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Unraveling functional and ancestral relationships between pro-
teins as well as structure-prediction procedures require powerful
protein-alignment methods. A structure-alignment method is pre-
sented where the problem is mapped onto a cost function con-
taining both fuzzy (Potts) assignment variables and atomic coor-
dinates. The cost function is minimized by using an iterative
scheme, where at each step mean field theory methods at finite
‘‘temperatures’’ are used for determining fuzzy assignment vari-
ables followed by exact translation and rotation of atomic coor-
dinates weighted by their corresponding fuzzy assignment vari-
ables. The approach performs very well when compared with other
methods, requires modest central processing unit consumption,
and is robust with respect to choice of iteration parameters for a
wide range of proteins.

algorithm � dynamical programming � fuzzy assignment � mean field
annealing

Protein structure alignment is a subject of utmost relevance.
It enables the study of functional relationships between

proteins and is very important for homology and threading
methods in structure prediction. Furthermore, grouping protein
structures into fold families and subsequent tree reconstruction
may unravel ancestral and evolutionary issues.

Structure alignment amounts to matching two 3D structures
such that potential common substructures, e.g., �-helices, have
priority (see Fig. 1). The latter is accomplished by allowing for
gaps in either of the chains. At first sight, the problem may
appear very similar to sequence alignment as manifested in some
of the vocabulary (gap costs, etc.). However, from an algorithmic
standpoint, there is a major difference. Whereas sequence
alignment can be solved within polynomial time by using dy-
namical programming methods (1), this is not the case for
structure alignment, because rigid bodies are to be matched.
Hence, for all structure-alignment algorithms the scope is lim-
ited to high-quality approximate solutions.

Existing methods for structure alignment fall into two broad
classes depending on whether one directly minimizes the inter-
atomic distances between two structures or minimizes the dis-
tance between substructures that are either preselected or
supplied by an algorithm involving intraatomic distances. For an
extensive list of references to structure-alignment methods see
ref. 2.

One approach within the first category is the iterative dynam-
ical programming method (3, 4), where one first computes a
distance matrix between all pairs of atoms forming a similarity
matrix, which by dynamical programming methods gives rise to
an assignment matrix mimicking the sequence-alignment proce-
dure. One of the chains then is moved toward the other by
minimizing the distance between assigned pairs. This two-step
procedure is repeated until convergence. A different interatomic
approach is pursued in ref. 5, where the area rather than the
distances between two structures is minimized.

In refs. 6 and 7 the approach is different. Here one compares
distance matrices within each of the two structures to be aligned,
which provide information about similar substructures. These
substructures are subsequently matched. A similar framework is
used in refs. 8 and 9.

The iterative dynamical programming method (4) has been
extensively assessed for backbone structures (10) from the
Structural Classification of Proteins (SCOP) database (11), in
which protein structures have been classified by visual inspec-
tion. Some comparisons with SCOP have also been performed
(12) by using the method in ref. 8.

The key ingredients of our approach are (i) a cost-function
formulation of the problem simultaneously in terms of binary
(Potts) assignment variables and real-valued atomic coordinates
and (ii) a minimization of the cost function by an iterative
method, in which each iteration contains two steps. First, fuzzy
assignment variables are calculated based on the distances
between the amino acids in the two proteins to be aligned.
Second, exact rotation and translation of amino acid coordinates
weighted with the corresponding fuzzy assignment variables are
performed. The approach, which is very general, has some very
appealing properties. First, probabilistic interpretation of the
results is present without tedious Monte Carlo estimates, be-
cause the algorithm is deterministic. Among other things, this
implies that the approach is less sensitive to the choice of
distance metric, because the distances are weighted with fuzzy
numbers. Second, almost arbitrary additional constraints are
easily incorporated into the formalism including, for example,
different functional forms of gap penalties and sequence-
matching preferences.

Our method was tested by using the C� representation of
backbones by comparing the results with the approaches in refs.
4, 6, and 7 as implemented in the Yale Alignment Server, Dali
and CE, respectively. In choosing benchmark problems, we chose
two sets of problems already used in this context: (i) pairs with
marginal sequence overlap but in which each protein in a pair
belongs to the same SCOP superfamily and (ii) 10 ‘‘difficult’’
problems that have been used previously to evaluate structure-
alignment methods (7). In all but one case our method gave
results as good as or better than the other algorithms and was of
similar speed computationally.

Alignment Method
Consider two proteins with M and N atoms that are to be
structurally aligned by a series of weighted rigid body transfor-
mations of one of the chains, keeping the other one fixed. We
denote by xi (i � 1, . . . , M) and yj (j � 1, . . . , N) the atom
coordinates of the first and second chain, respectively. The
phrase ‘‘atom’’ is used here in a generic sense: it could represent
individual atoms but also groups of atoms. In our applications it
will mean C� atoms along the backbone. We use a square
distance metric between the chain atoms,

di, j � �xi � yj�2, [1]

but the formalism is not confined to this choice.
The alignment of the two proteins is accomplished in an

iterative two-step procedure as follows:

Abbreviations: SCOP, Structural Classification of Proteins; rmsd, rms distance.
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Y Calculation of a fuzzy assignment matrix W, where element
Wi,j � [0, 1] is the probability that atom i in the first chain is
matched to atom j in the second.

Y Rigid body transformation of one of the chains by using
fixed W.

We will start by describing the latter part.

Weighted Transformations. The objective of the rigid body trans-
formation of one of the chains is to minimize the distance
between the matched elements of the two chains. Let x�i be the
coordinates of the translated and rotated protein, i.e., x�i � a �
R xi. Based on the fuzzy assignment matrix W we determine the
translation vector a and the rotation matrix R at each iteration
by minimizing the chain error function at fixed yj

Echain � �
i�1

M �
j�1

N

Wi, j(a � R xi � yj)2. [2]

This minimization problem can be solved exactly with closed-
form expressions for R and a that minimizes Echain (13). It should
be noted that this solution is rotationally invariant (independent
of R) for the special case when the atoms in the two chains match
each other with the same weight, i.e., when Wi,j is constant for
all i and j.

Global Sequence Alignment. Structure alignment of two proteins
by using a fixed distance measure between the atoms in the two
chains is closely related to global sequence alignment of proteins.
The latter is conveniently solved by using the Needleman–
Wunsch algorithm (1). In fact, our approach to structure align-
ment is based on the Needleman–Wunsch algorithm but aug-
mented to produce a fuzzy assignment matrix. The fuzziness is
controlled by a parameter that is not held constant during the
iterative procedure.

We next rephrase the Needleman–Wunsch algorithm in an

implementation that will allow for a straightforward introduc-
tion of our approach. Let X � (X1, X2, . . ., XM) and Y � (Y1, Y2,
. . ., YN) denote the two chains containing M and N residues in
a dot-matrix representation, respectively. Every possible align-
ment of the two chains (not including permutations of atoms in
a chain) can be represented as a directed path on the (M � 1) �
(N � 1) alignment matrix (Fig. 2 Left). Each dot (i, j) has,
excluding obvious boundary restrictions, three possible prede-
cessors along the alignment path, which are denoted by k � 1,
2, and 3 (Fig. 2 Right).

The alignment cost Di,j for the optimal alignment of subchains
(X1, X2, . . ., Xi) and (Y1, Y2, . . ., Yj) is given by

Di, j � min
k

�D̃i, j; k�, [3]

where D̃i,j; k is the alignment cost if the alignment path is forced
to pass through the preceding node given by k and is calculated
by using the recursive relation

D̃i, j; k�1 � min
1�l�j

{Di, j�l � ��l	},

D̃i, j; k�2 � Di�1,j�1 � di, j, [4]

D̃i, j; k�3 � min
1�l�i

{Di�l, j � �(l)},

where �(k) is the gap penalty for a gap of length k. Computing
DM,N by using Eqs. 3 and 4 yields the cost for the optimal
alignment of the two chains. In this formulation we use costs
rather than scores, because the objective is to minimize the
distance between matched atoms.

To obtain the actual optimal alignment path one records, for
each node (i, j), which of the three D̃i,j; k in Eq. 3 achieved the
lowest cost. This information is stored in the binary decision
variables si,j; k such that

si, j; k � �1 if D̃i, j; k � mink�{D̃i, j; k�}
0 otherwise . [5]

Using si,j; k, we rewrite Eq. 3 as

Di, j � �
k

si, j; kD̃i, j; k. [6]

There are obvious boundary conditions on the first row and
column of the alignment matrix that make si,j; k constant (0 or 1)
on these boundaries.

Fig. 1. An example of pairwise structure alignment. The two proteins 1ECD
(Upper Left) and 1MBD (Upper Right) are to be structurally matched to each
other. (Lower) The resulting alignment by using our algorithm. The proteins
are in the backbone representation.

Fig. 2. Aligning two chains. (Left) Alignment matrix for an alignment
between the two chains X � (X1, X2, . . ., XM) and Y � (Y1, Y2, . . ., YN). (Right)
Unit vectors connecting to the three possible predecessors to a dot (i, j).
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Introducing Fuzzy Alignment Paths. We next introduce fuzzy align-
ment paths that will finally lead to a fuzzy assignment matrix. The
above introduction of si,j; k means that we have strictly binary
‘‘winner-takes-all’’ variables; only one alignment path is allowed,
the optimal path. We now replace the binary variable si,j; k by the
continuous variable vi,j; k, with the property that ¥kvi,j; k � 1 (14).
This allows for the interpretation that vi,j; k is a probability that
an optimal alignment path that passes through (i, j) also passes
through the preceding node specified by k. The replacement

si, j; k3 vi, j; k �
e�D̃ i,j; k�T


k� e�D̃ i,j; k��T [7]

can be viewed as a soft implementation of the ‘‘min’’ function in
Eq. 3 where the parameter T � 0 controls the fuzziness. For large
T, almost all paths are equally probable, and in the limit T3 0,
the original Needleman–Wunsch algorithm is recovered.

In what follows, we will restrict ourselves to position depen-
dent linear gap penalties of the type

�a
�n	 � (l � 1)�ext. [8]

Here, �a
(n) is the penalty for matching atom a in chain n to a gap,

�ext is the extension penalty, and l is the gap length. Eqs. 3 and
4 now can be expressed in terms of vi,j; k, �a

(n), and �ext

D̃i, j; 1 � Di, j�1 � �j
�2	�1 � vi, j�1; 1) � �extvi, j�1; 1,

D̃i, j; 2 � Di�1,j � 1 � di, j, [9]

D̃i, j; 3 � Di�1,j � �i
(1)(1 � vi�1, j; 3) � �extvi�1, j; 3

and finally the optimal alignment cost at node (i, j),

Di, j � �
k

vi, j; kD̃i, j; k. [10]

Obtaining an Assignment Matrix. From the probabilities vi,j; k it is
straightforward to calculate Pi,j; the probability that node (i, j) is
part of the optimal path. This quantity can be calculated with a
similar recursive relation as for Di,j. With the obvious initial
value PM,N � 1 one has

Pi, j � vi, j�1; 1Pi, j�1 � vi�1, j�1; 2Pi�1, j�1 � vi�1,j; 3Pi�1, j.

[11]

By construction this leads to the necessary condition P0,0 � 1.
Finally, a fuzzy assignment matrix can now be calculated by
means of Pi,j and vi,j; 2,

Wi, j � Pi, jvi, j; 2. [12]

In other words, the probability for matching atom i in the first
chain and atom j in the second chain is the product of the
probability that (i, j) is part of the optimal path and the
probability that this pair is locally matched.

Summary of the Algorithm. As stated in the beginning, the pairwise
structure alignment of two proteins is accomplished by itera-
tively computing a fuzzy assignment matrix (Eq. 12) and mini-
mizing distances between matched atoms of the two chains (Eq.
2). The T parameter that controls the degree of fuzziness of the
assignment matrix is annealed during the iterative procedure
from a large value to a small value, which ensures the necessary
transition from a fuzzy assignment matrix to a binary one where
uniquely matched atoms are identified. The algorithmic steps are
shown in Fig. 4, which is published as supporting information on
the PNAS web site, www.pnas.org.

Relation to Mean Field Annealing. We recognize the similarity of
the vi,j; k variables (Eq. 7) to Potts variables frequently occurring
in mean field annealing algorithms. A suitable starting point for
the assignment problem is given by Eq. 6, where the binary
variable si,j; k encodes one of three possible directions for each
lattice point (i, j). The smallest local energy D̃i,j; k defines the
optimal direction k. Now, the mean field version of Eq. 6 is
obtained by replacing si,j; k with its thermal average vi,j; k in
the mean field approximation given by Eq. 7. By definition,
¥kvi,j; k � 1, which allows for a probability interpretation of
vi,j; k. This interpretation is exploited in the definition of the fuzzy
assignment matrix (Eq. 12), which in turn is used for the rigid
body transformations defined by the minimum of Eq. 2. Thus, no
mean field approximation of the entire minimization problem is
used.

By introducing continuous vi,j; k variables that can evolve in a
space not accessible by the original discrete ones, we introduce
an (infinitely large) set of possible alignments between the two
proteins. When T 3 0, the original discrete set of possible
alignments is recovered. The annealing procedure is thus a way
of producing intermediate (fuzzy) alignments as an efficient
pathway to finding the optimal structure alignment of two
proteins.

Side Chains. It is difficult to align proteins that consist of strands
by using only C� coordinates. Strands in the two proteins are
often matched satisfyingly to one another, whereas the individ-
ual atoms are aligned such that one strand is translated with
respect to the other. The generality of our method makes it
straightforward to address this problem by extending the method
to handle more detailed chain representations, e.g., side-chain
orientation. The angle between two side chains can be used to
construct a suitable distance measure for the two side chains (4).
This distance then is added to the distance between the corre-
sponding C� atoms; e.g.,

di, j 3 di, j � ��1 � cos�B		2 [13]

where � is a constant and B is the angle between the two side
chains.

Similar Approaches. Our approach has strong similarities to that
in refs. 3 and 4. However, there are two major differences. (i) A
scoring procedure is used in refs. 3 and 4, whereas in our
approach a cost is minimized, mainly affecting the way gaps are
treated. (ii) We compute a fuzzy assignment matrix and mini-
mize distances between atoms based on this matrix, which is
different from refs. 3 and 4 where a binary assignment matrix is
used.

In the field of 3D point matching in computer vision one can
find similarities with the algorithm in ref. 15.

Results and Discussion
To test the quality of our alignment algorithm, we compared
alignments of protein pairs with results from other automatic
procedures. For many of the tested pairs, each protein belongs
to the same SCOP superfamily. Here, the goal was not a full
investigation of all families but rather to explore a limited set
with representative variation. Pairs were picked both from the
SCOP families investigated in ref. 10 and the structures studied
in ref. 7. Our choice of pairs was essentially based on two criteria.
First, the pairs should include diverse structures. Second, we
selected pairs according to how hard the structural similarities
have been considered to find. In ref. 10 some families are
considered to be very easy, easy, and difficult to align, and we
included pairs from all these categories. In addition, we selected
10 of the most difficult pairs from the benchmark developed by
Fischer et al. (16) to assess the performance of fold recognition
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methods that seek to align a protein sequence to a 3D structure.
Their benchmark consists of a set of protein sequences matched
by superposition to known structures. This set covers a wide
range of protein families and includes matching proteins with
insignificant sequence similarity. These 10 difficult structures
have been used previously to evaluate structure-alignment
methods (7).

We compared our results with the Yale Alignment Server
(http:��bioinfo.mbb.yale.edu�align), Dali (www.ebi.ac.uk�dali),
and CE (http:��cl.sdsc.edu�ce�ce�align.html). The Yale server
applies postprocessing to its alignments by removing aligned
atoms with large distances between them in an iterative manner
subject to a termination criteria. A similar procedure of course
is possible in our approach, but we have chosen at this stage to
keep the algorithm simple and not apply any postprocessing.

We denote proteins by their Protein Data Bank (PDB,
www.rcsb.org�pdb) (17) identifiers. In the case of multichain or
domain proteins, we restricted our alignments to chains or parts
of chains, denoted by their SCOP domain labels.

Our algorithm contains parameters of two types: one set of
algorithm-specific parameters and one set related to gap pen-
alties. For the results presented here, all algorithm-specific
parameters were set by using a training set that consisted of 10
randomly selected pairs from the full data set (see Table 1, which
is published as supporting information on the PNAS web site).
The parameters used for the gap penalties were chosen to give
alignments in which the number of aligned atoms were compa-
rable to the other methods. Once all the parameters were set, we
used these parameter settings for all pairs in the data set (see
Table 2, which is published as supporting information on the
PNAS web site).

A summary of the results for all the protein pairs in terms of
the rms distance (rmsd), between aligned atoms, and the number
of aligned atoms (N) is shown in Table 1. It is clear that our
algorithm performs very well in comparisons with the other
methods and generally produced alignments with lower or equal
rmsd. An exception is 1CRL-1EDE, for which our method failed
to find a good alignment. In general, Dali performed worse than
CE and our method in terms of rmsd and N. However, one must
keep in mind that it is not straightforward to assess alignment
algorithms in terms of rmsd and N, because there are no obvious
figure of merits. In particular, the postprocessing applied by the
Yale server typically results in alignments with lower N as
compared with the other methods. To investigate the depen-
dence between rmsd and N and allow for a better evaluation of
our method, we ran our algorithm with varying sizes of the gap
penalty parameter for many of the pairs where the alignment
methods gave different N. For each of these pairs, we found that
our algorithm, for identical N, typically resulted in a lower rmsd
than the other algorithms (Fig. 3).

One can also investigate the quality of alignments by com-
paring them to manual alignments from the literature. This was
done in ref. 10, and the conclusion was that an automatic
procedure using only C� atoms works in general, but proteins
that contain only strands, such as some immunoglobulins, were
problematic. We aligned the domain 7FABl2 with the chain
1REIa and got a competitive alignment in terms of low rmsd and
large N (Fig. 3). However, if we look at amino acid pairs
considered important in the manual alignments, the results are
worse. The manual ‘‘gold-standard’’ alignment of these proteins
contains seven core regions consisting of a total of 36 amino acid
pairs (18). Looking at our alignment in detail we found that only

three of the seven core regions and 19 of the 36 amino acid pairs
were aligned correctly. CE and Yale both failed to align any of
the core amino acid pairs correctly, whereas Dali aligned five of
the seven core regions correctly (27 of 36 amino acid pairs). By
modifying the Yale approach to include variable gap costs and
take side-chain orientation into account, six core regions could
be aligned correctly (10). Therefore, we included side-chain
orientation [with � � 0.005 (see Eq. 13) and all other parameters
unchanged], which improved our results, and we got five of seven
core regions aligned correctly (25 of 36 amino acid pairs).

Some alignment algorithms are designed to be fast, at the
potential expense of accurate alignment of core amino acids, to
allow for structural comparisons of all pairs of proteins in large
protein databases. In these methods, the protein structures are
initially reduced to their secondary structures, and these are
subsequently aligned (8, 9). Interesting candidate protein pairs
then can be evaluated in more detail. Our method was designed
to provide accurate alignments at the amino acid level. Never-
theless, our algorithm is relatively fast. It is implemented in C,
scales proportional to the chain lengths squared, and on the
average requires a few seconds on a Pentium 4 2-GHz personal
computer.

In summary, we developed an efficient approach to structure
alignment. It was tested by using a wide variety of proteins and
protein structures. We used a subset of the protein pairs to tune
the parameters of the algorithm and found that, by using these
parameter settings, the method produced very robust results for
all pairs tested. The results were better than or equal to the other
methods tested except in one case for which we failed to get a
good alignment. In addition to very good performance, our
approach has many appealing properties. It provides a proba-
bilistic interpretation of the result without tedious stochastic
simulations. Also, it is readily extended to handle more detailed
chain representations (e.g., side-chain orientation) and addi-
tional user-provided constraints of almost any kind.
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