M L_x + a_{20}^M \right) + x^3 \left(a_{33}^M L_x^3 + a_{32}^M L_x^2 + a_{31}^M L_x + a_{30}^M \right) + \cdots$

- $\frac{F_\pi}{F} = 1 + x \left(a_{11}^F L_x + a_{10}^F \right) + x^2 \left(a_{22}^F L_x^2 + a_{21}^F L_x + a_{20}^F \right) + x^3 \left(a_{33}^F L_x^3 + a_{32}^F L_x^2 + a_{31}^F L_x + a_{30}^F \right) + \cdots$

- $\xi = \frac{M^2_\pi}{16\pi^2 F^2_\pi}$, \quad $L_\pi = \log \frac{M^2_\pi}{\mu^2}$

- $\frac{M^2}{M^2_\pi} = 1 + \xi \left(b_{11}^M L_\pi + b_{10}^M \right) + \xi^2 \left(b_{22}^M L_\pi^2 + b_{21}^M L_\pi + b_{20}^M \right) + \xi^3 \left(b_{33}^M L_\pi^3 + b_{32}^M L_\pi^2 + b_{31}^M L_\pi + b_{30}^M \right) + \cdots$

- $\frac{F}{F_\pi} = 1 + \xi \left(b_{11}^F L_\pi + b_{10}^F \right) + \xi^2 \left(b_{22}^F L_\pi^2 + b_{21}^F L_\pi + b_{20}^F \right) + \xi^3 \left(b_{33}^F L_\pi^3 + b_{32}^F L_\pi^2 + b_{31}^F L_\pi + b_{30}^F \right) + \cdots$
Results \[\tilde{l}_i = 16\pi^2 l'_i, \tilde{c}_i = (16\pi^2)^2 c'_i \]

\(a^M_{11}\)	\(\frac{1}{2}\)
\(a^M_{10}\)	\(2\tilde{l}_3\)
\(a^M_{22}\)	\(\frac{17}{8}\)
\(a^M_{21}\)	\(-3\tilde{l}_3 - 8\tilde{l}_2 - 14\tilde{l}_1 - \frac{49}{12}\)
\(a^M_{20}\)	\(64\tilde{c}_{18} + 32\tilde{c}_{17} + 96\tilde{c}_{11} + 48\tilde{c}_{10} - 16\tilde{c}_9 - 32\tilde{c}_8 - 16\tilde{c}_7 - 32\tilde{c}_6 + \tilde{l}_3 + 2\tilde{l}_2 + \tilde{l}_1 + \frac{193}{96}\)
\(a^M_{33}\)	\(\frac{103}{24}\)
\(a^M_{32}\)	\(\frac{23}{2} \tilde{l}_3 - 11\tilde{l}_2 - 38\tilde{l}_1 - \frac{91}{24}\)
\(a^M_{31}\)	\(-416\tilde{c}_{18} - 208\tilde{c}_{17} - 32\tilde{c}_{16} + 96\tilde{c}_{14} + 8\tilde{c}_{13} - 48\tilde{c}_{12} - 384\tilde{c}_{11} - 192\tilde{c}_{10} + 72\tilde{c}_9 + 144\tilde{c}_8 + 72\tilde{c}_7 + 64\tilde{c}_6 - 8\tilde{c}_5 - 56\tilde{c}_4 + 16\tilde{c}_3 + 32\tilde{c}_2 - 96\tilde{c}_1 - 8\tilde{l}_3^2 - 48\tilde{l}_3\tilde{l}_2 - 84\tilde{l}_3\tilde{l}_1 - \frac{88}{3} \tilde{l}_3 - \frac{231}{10} \tilde{l}_2 - \frac{69}{5} \tilde{l}_1 - \frac{74971}{8640}\)
\(a^M_{30}\)	contains free \(p^8\) LECs (and a lot more terms)
Results: comments

- Similar tables for a_i^F, b_i^M, b_i^F
- Coefficients depend on scale μ, but whole expression is μ-independent
- Can be rewritten in terms of scales in the logarithm rather than in terms of LECs à la FLAG
- Leading log: a number
- NLL: depends on l'_i
- NNLL: depends on c'_i
- For the mass all needed c'_i can be had from mass, decay-constant and $\pi\pi$ parameters fitted to two-loop or p^6 (i.e. r_M, r_F, r_1, ..., r_6).
- For decay need one more (busy checking if it can be had)
Results: numerics preliminary

<table>
<thead>
<tr>
<th>ij</th>
<th>a^M_{ij}</th>
<th>b^M_{ij}</th>
<th>a^F_{ij}</th>
<th>b^F_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>+0.00282</td>
<td>−0.00282</td>
<td>+1.09436</td>
<td>−1.09436</td>
</tr>
<tr>
<td>11</td>
<td>+0.5</td>
<td>−0.5</td>
<td>−1</td>
<td>+1</td>
</tr>
<tr>
<td>20</td>
<td>+1.65296</td>
<td>−1.65771</td>
<td>−0.04734</td>
<td>−1.15001</td>
</tr>
<tr>
<td>21</td>
<td>+2.4573</td>
<td>−3.29038</td>
<td>−1.90577</td>
<td>+4.13885</td>
</tr>
<tr>
<td>22</td>
<td>+2.125</td>
<td>−0.625</td>
<td>−1.25</td>
<td>−0.25</td>
</tr>
<tr>
<td>30</td>
<td>+0.39527</td>
<td>−6.7854</td>
<td>−244.499</td>
<td>242.236</td>
</tr>
<tr>
<td>31</td>
<td>−3.75977</td>
<td>+4.32719</td>
<td>−19.0601</td>
<td>32.1315</td>
</tr>
<tr>
<td>32</td>
<td>+17.1476</td>
<td>+0.62039</td>
<td>−9.39462</td>
<td>−6.77511</td>
</tr>
<tr>
<td>33</td>
<td>+4.29167</td>
<td>+5.14583</td>
<td>−3.45833</td>
<td>−0.41666</td>
</tr>
</tbody>
</table>

Note the large coefficients in the decay constant
Pion mass

\[F_\pi = 92.2 \text{ MeV}, \quad F = F_\pi / 1.037, \quad \tilde{t}_1 = -0.4, \quad \tilde{t}_2 = 4.3, \quad \tilde{t}_3 = 3.41, \quad \tilde{t}_4 = 4.51, \]

\[r_i \text{ from JB et al 1997, other } c_i^r = 0, \mu = 0.77 \text{ GeV} \]

\[F_\pi = 92.2 \text{ MeV}, \quad F = F_\pi / 1.037, \quad \tilde{t}_1 = -0.4, \quad \tilde{t}_2 = 4.3, \quad \tilde{t}_3 = 3.41, \quad \tilde{t}_4 = 4.51, \]

\[r_i \text{ from JB et al 1997, other } c_i^r = 0, \mu = 0.77 \text{ GeV} \]

\[x\text{-expansion (}F\text{-fixed)} \]

\[\xi\text{-expansion (}F_\pi \text{ fixed)} \]

\[\xi\text{-expansion converges notably better} \]
Pion decay constant

x-expansion (F-fixed)

- ξ-expansion converges better
- Large p^6 due to the “240” in a_{30}^F and b_{30}^F
Some GUT models have neutron-anti-neutron oscillations but no proton decay.

Limits:
- 8.6×10^7 s from free neutrons (ILL)
- 2.7×10^8 s from oxygen nuclei (super-K)
 - (n̄ mass inside nuclei very different from n-mass)
- Possible ESS experiment improvement by up to 10^3

Effective dimension 9 operator: "uududd"

Classification of quark operators and RGE to two loops:
- and earlier papers in there

Operators

- 14 operators
- Chiral representations under $SU(2)_L \times SU(2)_R$:

<table>
<thead>
<tr>
<th>Chiral</th>
<th>#operators</th>
<th>Chiral</th>
<th>#operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1_L, 3_R)$</td>
<td>3: Q_1, Q_2, Q_3</td>
<td>$(3_L, 1_R)$</td>
<td>3</td>
</tr>
<tr>
<td>$(5_L, 3_R)$</td>
<td>3: Q_5, Q_6, Q_7</td>
<td>$(3_L, 5_R)$</td>
<td>3</td>
</tr>
<tr>
<td>$(1_L, 7_R)$</td>
<td>1: Q_4</td>
<td>$(7_L, 1_R)$</td>
<td>1</td>
</tr>
</tbody>
</table>

- $n\bar{n}$ is $\Delta l = 1$ so bottom line needs isospin breaking
- For the others the different operators are different elements within the same representation
- Use heavy baryon formalism with a baryon (\mathcal{N}) and anti-baryon doublet (\mathcal{N}^c) with same velocity v
- These correspond two widely separated areas (v and $-v$) in the relativistic field: so no double counting
ChPT terms

\[\mathcal{L} = \frac{F^2}{4} \langle u_\mu u^\mu + \chi_+ \rangle + \overline{N} (iv \cdot D + g_A u \cdot S) N + \overline{N}^c \tau^2 (iv \cdot D + g_A u \cdot S) \tau^2 N^c + \text{higher orders} \]

\[\mathcal{N} = \begin{pmatrix} p \\ n \end{pmatrix} \rightarrow h \mathcal{N}, \quad \overline{N}^c = \begin{pmatrix} p^c \\ n^c \end{pmatrix} \rightarrow \overline{N}^c h^T \]

\[h(g_L, g_R, u): SU(2)_V \text{ compensator chiral transformation} \]

Spurions for each quark \(n\bar{n} \) operator:

- \((1_L, 3_R) \): two \(SU(2)_R \) doublet indices
- \((5_L, 3_R) \): four \(SU(2)_L \) and two \(SU(2)_L \) doublet indices
- \((1_L, 7_R) \): six \(SU(2)_R \) double indices
- plus parity conjugates
ChPT terms and diagrams

- **p^0:**
 - $(1_L, 3_R)$: $(u\bar{N}c)_{il} (uN)_{jl}$
 - $(5_L, 3_R)$: $(u\bar{N}c)_{il} (u\bar{N})_{jl} (U_T^{-2})_{kr}lL (U_T^{-2})_{mn}lL$
 - $(7_L, 1_R)$: none (first one at p^2)

- **p^1:** none that directly contribute (but in loops from p^3)

- **p^2:** many (at least 20 each for $(3_L, 1_R)$ and $(3_L, 5_R)$)
Results (Preliminary)

- Q_1, Q_2, Q_3 same factor from loops (isospin)
- Q_5, Q_6, Q_7 same factor
 (Conjecture: due to projection on $I = 1$ subspace)
- Q_1, Q_2, Q_3:
 \[1 + \frac{M_{\pi}^2}{16\pi^2 F_{\pi}^2} \left(\left(-\frac{3}{2} g_A^2 - 1 \right) \log \frac{M_{\pi}^2}{\mu^2} - g_A^2 \right) + \text{order } p^2 \text{ LECs} \]
- Q_5, Q_6, Q_7:
 \[1 + \frac{M_{\pi}^2}{16\pi^2 F_{\pi}^2} \left(\left(-\frac{3}{2} g_A^2 - 7 \right) \log \frac{M_{\pi}^2}{\mu^2} - g_A^2 \right) + \text{order } p^2 \text{ LECs} \]
- Also done at finite volume
Results (Preliminary)

Relative correction from loops

Relative correction from loops (absolute value)
Conclusions

Showed you results for:

- HVP: ChPT at two-loops including partially quenched
 - Connected versus disconnected at two-loops
 - Connected: twisting and finite volume at two-loops
- Two flavour ChPT correction at three loops for the pion mass and decay constant
- Two flavour ChPT correction at one-loop for $n\bar{n}$-oscillations
- Be careful: ChPT must exactly correspond to your lattice calculation
- Programs available (for published ones) via CHIRON
 Those for this talk: sometime later this year (I hope) (or ask me)