The chiral lagrangian at order p^8

Johan Bijnens

Lund University

bijnens@thep.lu.se
http://thep.lu.se/~bijnens
http://thep.lu.se/~bijnens/chpt/

Effective Theories of Quantum Phases of Matter – Nordita, Stockholm – 23 May 2019
Karol told you on Tuesday about freedom in the amplitudes starting from amplitude methods.
I will do it from the Lagrangian perspective.

JB, Nils Hermansson-Truedsson, Si Wang, JHEP01(2019)102 [1810.06834]

2, 13, 115, 1862, …

1, 4, 19, 132, …
Chiral Perturbation Theory

Exploring the consequences of the chiral symmetry of QCD and its spontaneous breaking using effective field theory techniques

Derivation from QCD:
H. Leutwyler,
On The Foundations Of Chiral Perturbation Theory,

For references to lectures see:
http://www.thep.lu.se/~bijnens/chpt.html
Chiral Perturbation Theory

A general Effective Field Theory:
- Relevant degrees of freedom
- A powercounting principle (predictivity)
- Has a certain range of validity

Chiral Perturbation Theory:
- Degrees of freedom: Goldstone Bosons from spontaneous breaking of chiral symmetry
- Powercounting: Dimensional counting in momenta/masses
- Breakdown scale: Resonances, so about M_ρ.
Chiral Perturbation Theory

A general Effective Field Theory:
- Relevant degrees of freedom
- A powercounting principle (predictivity)
- Has a certain range of validity

Chiral Perturbation Theory:
- **Degrees of freedom**: Goldstone Bosons from spontaneous breaking of chiral symmetry
- **Powercounting**: Dimensional counting in momenta/masses
- **Breakdown scale**: Resonances, so about M_ρ.
Chiral Symmetry

QCD: N_f light quarks: equal mass: interchange: $SU(N_f)_V$

But
\[\mathcal{L}_{QCD} = \sum_{q=u,d,...} [i\bar{q}_L D q_L + i\bar{q}_R D q_R - m_q (\bar{q}_R q_L + \bar{q}_L q_R)] \]

So if $m_q = 0$ then $SU(N_f)_L \times SU(N_f)_R$.

Spontaneous breakdown

- $\langle \bar{q}q \rangle = \langle \bar{q}_L q_R + \bar{q}_R q_L \rangle \neq 0$
- $SU(N_f)_L \times SU(N_f)_R$ broken spontaneously to $SU(N_f)_V$
- $N_f(N_f - 1)$ generators broken $\implies N_f(N_f - 1)$ massless degrees of freedom and interaction vanishes at zero momentum
Goldstone Bosons

Power counting in momenta: Meson loops, Weinberg powercounting

\[
\int d^4 p \quad p^4 \\
\hline
1/p^2 \\
p^2 \\
(p^2)^2 (1/p^2)^2 \cdot p^4 = p^4
\]

\[
\quad \\
(p^2) (1/p^2) \cdot p^4 = p^4
\]
Chiral Perturbation Theories

- Which chiral symmetry: $SU(N_f)_L \times SU(N_f)_R$, for $N_f = 2, 3, \ldots$ and extensions to (partially) quenched
- Or beyond QCD
- Space-time symmetry: Continuum or broken on the lattice: Wilson, staggered, mixed action
- Volume: Infinite, finite in space, finite T
- Which interactions to include beyond the strong one
- Which external fields to include
- Which particles included as non Goldstone Bosons
- My general belief: if it involves soft pions (or soft K, η) some version of ChPT exists
External field method

- Problem: Ward identities for fields that transform nonlinearly
- Solution: Gasser, Leutwyler 84,85: use external field method and generate Green functions of QCD currents/densities from those
- with $q^T = (u \ d \ s \cdots)$:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \bar{q} i \gamma^\mu (D_\mu - i v_\mu - i a_\mu \gamma_5) q - \bar{s} q + \bar{q} i \gamma_5 p q$$

- v_μ, a_μ, s, p are $N_f \times N_f$ matrices: the external fields
- Chiral symmetry made local $g_L, g_R \in SU(N_f)_L \times SU(N_f)_R$

$$q_{L,R} \mapsto g_{L,R} q_{L,R}$$

$$s + i p \mapsto g_R (s + i p) g_L^\dagger$$

$$\ell_\mu \equiv v_\mu - a_\mu \mapsto g_L \ell_\mu g_L^\dagger - i \partial_\mu g_L g_L^\dagger$$

$$r_\mu \equiv v_\mu + a_\mu \mapsto g_R r_\mu g_R^\dagger - i \partial_\mu g_R g_R^\dagger$$
External field method

- Define Green functions of QCD currents by functional derivatives w.r.t. the external fields of

\[Z_{QCD}(v_\mu, a_\mu, s, p) = \int [dq d\bar{q} dG] \exp \left(i \int d^4x L_{QCD} \right) \]

- Put in photons in \(v_\mu \), quark masses in \(s \), ... by comparing with the Lagrangian with those parts included

- If dealing with other operators: add more external fields (spurions)

- Now write theory with the Goldstone bosons \(\phi^a \):

\[Z_{ChPT}(v_\mu, a_\mu, s, p) = \int [d\phi^a] \exp \left(i \int d^4x L_{ChPT} \right) \]

- \(L_{ChPT} \) has the same (chiral) symmetries as \(L_{QCD} \)

- Finally (proof follows from all singularities at low energies included this way, the remainder can be Taylor expanded)

\[Z_{QCD}(v_\mu, a_\mu, s, p) \approx Z_{ChPT}(v_\mu, a_\mu, s, p) \]
Parametrizing G/H

- Goldstone Boson manifold for $G \longrightarrow H$ is G/H.
- G generators: X^a, T^a: $X^a|0\rangle \neq 0$, $T^a|0\rangle = 0$
- Goldstone boson states: $g \in G$ $g|0\rangle$ but many equivalent

 (Callan), Coleman, Wess, Zumino 1969

- Coset: g_1, g_2 equivalent if $g_1 = g_2 h$ $h \in H$

- Parametrize G/H by $\tilde{u} = \exp \left(i\phi^a X^a / (\sqrt{2}F) \right)$

- Transformation: $u \longrightarrow g \tilde{u}$

- $g \tilde{u}$ not of the form \tilde{u}'

- Compensating $\tilde{h}(\tilde{u}, g)$ exists with

 $\tilde{u} \longrightarrow \tilde{u}' = \exp \left(i\phi'^a X^a / (\sqrt{2}F) \right) = g \tilde{u} \tilde{h}^\dagger(\tilde{u}, g)$
Parametrizing G/H

- External fields V_μ (a G matrix) $V_\mu \to gV_\mu g^\dagger - i\partial_\mu gg^\dagger$

- Define:
 \[\tilde{\psi}^\dagger (\partial - iV_\mu) \tilde{\psi} = -(i/2)\tilde{\psi}^a X^a + \tilde{\Gamma}^a T^a = -(i/2)\tilde{\psi} + \tilde{\Gamma}_\mu \]
 \[\tilde{\psi}_\mu \to \tilde{h}\tilde{\psi}_\mu \tilde{h}^\dagger, \quad \tilde{\Gamma}_\mu \to \tilde{h}\tilde{\Gamma}_\mu \tilde{h}^\dagger - \partial_\mu \tilde{h}\tilde{h}^\dagger \]

- Covariant derivatives if $\psi \to h\psi$
 \[\nabla_\mu \psi \equiv \left(\partial_\mu + \tilde{\Gamma}_\mu\right) \psi \to h\nabla_\mu \psi \]

- If you know G transformation, e.g. $F \to gF$ construct a H transforming object via $\tilde{F} \equiv \tilde{\psi}^\dagger F \to h\tilde{F}$

- Use $\tilde{\psi}_\mu, \nabla_\mu, V_{\mu\nu} = \partial_\mu V_\nu - \partial_\nu V_\mu - i\left(V_\mu V_\nu - V_\nu V_\mu\right)$, \tilde{F} to construct Lagrangians: i.e. the building blocks
Building blocks: \(SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V \)

- \(g = \begin{pmatrix} g_R & \cr & g_L \end{pmatrix} \), \(\tilde{h} = \begin{pmatrix} h \\ h \end{pmatrix} \), \(\tilde{u} = \begin{pmatrix} u \\ u^\dagger \end{pmatrix} \)

- \(V_\mu = \begin{pmatrix} r_\mu \\ \ell_\mu \end{pmatrix} \), \(\tilde{u}_\mu = \begin{pmatrix} u_\mu \\ -u_\mu \end{pmatrix} \), \(\tilde{\Gamma}_\mu = \begin{pmatrix} \Gamma_\mu \\ \Gamma_\mu \end{pmatrix} \)

- Or in terms of the earlier QCD notation:

 \[
 u = \exp\left(\frac{i}{\sqrt{2}F}\phi\right) \rightarrow g_R u h^\dagger = h u^\dagger g_L
 \]

 \[
 u_\mu = i \left(u^\dagger (\partial - ir_\mu) u - u (\partial_\mu - i\ell_\mu) u^\dagger \right) \rightarrow h u_\mu h^\dagger
 \]

 \[
 \Gamma_\mu = \frac{1}{2} \left(u^\dagger (\partial - ir_\mu) u + u (\partial_\mu - i\ell_\mu) u^\dagger \right) \rightarrow h \Gamma_\mu h^\dagger - \partial_\mu h h^\dagger
 \]
Building blocks: $SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V$

- $\nabla_\mu \Psi = \partial_\mu \Psi + \Gamma_\mu \Psi$ for $\Psi \to h\Psi$
- $\nabla_\mu X = \partial_\mu X + [\Gamma_\mu, X]$ for $X \to hXh^\dagger$
- $\chi \equiv 2B_0(s + ip) \to g_R\chi g_L^\dagger$
- $F_{L\mu\nu} = \partial_\mu \ell_\nu - \partial_\nu \ell_\mu - i[\ell_\mu, \ell_\nu] \to g_L F_{L\mu\nu} g_L^\dagger$
- $F_{R\mu\nu} = \partial_\mu r_\nu - \partial_\nu r_\mu - i[r_\mu, r_\nu] \to g_R F_{R\mu\nu} g_R^\dagger$
- $\chi_\pm \equiv u^\dagger \chi u^\dagger \pm u \chi^\dagger u$
- $f_{\pm\mu\nu} = uF_{L\mu\nu} u^\dagger \pm u^\dagger F_{R\mu\nu} u$

Final building blocks all go as $X \to hXh^\dagger$:

Order p^1: u_μ, ∇_μ; order p^2 $\chi_\pm, f_{\pm\mu\nu}$

$\langle u_\mu \rangle = \langle f_{\pm\mu\nu} \rangle = 0$

Other choices, purely left-handed, . . . are possible
Building blocks

- Transformations under discrete symmetries

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>C</th>
<th>h.c.</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_μ</td>
<td>$-\varepsilon(\mu)u_\mu$</td>
<td>u_μ^T</td>
<td>u_μ</td>
</tr>
<tr>
<td>χ_\pm</td>
<td>$\pm\chi_\pm$</td>
<td>χ_\pm^T</td>
<td>$\pm\chi_\pm$</td>
</tr>
<tr>
<td>$f_{\pm\mu\nu}$</td>
<td>$\pm\varepsilon(\mu)\varepsilon(\nu)f_{\pm\mu\nu}$</td>
<td>$\mp f_{\pm\mu\nu}^T$</td>
<td>$f_{\pm\mu\nu}$</td>
</tr>
</tbody>
</table>

$\varepsilon(0) = -\varepsilon(i = 1, 2, 3) = 1.$

- Is this more general?
 - Clearly works for $G \times G \rightarrow G$
 - Valid also for $SU(2N)/SO(2N)$ and $SU(2N)/Sp(2N)$
 - Lagrangian clearly complete for those cases but might not be minimal due to additional matrix relations
 - We used χ_\pm and $f_{\pm\mu\nu}$: do not always exist in this form
 - $\langle X^a \rangle = 0$ and N_f is the size of the matrices
 upper limit to number of terms
Lagrangians: Lowest order

- $N_f = 2$ and add for $N_f = 3$

$$\phi(x) = \begin{pmatrix}
\pi^0 \\ \sqrt{2} \\
\eta_8 \\ \sqrt{6}
\end{pmatrix} + \begin{pmatrix}
\pi^+ \\
K^+
\end{pmatrix}$$

- p^0: no building block exists

- LO or p^2: $\langle u_\mu u^\mu \rangle, \langle \nabla^\mu u_\mu \rangle, \langle \chi_+ \rangle, \langle \chi_- \rangle$
 - use P and $\langle u_\mu \rangle = 0$
 - $L_2 = \frac{F_0^2}{4} [\langle u_\mu u^\mu \rangle + \langle \chi_+ \rangle]$

- Usually in terms of $U = u^2 \rightarrow g_R U g_L^\dagger$ and $D_\mu U = \partial_\mu U - i r_\mu U + i U l_\mu$,

$$L_2 = \frac{F_0^2}{4} \left[\langle D_\mu UD_\mu U^\dagger \rangle + \langle \chi U^\dagger + U \chi^\dagger \rangle \right]$$
Lagrangians: Lagrangian structure

<table>
<thead>
<tr>
<th></th>
<th>2 flavour</th>
<th>3 flavour</th>
<th>PQChPT/N_f flavour</th>
</tr>
</thead>
<tbody>
<tr>
<td>p^2</td>
<td>F, B</td>
<td>F_0, B_0</td>
<td>F_0, B_0</td>
</tr>
<tr>
<td>p^4</td>
<td>l'^r_i, h'^r_i</td>
<td>L'^r_i, H'^r_i</td>
<td>$\hat{L}'^r_i, \hat{H}'^r_i$</td>
</tr>
<tr>
<td>p^6</td>
<td>c'^r_i</td>
<td>C'^r_i</td>
<td>K'^r_i</td>
</tr>
</tbody>
</table>

p^2: Weinberg 1966
p^4: Gasser, Leutwyler 84,85
p^6: JB, Colangelo, Ecker 99,00

L_i LEC = Low Energy Constants = ChPT parameters
H_i: contact terms: value depends on definition of currents/densities
Finite volume: no new LECs
Other effects: (many) new LECs
Many extensions classified: $\varepsilon_{\mu\nu\alpha\beta}$, weak decays, . . .
Chiral Logarithms

The main predictions of ChPT:

- Relates processes with different numbers of pseudoscalars
- Chiral logarithms
- includes Isospin and the eightfold way ($SU(3)_V$)
- Unitarity included perturbatively

\[m_{\pi}^2 = 2B\hat{m} + \left(\frac{2B\hat{m}}{F} \right)^2 \left[\frac{1}{32\pi^2} \log \left(\frac{2B\hat{m}}{\mu^2} \right) + 2I_3(\mu) \right] + \cdots \]

\[M^2 = 2B\hat{m} \]
P, C Hermitian conjugate (H)

- X_i: a building block
- P: enforce by having an even number of parity-odd blocks (we assume no $\epsilon_{\mu\nu\alpha\beta}$)
- C and H relate the same building blocks

\[
C \left(\langle X_1 \ldots X_n \rangle \right) = \pm \langle X_1^T \ldots X_n^T \rangle = \pm \langle X_n \ldots X_1 \rangle, \\
\left(\langle X_1 \ldots X_n \rangle \right)^\dagger = \langle X_n^\dagger \ldots X_1^\dagger \rangle = \pm \langle X_n \ldots X_1 \rangle,
\]

- $O_i \rightarrow \lambda^C_\pm \lambda^{h.c.}_\pm$. O_j look at (\pm, \pm)
- $i = j$

(+, +): $O_i = O_i^+$
(−, +): $O_i = O_i^−$
(+, −): $O_i = iO_i^+$
(−, −): $O_i = iO_i^−$.
P, C Hermitian conjugate (H)

- $j \neq i$

 $\begin{align*}
 (+, +): & \quad \mathcal{O}_i = \frac{\mathcal{O}_i^+ + i\mathcal{O}_i^-}{2}, \quad \mathcal{O}_j = \frac{\mathcal{O}_i^+- i\mathcal{O}_i^-}{2}, \\
 (-, +): & \quad \mathcal{O}_i = \frac{i\mathcal{O}_i^+ + \mathcal{O}_i^-}{2}, \quad \mathcal{O}_j = \frac{-i\mathcal{O}_i^+ + \mathcal{O}_i^-}{2}, \\
 (+, -): & \quad \mathcal{O}_i = \frac{i\mathcal{O}_i^+ + \mathcal{O}_i^-}{2}, \quad \mathcal{O}_j = \frac{i\mathcal{O}_i^+- \mathcal{O}_i^-}{2}, \\
 (-, -): & \quad \mathcal{O}_i = \frac{\mathcal{O}_i^+ + i\mathcal{O}_i^-}{2}, \quad \mathcal{O}_j = \frac{-\mathcal{O}_i^+ + i\mathcal{O}_i^-}{2}.
 \end{align*}$

- The final Lagrangian should only contain the monomials \mathcal{O}_i^+.
Constraints

- p^2, p^4, p^6 were done essentially by hand
- p^8 way too many terms for that
- use FORM
- Cyclicity: use cyclic functions
- Check all ways of relabelling indices explicitly
 use Python to rewrite FORM output back into FORM commands
- Easier to work with single term operators for all relations: rewriting in \mathcal{O}_i^+ done at the end
Contact terms

- Building blocks: $\chi, \chi^\dagger, F_{L\mu\nu}, F_{R\mu\nu}$
- all under same simple group lost
- Covariant derivatives:

$$D_\mu \chi = \partial_\mu \chi - i r_\mu \chi + i \chi \ell_\mu$$
$$D_\rho F_{L\mu\nu} = \partial_\rho F_{L\mu\nu} - i \ell_\rho \chi + i F_{L\mu\nu} \ell_\rho$$
$$D_\rho F_{R\mu\nu} = \partial_\rho F_{R\mu\nu} - i r_\rho \chi + i F_{R\mu\nu} r_\rho$$

- P, C, H more tricky as well
- If finite N_f: (Kaplan-Manohar)
 new operator of order p^{2N_f-2}, not singular for $\chi \to 0$
 $\tilde{\chi} \equiv (\det(\chi)\chi^{-1})^\dagger \longrightarrow g_R \tilde{\chi} g_L^\dagger$.

 $N_f = 2$:
 $$\tilde{\chi} = \begin{pmatrix} x_{22}^* & -x_{21}^* \\ -x_{12}^* & x_{11}^* \end{pmatrix}$$

 $N_f = 3$:
 $$\tilde{\chi} = \begin{pmatrix} x_{22}^* x_{33}^* - x_{23}^* x_{32}^* & x_{31}^* x_{23}^* - x_{21}^* x_{33}^* & x_{21}^* x_{32}^* - x_{31}^* x_{22}^* \\ x_{32}^* x_{13}^* - x_{12}^* x_{33}^* & x_{11}^* x_{33}^* - x_{31}^* x_{13}^* & x_{31}^* x_{12}^* - x_{11}^* x_{32}^* \\ x_{12}^* x_{23}^* - x_{22}^* x_{13}^* & x_{21}^* x_{13}^* - x_{11}^* x_{23}^* & x_{11}^* x_{22}^* - x_{21}^* x_{12}^* \end{pmatrix}$$
Sources of relations

- Partial integration/total derivatives
- Terms that can be removed by LO EOM/field redefinitions
- “Commuting of partial derivatives”
- Bianchi identity
- Cayley Hamilton (for finite N_f)
- Schouten identity
Partial integration/Total derivatives

- Partial integration can lead to very different looking terms
- Main problem: how to make sure we have all of them
- Solution: each partial derivative relation corresponds to a total derivative
- Classify all invariant monomials as before but now with one free Lorentz index
- Take ∂^μ of those and it gives all partial integration relations
- Example:

$$0 = \partial^\mu \left\langle \nabla_\mu u_\nu u^\nu u_\alpha u_\alpha \right\rangle$$

$$= \left\langle \nabla^\mu \nabla_\mu u_\nu u^\nu u_\alpha u_\alpha \right\rangle + \left\langle \nabla_\mu u_\nu \nabla^\mu u^\nu u_\alpha u_\alpha \right\rangle$$

$$+ \left\langle \nabla_\mu u_\nu u^\nu \nabla^\mu u_\alpha u_\alpha \right\rangle + \left\langle \nabla_\mu u_\nu u^\nu u_\alpha \nabla^\mu u_\alpha \right\rangle$$

- Having all relations allows for many simplifications later
Field redefinitions – LO equations of motion

- The S-matrix does not change under a field redefinition:
 \[\phi = \phi' + F(\phi') \text{ with } F(x \rightarrow 0) \rightarrow 0 \text{ fast enough.} \]
- In the functional integral: “just” a change of variables
- For classifying a Lagrangian: equivalent to removing “equation of motion terms”
- Simple explanation in the one-flavour case
- Works also if symmetries present
- Need a concept of power-counting or otherwise ordering
Field redefinitions – LO equations of motion

Use g to indicate orders

$$\mathcal{L} = \left(\frac{1}{2} \partial^\mu \phi \partial_\mu \phi - V_0(\phi) \right)$$

$$+ g \left[(\partial^2 \phi + V'_0(\phi)) V_{1\text{EOM}}(\phi, \partial \phi) + V_1(\phi, \partial \phi) \right] + \mathcal{O}(g^2)$$

Now define $\phi = \phi' + g V_{1\text{EOM}}(\phi', \partial \phi')$

$$\mathcal{L} = \left(\frac{1}{2} \partial^\mu \phi' \partial_\mu \phi' - V_0(\phi') \right)$$

$$+ g \left(\partial^\mu \phi \partial_\mu (V_0(\phi') - V'_0(\phi')) \right) V_{1\text{EOM}}(\phi', \partial \phi')$$

$$+ g \left(\partial^2 \phi' + V'_0(\phi') \right) V_{1\text{EOM}}(\phi', \partial \phi') + g V_1(\phi', \partial \phi')$$

$$+ \mathcal{O}(g^2) \quad \text{Note: } \mathcal{O}(g^2) \text{ changed}$$

After partial integration: EOM terms at $\mathcal{O}(g)$ cancel but changes at higher orders:

using EOM OK for classifying terms, not for doing calculations
Field redefinitions vs EOM

- Do order by order (include g^2 changes from step 1)
 \[\phi' = \phi'' + g^2 V_{2EOM}^{\phi''}(\phi'', \partial \phi'') \]

- More than one field also works: use
 \[\phi^a = \phi'^a + gV_1^a(\{\phi'^{b'}, \partial \phi^{b'}\}) \]

- What about symmetries?
 - \[\mathcal{L} = \mathcal{L}_0 + g \mathcal{L}_1 + g^2 \mathcal{L}_2 + \cdots \]
 - Each \mathcal{L}_i is invariant under the symmetry
 - EOMa is derived by $\phi^a \rightarrow \phi^a + \delta \phi^a$ where $\delta \phi^a$ must be compatible with the symmetry
 - $\mathcal{L}_0 \rightarrow \mathcal{L}_0 + (\delta \phi^a \text{EOM}^a)$ means that $\delta \phi^a \text{EOM}^a$ is invariant under the symmetry
 - EOM terms in \mathcal{L}_i are invariant under the symmetry and of the form $\text{EOM}^a V_i^a(\{\phi^b, \partial \phi^b\})$
 - $\implies \phi^a = \phi' + g_i^a V_i^a(\{\phi'^{b'}, \partial \phi^{b'}\})$ are field transformations compatible with the symmetry that remove the EOM terms
Field redefinitions – LO equations of motion

- So we use
 \[\nabla_\mu u_\mu - \frac{i}{2} \left(\chi_- - \frac{1}{N_f} \langle \chi_- \rangle \right) = 0. \]

- take all operators, look for \(\nabla_\mu u_\mu \) and replace by above to get a relation

- Example
 operator: \(\langle \chi_+ u^\rho \chi_+ \nabla_\rho \nabla_\mu u_\mu \rangle \)
 relation: \(0 = \langle \chi_+ u^\rho \chi_+ \nabla_\rho \nabla_\mu u_\mu \rangle - \frac{i}{2} \langle \chi_+ u^\rho \chi_+ \nabla_\rho \chi_- \rangle \\ + \frac{i}{2N_f} \langle \chi_+ u^\rho \chi_+ \rangle \langle \nabla_\rho \chi_- \rangle \)

- Since we have all operators, all partial integrations and all “commuting”: only need to do it for “naked” \(\nabla_\mu u_\mu \).
“Commuting of partial derivatives” /Bianchi

Commuting:

- \(f_{-\mu\nu} - \nabla_\nu u_\mu + \nabla_\mu u_\nu = 0 \)
- \([\nabla_\mu, \nabla_\nu] X = [\Gamma_{\mu\nu}, X] \)
- \(\Gamma_{\mu\nu} = \frac{1}{4} [u_\mu, u_\nu] - \frac{i}{2} f_{+\mu\nu} \)

Bianchi

- \(B_{\mu\nu\rho} \equiv \nabla_\mu \Gamma_{\nu\rho} + \nabla_\nu \Gamma_{\rho\mu} + \nabla_\rho \Gamma_{\mu\nu} = 0 \)
- \(B_{\mu\nu\rho} = \frac{1}{4} \left([u_\rho, f_{-\mu\nu}] + [u_\mu, f_{-\nu\rho}] + [u_\nu, f_{-\rho\mu}] \right) - \frac{i}{2} \left(\nabla_\rho f_{+\mu\nu} + \nabla_\mu f_{+\nu\rho} + \nabla_\nu f_{+\rho\mu} \right) \)

Generate all terms including \(B_{\mu\nu\lambda} \)

- \(\nabla_\rho B_{\mu\nu\lambda} \) not needed: we have all p.i. relations

- \(D_\mu F_{L\nu\rho} + D_\mu F_{L\rho\nu} + D_\mu F_{L\nu\rho} = 0 \) (and \(L \leftrightarrow R \))

follow from “Commuting” and Bianchi for \(\Gamma_{\mu\nu} \)
Cayley-Hamilton relations

- Any matrix A satisfies its own characteristic polynomial:

 $p(\lambda) \equiv \det (\lambda I - A), \quad \text{and} \quad p(A) = 0$.

- Expand in $1/\lambda$ using $p(\lambda) = \lambda^n \exp \{ \text{tr} [\ln(I - A/\lambda)] \}$

 The expansion has no terms negative in λ and stops at λ^n.

- This leads to the relations

 $n = 1 : A - I \langle A \rangle = 0$

 $n = 2 : A^2 - A \langle A \rangle - \frac{1}{2} I \langle A^2 \rangle + \frac{1}{2} I \langle A \rangle^2 = 0$

 $n = 3 : A^3 - A^2 \langle A \rangle - \frac{1}{2} A \langle A^2 \rangle + \frac{1}{2} A \langle A \rangle^2 - \frac{1}{3} I \langle A^3 \rangle$

 $\quad + \frac{1}{2} I \langle A \rangle \langle A^2 \rangle - \frac{1}{6} I \langle A \rangle^3 = 0$

- The last terms with I always are related to $\det(A)$.
Cayley-Hamilton relations

- Make more useful by $A = B + C + \cdots$
- $n = 2$: $A = B + C$, only keep terms with B and C:
 \[\{B, C\} = B \langle C \rangle + C \langle B \rangle + \langle BC \rangle - \langle B \rangle \langle C \rangle. \]
- $n = 3$ and $\langle B \rangle = \langle C \rangle = \langle D \rangle = \langle E \rangle = 0$ use
 $A = B + C + D$, multiply by E and take trace
 \[\sum_{6 \text{ perm}} \langle BCDE \rangle = \sum_{3 \text{ perm}} \langle BC \rangle \langle DE \rangle. \]
- Simply taking the trace of the relations does not give any new results, that is satisfied automatically.
- When implementing: use B, C, \ldots as building blocks and products of building blocks
No fully antisymmetric tensor with five indices in four dimensions

We have assumed no $\epsilon_{\mu\nu\alpha\beta}$: only relevant when have 5 different indices, so just from p^{10}

It's never clear whether more relations exist: only full criterion I know: can you determine all LECs from explicit Green functions (or experiment)
What to keep

Preferentially keep/remove (as much as possible):

1. Keep maximal number of independent contact terms
2. Remove terms that vanish when external fields vanish
3. Remove terms with covariant derivatives in favour of those involving external fields.
4. Remove terms that contribute to processes with a low number of mesons, count occurrences of u_μ, χ_- and $f_{-\mu\nu}$.
5. Scalar-pseudoscalar external fields are placed before those with only vector-axial-vector external fields.
6. Keep terms with lower number of flavour traces. This is to make the large N_c counting of the monomials explicit, only leading in N_c is equivalent to keeping only single trace monomials.

Still leaves a choice to be made which to keep
Technically

- **FORM** for the main part: generating all terms and relations.
- Equivalent terms produced by **FORM**, using Python rewritten back into **FORM**.
- Identical relations removed using **FORM**
- Final number of independent relations done with Gaussian elimination (sparse matrix methods) with **gmp** exact arithmetic
- Main restriction: memory size, not CPU time (but grows very fast with order)
- Example general N_f: 9740 C-even monomials, 12444 different relations of which 7878 linearly independent: 1862 terms left
Results: all

<table>
<thead>
<tr>
<th></th>
<th>(N_f) = 3</th>
<th>(N_f = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Contact</td>
<td>Total</td>
</tr>
<tr>
<td>(p^2)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(p^4)</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>(p^6)</td>
<td>115</td>
<td>94</td>
</tr>
<tr>
<td>(p^8)</td>
<td>1862</td>
<td>1254</td>
</tr>
</tbody>
</table>

Table: Number of monomials in the minimal basis for the case with all external fields included. Also listed is how many of them are contact terms. Our results agree with the known ones for \(p^2, p^4, p^6 \).
Results: only vector-axial-vector

<table>
<thead>
<tr>
<th></th>
<th>N_f</th>
<th>$N_f = 3$</th>
<th>$N_f = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Contact</td>
<td>Total</td>
</tr>
<tr>
<td>p^2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>p^4</td>
<td>7</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>p^6</td>
<td>59</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>p^8</td>
<td>963</td>
<td>15</td>
<td>591</td>
</tr>
</tbody>
</table>

Table: Number of monomials in the minimal basis for the case with no scalar or pseudoscalar external fields included. Also listed is how many of them are contact terms.

Note: tested using Green functions at p^6

P. Ruiz-Femenía and M. Zahiri-Abyaneh, 1507.00269
Results: scalar/pseudo-scalar external fields

<table>
<thead>
<tr>
<th></th>
<th>N_f = 3</th>
<th>$N_f = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Contact</td>
</tr>
<tr>
<td>p^2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>p^4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>p^6</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>p^8</td>
<td>538</td>
<td>3</td>
</tr>
</tbody>
</table>

Table: Number of monomials in the minimal basis for the case with no vector or axial-vector external fields included. Also listed is how many of them are contact terms.
Results: No external fields

Table: Number of monomials in the minimal basis for the case with no external fields included. There are no contact terms in this case.
Results: no external fields; by meson number

<table>
<thead>
<tr>
<th></th>
<th>#mesons</th>
<th>N_f</th>
<th>$N_f = 3$</th>
<th>$N_f = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p^2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p^4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>p^6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>15</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>p^8</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>60</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>69</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

Table: Number of monomials in the minimal basis for the case with no external fields included that produce vertices starting at the given number of mesons.
Meson-meson scattering

\[M(s, t, u) = \langle \phi^c(p_c) \phi^d(p_d) | \phi^a(p_a) \phi^b(p_b) \rangle : \]

\[M(s, t, u) = \left[\langle X^a X^b X^c X^d \rangle + \langle X^a X^d X^c X^b \rangle \right] B(s, t, u) \]
\[+ \left[\langle X^a X^c X^d X^b \rangle + \langle X^a X^b X^d X^c \rangle \right] B(t, u, s) \]
\[+ \left[\langle X^a X^d X^b X^c \rangle + \langle X^a X^c X^b X^d \rangle \right] B(u, s, t) \]
\[+ \delta^{ab} \delta^{cd} C(s, t, u) + \delta^{ac} \delta^{bd} C(t, u, s) + \delta^{ad} \delta^{bc} C(u, s, t), \]

- \(s = (p_a + p_b)^2, \ t = (p_a + p_c)^2, \ u = (p_a + p_d)^2 \)
- \(X^a \) are \(SU(N_f) \) generators normalized to 1.
- \(C(s, t, u) = C(s, u, t) \)
- \(B(s, t, u) = B(u, t, s) \)
- \(N_f = 2: \) \(B \) not needed (\(C(s, t, u) \to A(s, t, u) \))
- \(N_f = 3: \) Fully symmetric combination of \(B \) not needed
Meson-meson scattering

- Expand in s, t, u:

\[
C(s, t, u) = \alpha_0 + \alpha_2 s + \alpha_4 s^2 + \alpha_4 (t - u)^2 \\
+ \alpha_6 s^3 + \alpha_6 s(t - u)^2 \\
+ \alpha_8 s^4 + \alpha_8 s^2(t - u)^2 + \alpha_8 (t - u)^4,
\]

\[
B(s, t, u) = \beta_0 + \beta_2 t + \beta_4 t^2 + \beta_4 (s - u)^2 \\
+ \beta_6 t^3 + \beta_6 t(s - u)^2 \\
+ \beta_8 t^4 + \beta_8 t^2(s - u)^2 + \beta_8 (s - u)^4.
\]

- Chiral invariance requires $\alpha_0 = \beta_0 = 0$.
- The number of parameters agree
Conclusions of constructing p^8

- Constructed the p^8 even intrinsic parity Lagrangian
- Fully automatized except for counterterms
- Compared with all known results
- By itself not very useful (but fun and interesting) but interplay with amplitude methods allows to check both
QCD-like and/or technicolor theories

- One can also have different symmetry breaking patterns from underlying fermions
- Three generic cases
 - $SU(N) \times SU(N)/SU(N)$
 - $SU(2N)/SO(2N)$
 - $SU(2N)/Sp(2N)$
- Many one-loop results existed especially for the first case (several discovered only after we published our work)
- Equal mass case pushed to two loops JB, Lu, 2009-11
N_F fermions in a representation of the gauge group

- **complex (QCD):**
 - $q^T = (q_1 \ q_2 \ldots \ q_{N_F})$
 - Global $G = SU(N_F)_L \times SU(N_F)_R$
 - $q_L \to g_Lq_L$ and $g_R \to g_Rq_R$
 - Vacuum condensate $\Sigma_{ij} = \langle \tilde{q}_j q_i \rangle \propto \delta_{ij}$
 - $g_L = g_R$ then $\Sigma_{ij} \to \Sigma_{ij} \implies$ conserved $H = SU(N_F)_V$:

- **Real (e.g. adjoint):** $\hat{q}^T = (q_{R1} \ldots \ q_{RN_F} \ \tilde{q}_{R1} \ldots \ \tilde{q}_{RN_F})$
 - $\tilde{q}_{Ri} \equiv C\tilde{q}_{Li}^T$ goes under gauge group as q_{Ri}
 - some Goldstone bosons have baryon number
 - Global $G = SU(2N_F)$ and $\hat{q} \to g\hat{q}$
 - $\langle \tilde{q}_j q_i \rangle$ is really $\langle (\hat{q}_j)^T C\hat{q}_i \rangle \propto J_{Sij}$ $J_S = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$
 - Conserved if $gJ_Sg^T = J_S \implies H = SO(2N_F)$
N_F fermions in a representation of the gauge group

- complex (QCD):
 - $q^T = (q_1 \; q_2 \ldots \; q_{N_F})$
 - Global $G = SU(N_F)_L \times SU(N_F)_R$
 - $q_L \rightarrow g_L q_L$ and $g_R \rightarrow g_R q_R$
 - Vacuum condensate $\Sigma_{ij} = \langle \bar{q}_j q_i \rangle \propto \delta_{ij}$
 - $g_L = g_R$ then $\Sigma_{ij} \rightarrow \Sigma_{ij} \implies$ conserved $H = SU(N_F)_V$

- Real (e.g. adjoint): $\hat{q}^T = (q_{R1} \; \ldots \; q_{RN_F} \; \bar{q}_{R1} \; \ldots \; \bar{q}_{RN_F})$
 - $\bar{q}_{Ri} \equiv C \bar{q}_{Li}^T$ goes under gauge group as q_{Ri}
 - some Goldstone bosons have baryon number
 - Global $G = SU(2N_F)$ and $\hat{q} \rightarrow g \hat{q}$
 - $\langle \bar{q}_j q_i \rangle$ is really $\langle (\hat{q}_j)^T C \hat{q}_i \rangle \propto J_{Sij}$
 - $J_S = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$
 - Conserved if $gJ_S g^T = J_S \implies H = SO(2N_F)$
The chiral lagrangian at order \(p^8 \)

Johan Bijnens

Chiral Perturbation Theory

Building blocks

Earlier

Constructing

Results

Beyond QCD

Conclusions

\(N_F \) fermions in a representation of the gauge group

- complex (QCD): \(q^T = (q_1 \ q_2 \ldots \ q_{N_F}) \)
 - Global \(G = SU(N_F)_L \times SU(N_F)_R \) \(q_L \rightarrow g_L q_L \) and \(g_R \rightarrow g_R q_R \)
 - Vacuum condensate \(\Sigma_{ij} = \langle \bar{q}_j q_i \rangle \propto \delta_{ij} \)
 - Conserved \(H = SU(N_F)_V \): \(g_L = g_R \) then \(\Sigma_{ij} \rightarrow \Sigma_{ij} \)

- Pseudoreal (e.g. two-colours):
 \(\hat{q}^T = (q_{R1} \ldots q_{RN_F} \ \tilde{q}_{R1} \ldots \tilde{q}_{RN_F}) \)
 - \(\tilde{q}_{R\alpha i} \equiv \epsilon_{\alpha\beta} C \tilde{q}^T_{L\beta i} \) goes under gauge group as \(q_{R\alpha i} \)
 - some Goldstone bosons have baryon number
 - Global \(G = SU(2N_F) \) and \(\hat{q} \rightarrow g \hat{q} \)
 - \(\langle \bar{q}_j q_i \rangle \) is really \(\epsilon_{\alpha\beta} \langle (\hat{q}_{\alpha j})^T C \hat{q}_{\beta i} \rangle \propto J_{Aij} \)
 - \(J_A \) is conserved if \(g J_A g^T = J_A \implies H = Sp(2N_F) \)
Lagrangians

JB, Lu, arXiv:0910.5424: 3 cases similar with \(u = \exp \left(\frac{i}{\sqrt{2F}} \phi^a X^a \right) \)

But the matrices \(X^a \) are:

- Complex or \(SU(N) \times SU(N)/SU(N) \): all \(SU(N) \) generators
- Real or \(SU(2N)/SO(2N) \): \(SU(2N) \) generators with \(X^a J_S = J_S X^{aT} \)
- Pseudoreal or \(SU(2N)/Sp(2N) \): \(SU(2N) \) generators with \(X^a J_A = J_A X^{aT} \)
- Note that the latter are not the usual ways of parametrizing \(SO(2N) \) and \(Sp(2N) \) matrices
Lagrangians

- \(u \to g_R u h^\dagger \equiv h u g_L^\dagger \) for complex
- \(u \to g u h^\dagger \) for real, pseudoreal
- \(h \) is in the conserved part of the group for all cases
- \(u_\mu = i (u^\dagger \partial_\mu u - u \partial_\mu u^\dagger) \to h u_\mu h^\dagger \)
- external fields can also be included.
- a generalized mass term \(\chi_\pm \to h \chi_\pm h^\dagger \) can be defined with \(\chi_\pm = u^\dagger \tilde{\chi} u^\dagger \pm u \tilde{\chi} u \)
- \(\mathcal{L}_{LO} = \frac{F^2}{4} \langle u_\mu u^\mu + \chi_+ \rangle \)
- \(\mathcal{L}_4 = L_0 \langle u_\mu u^\nu u_\mu u^\nu \rangle + L_1 \langle u_\mu u^\nu \rangle \langle u^\nu u_\nu \rangle + L_2 \langle u_\mu u^\nu \rangle \langle u_\mu u_\nu \rangle + L_3 \langle u_\mu u_\mu u^\nu u^\nu \rangle \)
 \[+ L_4 \langle u_\mu u_\mu \rangle \langle \chi_+ \rangle + L_5 \langle u_\mu u_\mu \chi_+ \rangle + L_6 \langle \chi_+ \rangle^2 + L_7 \langle \chi_- \rangle^2 + \frac{1}{2} L_8 \langle \chi_+^2 + \chi_-^2 \rangle \]
 \[-i L_9 \langle f^\mu_\nu u_\mu u^\nu \rangle + \frac{1}{4} L_{10} \langle f^2_+ - f^2_- \rangle + H_1 \langle \ell_\mu \nu \ell^{\mu \nu} + r_\mu \nu r^{\mu \nu} \rangle + H_2 \langle \chi \chi^\dagger \rangle. \]
The main useful formulae

Calculating for equal mass case goes through using:

Complex:
\[\langle X^a A X^a B \rangle = \langle A \rangle \langle B \rangle - \frac{1}{N_F} \langle AB \rangle , \]
\[\langle X^a A \rangle \langle X^a B \rangle = \langle AB \rangle - \frac{1}{N_F} \langle A \rangle \langle B \rangle . \]

Real:
\[\langle X^a A X^a B \rangle = \frac{1}{2} \langle A \rangle \langle B \rangle + \frac{1}{2} \langle AJ_S B^T J_S \rangle - \frac{1}{2N_F} \langle AB \rangle , \]
\[\langle X^a A \rangle \langle X^a B \rangle = \frac{1}{2} \langle AB \rangle + \frac{1}{2} \langle AJ_S B^T J_S \rangle - \frac{1}{2N_F} \langle A \rangle \langle B \rangle . \]

Pseudoreal:
\[\langle X^a A X^a B \rangle = \frac{1}{2} \langle A \rangle \langle B \rangle + \frac{1}{2} \langle AJ_A B^T J_A \rangle - \frac{1}{2N_F} \langle AB \rangle , \]
\[\langle X^a A \rangle \langle X^a B \rangle = \frac{1}{2} \langle AB \rangle - \frac{1}{2} \langle AJ_A B^T J_A \rangle - \frac{1}{2N_F} \langle A \rangle \langle B \rangle . \]

So can do the calculations for all cases
Divergences etc

<table>
<thead>
<tr>
<th>i</th>
<th>QCD</th>
<th>Adjoint</th>
<th>2-colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$N_F/48$</td>
<td>$(N_F + 4)/48$</td>
<td>$(N_F - 4)/48$</td>
</tr>
<tr>
<td>1</td>
<td>1/16</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>2</td>
<td>1/8</td>
<td>1/16</td>
<td>1/16</td>
</tr>
<tr>
<td>3</td>
<td>$N_F/24$</td>
<td>$(N_F - 2)/24$</td>
<td>$(N_F + 2)/24$</td>
</tr>
<tr>
<td>4</td>
<td>1/8</td>
<td>1/16</td>
<td>1/16</td>
</tr>
<tr>
<td>5</td>
<td>$N_F/8$</td>
<td>$N_F/8$</td>
<td>$N_F/8$</td>
</tr>
<tr>
<td>6</td>
<td>$(N_F^2 + 2)/(16N_F^2)$</td>
<td>$(N_F^2 + 1)/(32N_F^2)$</td>
<td>$(N_F^2 + 1)/(32N_F^2)$</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>$(N_F^2 - 4)/(16N_F)$</td>
<td>$(N_F^2 + N_F - 2)/(16N_F)$</td>
<td>$(N_F^2 - N_F - 2)/(16N_F)$</td>
</tr>
<tr>
<td>9</td>
<td>$N_F/12$</td>
<td>$(N_F + 1)/2$</td>
<td>$(N_F - 1)/2$</td>
</tr>
<tr>
<td>10</td>
<td>$-N_F/12$</td>
<td>$-(N_F + 1)/2$</td>
<td>$-(N_F - 1)/2$</td>
</tr>
<tr>
<td>1'</td>
<td>$-N_F/24$</td>
<td>$-(N_F + 1)/4$</td>
<td>$-(N_F + 1)/4$</td>
</tr>
<tr>
<td>2'</td>
<td>$(N_F^2 - 4)/(8N_F)$</td>
<td>$(N_F^2 + N_F - 2)/(8N_F)$</td>
<td>$(N_F^2 - N_F - 2)/(8N_F)$</td>
</tr>
</tbody>
</table>
Vacuum expectation value

All cases: \(\langle \bar{q}q \rangle_{LO} \equiv \sum_{i=1,N_F} \langle \bar{q}_R i q_L + \bar{q}_L i q_R \rangle_{LO} = -N_F B_0 F^2 \)

\[
M^2 = 2B_0 \hat{m} \quad \text{and} \quad \overline{A}(M^2) = -\frac{M^2}{16\pi^2} \log \frac{M^2}{\mu^2} .
\]

\[
\langle \bar{q}q \rangle = \langle \bar{q}q \rangle_{LO} + \langle \bar{q}q \rangle_{NLO} + \langle \bar{q}q \rangle_{NNLO} .
\]

\[
\langle \bar{q}q \rangle_{NLO} = \langle \bar{q}q \rangle_{LO} \left(aV \frac{\overline{A}(M^2)}{F^2} + bV \frac{M^2}{F^2} \right) ,
\]

\[
\langle \bar{q}q \rangle_{NNLO} = \langle \bar{q}q \rangle_{LO} \left(cV \frac{\overline{A}(M^2)^2}{F^4} + \frac{M^2\overline{A}(M^2)}{F^4} \left(dV + \frac{eV}{16\pi^2} \right) \right)
\]

\[
+ \frac{M^4}{F^4} \left(fV + \frac{gV}{16\pi^2} \right) .
\]
Vacuum expectation value

<table>
<thead>
<tr>
<th></th>
<th>QCD</th>
<th>Adjoint</th>
<th>2-colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_V</td>
<td>$n - \frac{1}{p}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_V</td>
<td>$16nL_6^r + 8L_8^r + 4H_2^r$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_V</td>
<td>$\frac{3}{2} \left(-1 + \frac{1}{n^2} \right)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_V</td>
<td>$-24 \left(n^2 - 1 \right) \left(L_A + \frac{1}{n} L_B \right)$</td>
<td></td>
<td>$L_A = L_4^r - 2L_6^r$</td>
</tr>
<tr>
<td>e_V</td>
<td>$\frac{1}{1 - \frac{1}{n^2}}$</td>
<td></td>
<td>$L_B = L_5^r - 2L_8^r$</td>
</tr>
<tr>
<td>f_V</td>
<td>$48 \left(K_{25}^r + nK_{26}^r + n^2 K_{27}^r \right)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_V</td>
<td>$8 \left(n^2 - 1 \right) \left(L_A + \frac{1}{n} L_B \right)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: relations in the large n limit.
\[\phi \phi \rightarrow \phi \phi \]

- \(\pi \pi \) scattering
 - Amplitude in terms of \(A(s, t, u) \)
 \[
 M_{\pi \pi}(s, t, u) = \delta^{ab}\delta^{cd} A(s, t, u) + \delta^{ac}\delta^{bd} A(t, u, s) + \delta^{ad}\delta^{bc} A(u, s, t) .
 \]
 - Three intermediate states \(I = 0, 1, 2 \)
- Our three cases
 - Two amplitudes needed \(B(s, t, u) \) and \(C(s, t, u) \)
 \[
 M(s, t, u) = \left[\left\langle X^a X^b X^c X^d \right\rangle + \left\langle X^a X^d X^c X^b \right\rangle \right] B(s, t, u) \\
 + \left[\left\langle X^a X^c X^d X^b \right\rangle + \left\langle X^a X^b X^d X^c \right\rangle \right] B(t, u, s) \\
 + \left[\left\langle X^a X^d X^b X^c \right\rangle + \left\langle X^a X^c X^b X^d \right\rangle \right] B(u, s, t) \\
 + \delta^{ab}\delta^{cd} C(s, t, u) + \delta^{ac}\delta^{bd} C(t, u, s) + \delta^{ad}\delta^{bc} C(u, s, t) .
 \]
 - \(B(s, t, u) = B(u, t, s) \), \(C(s, t, u) = C(s, u, t) \).
 - 7, 6 and 6 possible intermediate states
- All formulas similar length to \(\pi \pi \) cases but there are so many of them
calculate all the diagrams
Do all integrals, renormalize,...
Construct states for all the presentations and their projection operators
Get the amplitudes for all intermediate states
Get all scattering lengths
All formulas similar length to $\pi\pi$ cases but there are so many of them

JB, Lu, arXiv:1102.0172:

- Very long appendix part
- References for the Young diagrams, tensor algebra we did ourselves but probably exists (e.g. Cvitanovic group theory book)
Some curious large $N_F = n$ relations

Leading in n:

$$a_0^I|_{\text{complex}} = a_0^I|_{\text{real}} = a_0^I|_{\text{pseudoreal}} = \text{LO} \left(\frac{x_2}{\pi} \frac{n}{8} \right),$$

$$a_0^S|_{\text{complex}} = a_0^S|_{\text{real}} = a_0^A|_{\text{pseudoreal}} = \text{LO} \left(\frac{x_2}{\pi} \frac{n}{16} \right),$$

$$a_1^A|_{\text{complex}} = a_1^A|_{\text{real}} = a_1^S|_{\text{pseudoreal}} = \text{LO} \left(\frac{x_2}{\pi} \frac{n}{48} \right).$$

Subleading:

$$a_0^{SS}|_{\text{complex}} = a_0^{FS}|_{\text{real}} = 2a_0^{MS}|_{\text{pseudoreal}} = \text{LO} \left(\frac{x_2}{\pi} \frac{-1}{16} \right),$$

$$a_0^{AA}|_{\text{complex}} = 2a_0^{MS}|_{\text{real}} = a_0^{FA}|_{\text{pseudoreal}} = \text{LO} \left(\frac{x_2}{\pi} \frac{1}{16} \right).$$

Subsubleading:

$$a_1^{SA}|_{\text{complex}} = a_1^{AS}|_{\text{complex}} = 2a_1^{MA}|_{\text{real}} = 2a_1^{MA}|_{\text{pseudoreal}} = \text{LO} 0.$$

At NNLO here violated by an $L_4^rL_6^r$ term
$\phi\phi \rightarrow \phi\phi: \frac{a_0^l}{n}$
Conclusions for “Beyond QCD”

Calculations done:

- M^2_{phys}
- F_{phys}
- Meson-meson scattering
- Equal mass case: allows to get fully analytical result just as for 2-flavour ChPT
- Two-point functions relevant for S-parameter

To remember:

- Different symmetry patterns can appear for different gauge groups and fermion representations
- Nonperturbative: lattice needs extrapolation formulae
Conclusions

- see previous page
- Constructing higher order Lagrangians is possible but not entirely trivial, especially to get a minimal one.