Molecular Cancer Therapeutics 161

Predicting continuous values of prognostic markers in breast
cancer from microarray gene expression profiles

Sofia K. Gruvberger-Saal,’ Patrik Edén,?

Markus Ringnér,z'3 Bo Baldetorp,1 Gunilla Chebil,*
Ake Borg," Marten Ferné,” Carsten Peterson,? and
Paul S. Meltzer®

'Department of Oncology and 2Complex Systems Division,
Department of Theoretical Physics, Lund University, Lund,
Sweden; 3Cancer Genetics Branch, National Human Genome
Research Institute, NIH, Bethesda, MD; and “Department of
Pathology, Helsingborg Hospital, Helsingborg, Sweden

Abstract

The prognostic and treatment-predictive markers currently
in use for breast cancer are commonly based on the
protein levels of individual genes (e.g., steroid receptors)
or aspects of the tumor phenotype, such as histological
grade and percentage of cells in the DNA synthesis phase
of the cell cycle. Microarrays have previously been used to
classify binary classes in breast cancer such as estrogen
receptor (ER)-a status. To test whether the properties and
specific values of conventional prognostic markers are
encoded within tumor gene expression profiles, we have
analyzed 48 well-characterized primary tumors from
lymph node-negative breast cancer patients using 6728-
element cDNA microarrays. In the present study, we used
artificial neural networks trained with tumor gene expres-
sion data to predict the ER protein values on a continuous
scale. Furthermore, we determined a gene expression
profile-directed threshold for ER protein level to redefine
the cutoff between ER-positive and ER-negative classes
that may be more biologically relevant. With a similar
approach, we studied the prediction of other prognostic
parameters such as percentage cells in the S phase of the
cell cycle (SPF), histological grade, DNA ploidy status, and
progesterone receptor status. Interestingly, there was a
consistent reciprocal relationship in expression levels of
the genes important for both ER and SPF prediction. This
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and similar studies may be used to increase our under-
standing of the biology underlying these markers as well
as to improve the currently available prognostic markers
for breast cancer. [Mol Cancer Ther. 2004;3(2):161 -168]

Introduction

For prognostic evaluation of breast cancer, the most
important information is given by the size of the primary
tumor, involvement of regional lymph nodes, and occur-
rence of distant metastasis. Histopathological and biochem-
ical markers constitute important tools for identifying the
group of aggressive breast cancers with a poor prognosis
and for predicting the response to treatment. Treatment-
predictive and prognostic markers currently in use for
breast cancer include variables such as histological grade,
age, steroid receptors, and markers of proliferation repre-
sented by the fraction of cells in the S phase of the cell cycle
(SPF) or thymidine labeling index. However, the genes and
pathways associated with these markers are not sufficiently
known and the processes that lead to their clinical
manifestation are not fully understood.

Multiparametric methods such as microarray analysis,
which rely on many pieces of information, seem ideally
suited for grouping of tumor subtypes. Indeed, the micro-
array technique has successfully been used to classify
breast cancer into different subgroups with clinical corre-
lations (1-3) as well as using the expression profiles to
predict cancer types and disease recurrence of patients
(4-7). In general, these studies use statistical methods to
generate an output, which classifies a sample as a member
of one group or another. Expression profiles have thus far
not been used to provide a graded output corresponding to
the continuum of biological properties exhibited by tumors.

Although prognostic markers for breast tumors are used
to categorize tumors into two groups [e.g., estrogen receptor
(ER) positive versus ER negative or high SPF versus low
SPF], in reality, these subdivisions are defined by applying
cutoff values to a continuous laboratory value. For example,
the cutoff values used to subgroup tumors based on ER
status are defined from clinical studies correlating ER
values with response to endocrine treatment and are not
based on measurements of the functional activity of the ER
signal transduction pathway. In this study, we have
investigated the possibility of predicting not only the binary
ER status and SPF of a tumor but also the continuous values
of ER protein and SPF from gene expression profiles. We
have used cDNA microarrays and artificial neural networks
(ANNSs) to analyze the expression of 6728 genes in 48 well-
characterized primary tumors representing a broad spec-
trum of ER protein expression and SPF values. From the
results of these predictions, we have generated ranked lists
of the genes most sensitive for the predictions and defined a
cutoff for ER status based on gene expression. Furthermore,
using a similar approach, we have studied the gene
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expression profiles associated with histological grade, DNA
ploidy, and progesterone receptor (PgR) status in these
tumors. Ours and similar studies may give us a better
understanding of the underlying biological events in
tumors that display these different clinical properties and
may one day be used to augment presently used laboratory
evaluation of breast cancer.

Materials and Methods

Tissues and Cells

Macroscopically fresh primary tumors from 48 node-
negative breast cancer patients, tumor size 20—-50 mm, were
collected in the South Sweden Health Care Region
(Supplemental Table 1).> Microscopic examination of touch
preparations verified the presence of cancer cells in all
samples. Nineteen of the tumors were included in a
previous study (4). Steroid receptor protein (ER and PgR)
determinations using enzyme immunoassay (8), as well as
the flow cytometric analysis of SPF and ploidy status (9),
were performed using standard methods in the routine
clinical laboratory. The evaluation and interpretation of
obtained data from the flow cytometer was performed
according to published guidelines in cytometry (10) and
instructions for the ModFitLT 3.1 software. SPF was not
calculated if the histogram showed a debris distribution
pattern grossly influencing the S-phase region or the
fraction of nondiploid cells was <15% of all observed
histogram events. Furthermore, SPF was not reported for
cell populations lacking a visible G, peak or for which the
coefficient of variation of the Gy/G; peak exceeded 8%.
Histological grade was reevaluated by one of us (G. C.)
according to Elston and Ellis (11). The grading procedure
consisted of evaluation of tubule formation, nuclear ple-
morphism, and mitotic count. Each of these morphological
features was given a score of 1-3 points. The overall
histological grade was obtained by adding these points
and was categorized as follows: grade 1, 3-5 points;
grade 2, 6-7 points; and grade 3, 8-9 points.

Microarray Analysis

c¢DNA microarray analysis was performed as described
previously (4, 12) and according to standard protocols
(http:/ /research.nhgri.nih.gov/microarray/protocols.html).
In short, 200 nug of BT-474 total RNA and 65-100 ug of
tumor total RNA were used to produce labeled cDNA by
anchored oligo(deoxythymidylate)-primed reverse tran-
scription using SuperScript II reverse transcriptase (Invi-
trogen, Carlsbad, CA) in the presence of either Cy5-dUTP
or Cy3-dUTP (Amersham Pharmacia, Piscataway, NJ),
respectively. The arrays used were spotted with 6728
sequence-verified ¢cDNA clones obtained from Research
Genetics (Invitrogen). Fluorescence scanning and image
analysis with DeArray software were performed as
described previously (13, 14).

Supplementary data for this article are available at MCT Online (http:/
mct.aacrjournals.org).

Data Analysis

For each gene, the expression intensity of the most intense
channel (red or green) for each sample was averaged over all
samples. All genes for which this average exceeded 300
fluorescence units (scale 0—65,535 units) were included in
the analysis. In addition, we required, for all samples, that
the red and green intensities both exceeded 20 fluorescence
units and that the union (of the two channels) spot area
exceeded 30 pixels. These requirements left us with different
fractions of the original 6728 genes for the different
classification problems, depending on the samples included
in the analysis, which in turn was determined by the availa-
bility of measured clinical variables to be predicted (ER value
and DNA ploidy: 48 samples leaving 3855 genes; PgR: 47
samples leaving 3880 genes; SPF: 45 samples leaving 3924
genes; histological grade: 35 samples leaving 4054 genes).

The data analysis was an extension of what was used by
Khan et al. (15) and Gruvberger et al. (4). In brief, principal
component analysis projections of the gene expression data
were used as inputs to ANNSs, and a classifier consisting of a
committee of networks was obtained using a 3-fold cross-
validation scheme. An ANN sensitivity measure was used
to determine the importance of individual genes for the
classification. Three extensions to this procedure were
introduced: (a) “cross-testing”” for better statistics in the
test results; (b) a systematic search for the best ANN design;
and (c) application to regression problems.

Cross-Testing. The predictive power of a committee can
be tested by applying the committee to blind tests. Khan
etal. (15) and Gruvberger et al. (4) used fixed blind test sets. In
the present study, this was extended, for better statistical
significance, to a 7-fold “cross-testing” procedure analogous
to a cross-validation scheme (see supplemental methods).
Each ANN committee was thus based on 6 of 7 available
samples. With the 3-fold cross-validation procedure, each
ANN model was then trained on (2/3) * (6/7) = 4/7 of the
available samples. With this cross-testing, we obtained as
many test results as there were samples. The cross-testing
was repeated five times. Thus, the blind test result for a
sample was the average result of five different committees.

ANN Architecture Selection. To obtain ANN committees
with good predictive power, the ANN designs, architec-
ture, and training parameters as described by Khan et al.
(15) were selected to optimize the validation result [in
terms of mean squared error (MSE)]. To avoid information
leaks in the cross-testing scheme, every member of a
predefined pool of different ANN designs was considered
for each new blind test selection.

Regression Problems. Part of the analyses involved
regression problems (i.e., prediction of continuous values
such as ER protein expression levels rather than binary
classifications). For regression problems, no logistic re-
sponse function was applied in the ANN output layer, and
the output was directly associated with the target value. As
a measure of the performance, the MSE normalized with
the variance (Var) of measured (target) values was used.
With this normalization, comparisons between the regres-
sion problem performances can be made. If there is no



useful information in the ANN inputs, MSE/Var = 1, while
MSE/Var < 1 indicates a meaningful prediction. Further-
more, it is possible to evaluate the statistical significance of
MSE/Var < 1 (for details, see Supplemen’r).5

Gene Lists. Based on the committee of trained networks,
the genes were ranked using a sensitivity measure similar to
that of Khan ef al. (15), although with a few modifications.
The new sensitivity definition for a gene was based on the
partial derivatives of the ANN output layer arguments,
with respect to the gene expression. For each sample, these
derivatives were averaged over ANN models, and the
absolute value of these committee averages was then
averaged over samples to get the sensitivity. Motivations
for this sensitivity are given in the supplement. The analysis
steps above were then redone using only the 100 genes with
highest sensitivity. Note that for each choice of test set, a
different gene list was used. To better evaluate the statistical
significance of a high sensitivity measure of a gene, a per-
mutation test was performed to calculate the probability o
that a gene gets a larger sensitivity in a problem where
target values are randomly permuted. This permutation
analysis is further described in the supplemental methods.

In principle, it is possible to combine the different gene
lists to one single list, but it would be computationally very
costly to generate gene lists in this way in a permutation
test. Instead, the most frequently generated ANN design
was chosen, and a committee of 600 nets trained on
different subsets of all available samples was employed,
using 3-fold cross-validation.

Molecularly Motivated ER Cutoff. We investigated the
possibility to define an ER protein concentration cutoff
from gene expression profiles. Classification into ER
positives and ER negatives, based on gene expression
levels, was done for every possible partition (from having
only samples with ER protein concentration = 0 as ER
negatives to having only two samples with the largest
available ER concentration, >490 fmol/mg protein, as ER
positives) and the success of the classification was used as a
measure of how well the partition corresponds to molec-
ularly distinct classes. Fisher’s linear discriminant (16) was
used as a classifier in this analysis.

To distinguish the classification performance of different
class partitions, a leave-one-out cross-validation was
performed, and the area under the receiver operating
characteristic (ROC) curve (17) was calculated based on
the validation results. Different choices of the decision
threshold correspond to different balances between the
sensitivity and the specificity of the classification. All
possible thresholds cause the ROC curve in the (sensitivity,
1 — specificity) plane. The area under this curve (ROC area)
is a convenient measure of the classification performance
with a greater area (closer to 1) signifying better perfor-
mance. In Fisher’s discriminant analysis, the samples are
projected down to one dimension, and to compare
validation results based on different projections, the scale
of the one-dimensional projection result was fixed by
setting the mean of the ER-negative and ER-positive classes
to —1 and 1, respectively.
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Results

Prediction of Continuous Values of ER Protein
Expression

Gene expression profiles of 48 breast cancer specimens
were determined on 6728-element cDNA microarrays. We
extended our previously reported ANN methods (15) by
incorporating “‘cross-testing” and applying them to regres-
sion problems to predict ER protein levels. ANN commit-
tees were constructed, using all 3855 genes that survived
the filtering for quality, to predict ER values of blind tests
(see Materials and Methods). From this result, the genes
were ranked according to their importance for the
prediction. Subsequently, the procedure was redone
including only the top 100 ranked genes (see Supplemental
Table 2).” The resulting ANN committee prediction of ER
values for the blind test was compared with the protein
expression values and is shown in Fig. 1. The performance
of the prediction was good (MSE/Var = 0.28,P =1 x 1071
see Materials and Methods), and apart from a few tumors,
the prediction of the ER values follows and correlates well
with the measured protein expression values. The gene list
generated from ER protein value predictions showed
significant similarities among the top ranked genes
compared with the gene list generated from ER status
prediction of the same data (60% for the top 100 genes). The
complete gene list is available in Supplemental Table 2.°

Prediction of the Continuous Values of ER Pro-
tein Expression When Excluding ER and Other Top
Discriminators

We investigated the degree of dissimilarity between
tumors displaying a higher ER protein expression and
tumors with a lower ER value by estimating the number of
genes that contributed to successful continuous value
predictions of ER. We used a slightly modified approach
compared with our previous study (4) and successively
removed varying numbers of genes (3, 10, 30, 100, 300, and
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Figure 1. Results from ANN committee predictions of ER values using
the top 100 ranked genes. Only the results from the blind tests are shown
(open squares). Solid diamonds, measured protein expression values
of the tumors; numbers, tumors. For this prediction, MSE/Var = 0.28
(P =1 x 107", illustrating an excellent prediction performance.
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1000) from the top of our ranked gene list and used all
remaining genes or only the top 100 of the remaining genes
for predictions. As expected, MSE/Var rises with the
number of removed genes when only the remaining top
100 genes are used (Fig. 2), showing that genes further down
on the list carry less information about ER protein
expression. Still, the prediction performance is adequate
and significantly better than random even when
removing as many as the top 1000 genes (MSE/Var = 0.69,
P =1.5 x 10~%). In contrast, when using all remaining genes,
almost no deterioration with number of removed genes is
observed (Fig. 2). Thus, even when removing the top 1000
genes, the remaining 2855 genes carry enough information
about ER signaling for a robust prediction to occur
(MSE/Var = 0.38,P =1 x 1077). As can be seen in Fig. 2,
while the prediction using only the top 1-100 genes yields
the best performance (MSE/Var = 0.28,P =1 x 10_14), it is
obvious that many more genes contribute to the character-
istic gene expression profile associated with ER status.

A Molecularly Defined Cutoff Value for Discriminat-
ing ER-Positive from ER-Negative Tumors

We hypothesized that ER status could be assigned using
biological characteristics of tumors such as gene expression
profiles. We tested this by determining the optimal dis-
tribution of tumors into the two groups, ER+ and ER—, with
the best prediction performance for ER status prediction.
In other words, the distribution with the most obvious
separation (best prediction performance) between the two
groups selects the best cutoff value for distinguishing
ER+ tumors from ER— tumors. The highest prediction
performance was found at an ER cutoff in the range of
6.5-15 fmol/mg protein (Fig. 3). This peak in prediction
performance was seen when using the top 100 genes
generated from ER value prediction as well as when using
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Figure 2. ER value prediction using a variable number of genes to

illustrate the large number of genes influencing the prediction. Genes from
the top of the ranked gene list generated from ER protein expression value
prediction are removed.Open circles, all remaining genes are used for the
prediction; solid circles, only top 100 among the remaining genes are
used. The prediction performance is calculated as MSE/Var.
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Figure 3. Determining an ER protein cutoff using the expression profiles
of breast tumors. The performance, in terms of the ROC area, of a leave-
one-out cross-validation scheme using Fisher’s linear discriminant (see
Materials and Methods) is shown for all possible partitions of the data set
into ER negatives and ER positives. Best performance (largest ROC area) is
seen for an ER cutoff between 6.5 and 15 fmol/mg protein. Results are
shown for analyses based on the top 100 ER-associated genes (solid
circles), but a peak was seen in the same interval for analysis using all
genes that survived the filtering.

all genes that survived the filtering. Only three of the
tumors included in this study had protein expression
values within this range (with 6.5, 7.1, and 15 fmol/mg
protein, respectively), so a more exact cutoff value could not
be generated from this sample set. An ANN prediction of
ER status was performed using this new cutoff threshold.
When using the top 100 genes, the ANN committee results
for the blind tests show that 4 of 48 tumors are misclassified.
Two of these are tumors that display ER protein values
around the cutoff threshold (7.1 and 15 fmol/mg protein,
respectively).

Prediction of SPF

Using the same approach as with ER values, the S-phase
fraction for each tumor was also predicted from the gene
expression data. The performance for the prediction of SPF
for the blind tests was significant and robust (MSE/Var =
0.80, P =8.0 x 1074) when using all genes that survived the
filtering. This indicates that the SPF value is encoded
within the global gene expression profile of a tumor. There
is a correlation between high S phase and ER negativity in
the sample set studied (69% of all the ER-positive tumors
have a low SPF). While there was some influence of ER on
SPF prediction (when using only ER protein values as input
for the ANNS, the performance was poorer: MSE/Var =
0.86, P = 3.0 x 1072), the influence is not overwhelming, as
the list of ranked genes for SPF value predictions deviates
substantially from the list of genes for the ER value
predictions. Only 20 of top 100 ranked genes for the SPF
value predictions are also included in the top 100 genes
from the ER value prediction (Fig. 4). Interestingly, all 20 of
these genes have inverse effects on predicting ER and SPF.
Remarkably, when an additional 50 genes from the top SPF
predictors, which fall lower on the ER gene list, are



Molecular Cancer Therapeutics 165

Ranka Rankd Levelbin LevelCin

SPE ER high SPF _high ER Gene Symbol Gene Description Clone ID no.
2 71 [ | [ | APOD apolipoprotein D 838611
5 8 [ | [ | - ESTs 155072
6 84 [ | [ | MYBL2 v-myb myeloblastosis viral oncogene homolog (avian)-like 2 815526
18 1 [ | [ | TFF3 Human Intestinal trefoil factor 3 298417
19 14 [ | [ | NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase) 66599
20 10 [ | [ | SCNN1A sodium channel, nonvoltage-gated 1 alpha 810873
26 29 [ | [ | SCYA14 small inducible cytokine subfamily A (Cys-Cys), member 14 199663
27 63 [ | [ | CDH3 cadherin 3, type 1, P-cadherin (placental) 773301
32 7 [ | [ | - ESTs 111389
40 5 [ | [ | CRIP1 cysteine-rich protein 1 (intestinal) 1323448
42 96 [ | [ | Lyz lysozyme (renal amyloidosis) 293925
43 85 [ | [ | PSMB5 proteasome (prosome, macropain) subunit, beta type, 5 1460110
47 9 [ | [ | CEACAM6  carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross reacting antigen) 509823
62 82 [ | [ | MMP9 matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase) 22040
65 93 [ | [ ] DDX11 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (CHL1-like helicase homolog, S. cerevisiae) 741841
68 83 [ | [ | C1orf29 chromosome 1 open reading frame 29 754479
80 18 [ | [ | SLC9A3R1  solute carrier family 9 (sodium/hydrogen exchanger), isoform 3 regulatory factor 1 773286
88 21 [ | [ | EGR3 early growth response 3 26568
92 75 [ | [ ] CDC20 CDC20 cell division cycle 20 homolog (S. cerevisiae) 898062
94 91 [ | [ | LAD1 ladinin 1 121551

Figure 4. Genes found among the top 100 ranked genes for both S-phase fraction predictions and ER value predictions using gene expression data from
breast tumors. Genes are ranked based on their importance for the classification (the sensitivity value) for the different predictions, SPF and ER. Red, a
gene is relatively overexpressed; green, a gene is relatively underexpressed in high SPF or high ER. The numerical position of the genes in the respective
gene lists is indicated. It is interesting to note the consistent inverse relationship of the expression levels of each gene in the SPF and ER prediction gene
lists. ®The genes are ranked according to the sensitivity analysis (see Materials and Methods). °Red, higher expression in tumors with higher SPF; green,
higher expression in tumors with low SPF. Defined as the sign of the ANN sensitivity. “Red, higher expression in tumors with higher ER; green, higher

expression in tumors with low ER. Defined as the sign of the ANN sensitivity.

examined, 43 of 50 show an inverse relationship for
predicting these two properties of breast cancer (Fig. 5).
The complete ranked gene list for SPF prediction is
available in Supplemental Table 3.

Prediction of Other Prognostic Markers

We attempted to predict other clinically used prognostic
markers such as histological grade, DNA ploidy status, and
PgR protein level. Because of uneven distribution in the
different categories, histological grade was analyzed as two
categories, class I and class II combined versus class III.
When predicting histological grade, 37% (13 of 35) of the
tumors were misclassified (ROC area = 0.69). Because ER-
associated genes might contribute to the prediction as there
is a correlation between high histological grade and ER
status, we predicted histological grade using the ER protein
values as input for the ANNSs. Indeed, the same number of
tumors was misclassified (13 of 35), although with a slightly
lower ROC area (0.61). The identities of the 13 misclassified
tumors in the two predictions were not completely the same
(8 were overlapping). We found that predicting the DNA
ploidy status, diploid or nondiploid, from the gene
expression profiles gave a performance with 38% (18 of 48)
of the tumors misclassified (ROC area = 0.60). This indicates
that tumor ploidy is not directly correlated to any specific
molecular characteristics and hence has no specific stereo-
typic gene expression profile. Prediction of PgR protein
values using all tumors indicated a good prediction
performance (MSE/Var = 0.61,P = 1.0 x 107%). However,
there was a strong influence of ER in the prediction (ER
protein expression values used as input instead of gene
expression data gave MSE/Var = 0.66,P = 5.0 x 10"°). This

is not surprising because all ER-negative tumors also were
PgR negative. It would have been interesting to predict PgR
values within the group of ER-positive tumors, but this was
not possible due to a low number of tumors.

Discussion

The ability to predict the biological behavior of breast
tumors enables selection of the optimum treatment and
follow-up strategies. Although the prognostic and treat-
ment-predictive markers presently in use in breast cancer
management provide valuable information, they are not
fully adequate in identifying the cancers that require more
therapy or determine the most optimal therapy for the
individual patient. To study the biology behind some of the
prognostic markers presently in use, the expression of 6728
genes was investigated in primary tumor tissues from 48
breast cancer patients. The tumors came from a well-
characterized group of node-negative breast cancers.

The ER status of a tumor is determined from its protein
value and has long been used as a means to identify the
group of patients that will benefit from endocrine therapy.
However, the ER status based on protein expression does
not give a direct verification of the functional activity in the
ER signaling pathways. In previous studies of global gene
expression of breast tumors, it has become evident that the
ER status of tumors is associated with distinct gene
expression profiles involving a large number of genes
(4-6). However, these studies have only focused on the
binary ER status and did not examine the relationship of
gene expression profiles to the continuous range of ER
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Rsag:;a RE’;\!@ I:Z‘;eg;r'; I;?g‘/:l;g Gene Symbol Gene Description Clone ID no.
1 790 [ | [ | HMGCS2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial) 757222
3 2555 [ | [ ] IGHG3 immunoglobulin heavy constant gamma 3 (G3m marker) 814124
4 1357 [ | [ ] FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 811015
7 1738 [ | [ ] AZGP1 alpha-2-glycoprotein 1, zinc 1456160
8 1621 [ | [ ] FCGR3B Fc fragment of IgG, low affinity IlIb, receptor for (CD16) 51447
9 2965 [ | [ ] SLC6A8 solute carrier family 6 (neurotransmitter transporter, creatine), member 8 725877
10 1957 [ | [ ] EPHB3 EphB3 813520
11 1053 [ | [ | MCAM melanoma cell adhesion molecule 897531
12 1241 [ | [ ] UBE2C ubiquitin-conjugating enzyme E2C 769921
13 491 [ | [ ] PLIN perilipin 108330
14 1015 [ | [ ] GCHFR GTP cyclohydrolase | feedback regulatory protein 525799
15 141 [ | [ | INHBA inhibin, beta A (activin A, activin AB alpha polypeptide) 269815
16 236 [ | [ | - Homo sapiens, clone IMAGE:3881549, mRNA 143169
17 620 [ | [ | PTN pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1) 361974
21 2212 [ | [ ] SCYA28 CC chemokine CCL28 136919
22 349 [ | [ | ALCAM activated leucocyte cell adhesion molecule 26617
23 2242 [ | [ | IGF1 insulin-like growth factor 1 (somatomedin C) 813179
24 140 [ | [ ] TFAP2B transcription factor AP-2 beta (activating enhancer binding protein 2 beta) 363144
25 3205 [ | [ | LTF lactotransferrin 460487
28 803 [ ] [ | DCT dopachrome tautomerase (dopachrome delta-isomerase, tyrosine-related protein 2) 753104
29 2240 [ | [ | ADAMS8 a disintegrin and metalloproteinase domain 8 704254
30 779 [ | [ ] TCN1 transcobalamin | (vitamin B12 binding protein, R binder family) 592243
31 525 [ ] [ | TMSNB thymosin, beta, identified in neuroblastoma cells 306771
33 492 [ | [ | IF130 interferon, gamma-inducible protein 30 856447
34 471 [ | [ ] TEK TEK tyrosine kinase, endothelial (venous malformations, multiple cutaneous and mucosal) 151501
35 485 [ | [ | FABP4 fatty acid binding protein 4, adipocyte 307660
36 972 [ ] [ | STMN1 stathmin 1/oncoprotein 18 1476065
37 389 [ ] [ | RCN2 reticulocalbin 2, EF-hand calcium binding domain 898253
38 2437 [ ] [ | SPS selenium donor protein 840702
39 480 [ | [ ] RUNX3 runt-related transcription factor 3 291478
41 194 [ ] [ | JPO1 Cell division cycle associated 7, c-Myc target JPO1 244058
44 2434 [ | [ ] FYB FYN binding protein (FYB-120/130) 293325
45 2445 [ ] [ | COL8A1 collagen, type VIII, alpha 1 1472775
46 338 [ | [ ] - ESTs, Weakly similar to T33068 hypothetical protein C35E7.9 - Caenorhabditis elegans 131316
48 2709 [ | [ ] ATF3 activating transcription factor 3 51448
49 360 [ ] [ | SLU7 step Il splicing factor SLU7 80948
50 3571 [ ] [ | RBBP1 retinoblastoma binding protein 1 502832
51 800 [ | [ ] PLIN perilipin 108330
52 243 [ | [ ] MIG monokine induced by gamma interferon 503617
53 2898 [ ] [ | MMP11 matrix metalloproteinase 11 (stromelysin 3) 487296
54 835 [ | [ | SLC16A1 solute carrier family 16 (monocarboxylic acid transporters), member 1 486175
55 498 [ | [ | SEPP1 selenoprotein P, plasma, 1 530814
56 1144 [ | [ | NDRG1 N-myc downstream regulated gene 1 842863
57 3338 [ ] [ | BGN biglycan 244147
58 118 [ | [ | DUSP4 dual specificity phosphatase 4 756596
59 529 [ | [ | RSU1 Ras suppressor protein 1 687397
60 502 [ | [ | NR4A2 nuclear receptor subfamily 4, group A, member 2 898221
61 1980 [ | [ ] COL11A1 collagen, type XI, alpha 1 134783
63 3626 [ | [ | FLJ14146 hypothetical protein FLJ14146 131887
64 408 [ | [ | BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) 781047

Figure 5. Genes found among the top 100 ranked genes for the S-phase fraction predictions but not among the top 100 for ER value predictions using

gene expression data from breast tumors. Genes are ranked based on their importance for the classification (the sensitivity value) for the different
predictions, SPF and ER. Red, a gene is up-regulated for high SPF or high ER; green, a gene is down-regulated. The positions of the genes in the respective
gene lists are indicated. ®The genes are ranked according to the sensitivity analysis (see Materials and Methods). PRed, higher expression in tumors with
higher SPF; green, higher expression in tumors with low SPF. Defined as the sign of the ANN sensitivity. °Red, higher expression in tumors with higher ER;
green, higher expression in tumors with low ER. Defined as the sign of the ANN sensitivity.

protein values. In this study, we successfully calculated the
ER protein expression values from gene expression profiles,
showing that gene expression data from tumors are
sufficiently robust and informative not only to determine
ER status but also to indicate the actual level of ER protein
expression. Moreover, the strength of the ER profile is
evidenced when even after removing the most important

1000 genes of the ER profile, we were still able to predict the
ER protein values with good performance (MSE/Var = 0.69,
P =15 x 10" % Fig. 2). The genes associated with ER protein
expression value predictions are to a large extent over-
lapping with the genes associated with ER status prediction
in this and other studies (2,4-6). Conventionally, the
threshold value used to assign ER status (positive or



negative) has been determined empirically from response to
endocrine treatment, and the cutoffs used differ between
laboratories and clinics (18). Using the ER-associated gene
expression profiles, we have determined a protein level
cutoff for ER status. In this patient cohort, an appropriate
cutoff for ER status based on the top 100 ER-associated
genes (from the continuous value predictions) is in the
range of 6.5-15 fmol/mg protein. Only few tumors were
within this range of protein expression values, which
therefore was difficult to narrow. Still, this range of values
is somewhat lower than the cutoff that was used at the
hospitals of origin of the tumors at the time of diagnosis for
these patients (25 fmol/mg protein). Because the number of
samples in this study, especially in the critical range, is
limited, this cutoff value may not be applicable to other
patient cohorts. However, this approach appears sufficiently
promising to warrant studies with larger numbers of tumors.
Determining an ER status cutoff threshold based on the
expression of a panel of genes associated with ER in breast
tumors could possibly be a more accurate way of assigning
their ER status than using merely the ER protein level.

The proliferative activity of a tumor can be estimated by
flow cytometric analysis whereby information on DNA
ploidy status and SPF is generated. We found that the
performance for the prediction of SPF values based on gene
expression profiles is good. It should be mentioned that
because of the correlation between ER status and SPF in the
patient cohort, the strong signal from genes associated with
ER status contributes to some degree to the prediction of
SPF. However, a low overlap of the top ranked genes
between the S-phase- and ER-associated gene expression
profiles (20%) indicates that although ER-associated genes
do assist in the prediction of SPF, most genes important to
SPF prediction are indeed associated more specifically with
the S-phase profile. Interestingly, all of the 20 genes
comprising the intersection of the top 100 SPF and top 100
ER value gene lists show an inverse relation in their
expression in that the genes that are highly expressed in
tumors with high S-phase fraction have a low expression in
tumors with high ER values (Fig. 4). Additionally, 67 of the
remaining 80 genes on the top 100 S-phase list that are found
far down the ER value gene list also show an inverse
correlation in expression level (Fig. 5 and Supplemental
Tables 2 and 3).” This striking inverse relationship shows
that at the molecular level, the gene expression of many
individual genes important to a high proliferation pheno-
type relates directly to a low expression of ER protein. Not
surprisingly, several of the 80 genes that are strongly
associated with SPF but not with ER have functions
associated with cell proliferation. For example, the
ubiquitin-conjugating enzyme E2C (rank 12) is highly
expressed in tumors with a high S-phase fraction and
involved in the ubiquitin-dependent proteolysis of both
cyclin A and cyclin B (19). The cell growth-inhibiting
transcription factors AP-2p (rank 24; Ref. 20) and activating
transcription factor 3 (rank 48; Ref. 21) both have a low
expression in tumors with high S phase as do the inhibin RA
subunit of the inhibin complex (rank 15; Ref. 22) and insulin-
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like growth factor-1 (rank 23; Ref. 23), both are involved in
modulation of cell growth and differentiation. Another
group of genes associated with high S-phase fraction are
genes that have previously been associated with tumor
invasion, tumorigenesis, and transformation including
ADAMS (a disintegrin and metalloproteinase domain 8;
rank 29), a transmembrane protein identified to have
metalloproteinase activity (24), and melanoma cell adhesion
molecule (rank 11), which has been implicated to play an
important role in initiation and malignant progression in
melanoma and prostate cancer (25). The fact that the gene
transcobalamin I was more highly expressed in tumors with
a low S phase suggests that a higher S-phase fraction in a
tumor also seems to be correlated with a lower degree of
cellular differentiation. Transcobalamin I, a member of the
vitamin B12 binding protein family also called R binders, has
been demonstrated by immunohistochemistry to be
expressed more often in the well-differentiated tumors in
invasive ductal carcinomas of the breast (26).

The histological grade of a tumor is determined by
microscopic evaluation of breast tumor paraffin sections.
From our results, predicting histological grade from gene
expression profiles seems to be possible. Although there is
an influence by ER status, owing to a correlation between
low histological grade and ER positivity, the ER protein
expression values alone predict the histological grades less
accurately than the gene expression profiles. Although their
study did not address the prediction of histological grade,
very recently, gene expression profiles have been observed
which distinguish high- and low-grade tumors (27).

The DNA ploidy status of a tumor can reveal whether
some cells in the tumor have an abnormal amount of DNA
in the nucleus. The prediction of ploidy status (diploid
versus nondiploid) was not as good as for the other clinical
parameters studied, indicating that the DNA ploidy status
of a tumor is not strongly correlated to any specific gene
expression profile. It is not surprising that it was difficult to
find a unifying gene expression profile for all nondiploid
tumors because their chromosomal gains and losses do not
necessarily follow the same pattern; therefore, the effects of
aneuploidy on gene expression are diverse. Possibly, better
results could be obtained by grouping tumors according to
comparative genomic hybridization profiles, which are
determined by specific patterns of cytogenetic change.
Indeed, several studies have reported correlations between
comparative genomic hybridization profiles and gene
expression data (28-30).

Our study sheds light on the molecular background
behind the already established markers ER status and SPF.
Using computer models, we were able to predict the
continuous values of these clinically relevant markers,
demonstrating that the biological basis of these markers is
encoded and detectable within global gene expression
patterns, even from within heterogeneous tumor samples.
The method of predicting a tumor characteristic on a
continuous scale may be a better approach than predicting
binary classes in other microarray studies (e.g., prediction
of time to disease recurrence instead of recurrence by a
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fixed end point). Additional studies and a reliable
approach to generate expression data in a clinical setting
are necessary before gene expression profiling can be used
as a practical clinical tool. However, our study and others
strongly suggest the approaching potential of gene
expression profiling to aid treatment decision-making for
the individual patient by refining prognostic categories
and elucidating the molecular properties that affect
outcome.
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