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The driving force behind oncoproteomics is to identify protein signatures that are associated with
a particular malignancy. Here, we have used a recombinant scFv antibody microarray in an
attempt to classify sera derived from pancreatic adenocarcinoma patients versus healthy subjects.
Based on analysis of nonfractionated, directly labeled, whole human serum proteomes we have
identified a protein signature based on 19 nonredundant analytes, that discriminates between
cancer patients and healthy subjects. Furthermore, a potential protein signature, consisting of 21
protein analytes, could be defined that was shown to be associated with cancer patients having a
life expectancy of ,12 months. Taken together, the data suggest that antibody microarray analy-
sis of complex proteomes will be a useful tool to define disease associated protein signatures.
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1 Introduction

Recent progress in proteomics has opened up improved
cancer-associated biomarker discovery [1, 2], although high-
throughput proteomic approaches targeting complex biolog-
ical fluids, such as serum, have proven to be challenging [2–
4]. Antibody-based microarrays is a rapidly emerging affinity-

proteomic technology that is likely to play an increasing role
within oncoproteomics [3] and that has made significant
progress in recent years, for review see [5, 6]. This approach
is capable of simultaneously profiling numerous low-abun-
dant protein analytes in complex proteomes, while consum-
ing only microliter amounts of samples [7–10]. Translational
proteomics is one immediate application for antibody
microarrays, where comparative protein expression profiling
of cancer versus normal proteomes might yield tentative pre-
dictive biomarker signatures.

In oncology, one major challenge is the ability to stratify
patients, relating to their probability to experience tumor
relapse or drug treatment resistance, or to their survival
expectancy. Although gene expression profiling of cancer
has, in a few cases, demonstrated the ability to predict time
of survival [11, 12], no serum signature, i.e., a combination of
serum proteins, has so far been associated with any of the

Correspondence: Professor Carl A. K. Borrebaeck, Department of
Immunotechnology, BMC D13, SE-221 84 Lund, Sweden
E-mail: carl.borrebaeck@immun.lth.se
Fax: 146-46-222-4200

Abbreviations: IL, interleukin; MCP, monocyte chemotactic pro-
tein; PA, pancreatic adenocarcinoma; ROC, receiver operator
characteristic; scFv, single-chain fragment variable; SVM, sup-
port vector machine

DOI 10.1002/pmic.200701167

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



2212 J. Ingvarsson et al. Proteomics 2008, 8, 2211–2219

above clinical parameters, although single inflammatory
analytes such as C-reactive protein (CRP) have been shown
to correlate well with patient survival [13]. Antibody micro-
arrays [3] have been suggested as the technology platform
that eventually could deliver a defined protein biomarker
signature that distinguish cancer from normal patients. Fur-
thermore, a serum sample analysis that can predict survival
time would allow for improved individualized cancer ther-
apy. This has been emphasized for e.g., pancreatic adeno-
carcinomas (PAs), where no tumor-specific markers exist,
and although most patients will have an elevated cancer
antigen 19-9 (CA 19-9) at the time of diagnosis, individual
prognostic markers have shown to be inconclusive [14, 15].
Furthermore, noninvasive approaches, such as computed
tomography, are not sufficiently sensitivity to detect small
tumors, whereas e.g., endoscopic ultrasonography can be
used to survey at-risk individuals for pancreatic lesions [16].
Pancreatic ductal adenocarcinoma is also the most lethal
malignancy by anatomic site, with .30 000 new cases and
deaths annually in the United States alone, and with a 5 year
survival of 3–5%. This extreme mortality is due to the lack of
effective early diagnostic methods and to poor efficacy of
existing therapies for advanced disease [16]. Even the
patients (10–20%) diagnosed with a surgically resectable
tumor, ultimately die of recurrent and metastatic disease.

Consequently, an increased ability to detect and predict
cancer is crucial for individual patient management, and to
increase the analytical resolution we need to adopt novel
high-throughput technologies. The present study describes
an affinity proteomic attempt to explore differences in serum
protein content in cancer patients versus healthy subjects,
based on a recombinant antibody microarray, containing
array adapted single-chain fragment variable (scFv) frag-
ments [17, 18]. The results of this proof-of-concept study
demonstrated that an array of antibody fragments, specific
for immunoregulatory proteins, could discriminate between
human serum proteomes derived from either PA patients or
healthy individuals, based on a signature of 19 non-
redundant serum proteins.

2 Materials and methods

2.1 Production and purification of scFv

One hundred twenty-nine human recombinant scFv anti-
body fragments against sixty different proteins mainly
involved in immunoregulation, were stringently selected
from the n-CoDeR library [18] and kindly provided by BioIn-
vent International AB (Lund, Sweden). Thus, each antigen
was recognized by up to four different scFv fragments. All
scFv antibodies were produced in 100 mL Escherichia coli
cultures and purified from expression supernatants, using
affinity chromatography on Ni-NTA agarose (Qiagen, Hil-
den, Germany). Bound molecules were eluted with 250 mM
imidazole, extensively dialyzed against PBS, and stored at

47C, until further use. The protein concentration was deter-
mined by measuring the absorbance at 280 nm (average
concentration 210 mg/mL, range 60–1090 mg/mL). The puri-
ty was evaluated by 10% SDS-PAGE (Invitrogen, Carlsbad,
CA, USA).

2.2 Serum samples

In total, 44 serum samples were collected, using standard
procedures, at Stockholm South General Hospital (Sweden)
and Lund University Hospital (Lund, Sweden). Serum sam-
ples (24, PA1–PA30) were collected from patients with pan-
creatic ductal adenocarcinoma before initiation of therapy,
whereas 20 serum samples (N1–N20) (no clinical symptoms)
were collected from healthy subjects. Patient demographics
are shown in Table 1. All samples were aliquoted and stored
at 2807C.

Table 1. Patients demographics

Class No. Gender Age

Mean (SD) Range

PA* 10 M 74 (8) 60–85
14 F 69 (14) 31–82

Normal 18 M 49 (23) 22–85
2 F 28 (1) 27–29

All 44 M/F 61 (21) 22–85

PA* = pancreatic adenocarcinoma.

2.3 Labeling of serum samples

The serum samples were labeled using previously optimized
labeling protocols for serum proteomes [7, 10, 19]. All serum
samples were biotinylated using the EZ-Link Sulfo-NHS-LC-
Biotin (Pierce, Rockford, IL, USA). Serum aliquots (50 mL)
were centrifuged at 16 0006g for 20 min at 47C and diluted
1:45 in PBS, resulting in a concentration of about 2 mg/mL.
The samples were then biotinylated by adding sulfo-NHS-
biotin to a final concentration of 0.6 mM for 2 h on ice, with
careful Vortexing every 20 min. Unreacted biotin was
removed by dialysis against PBS for 72 h, using a 3.5 kDa
MW dialysis membrane (Spectrum Laboratories, Rancho
Dominguez, CA, USA). The samples were aliquoted and
stored at 2207C.

2.4 ELISA

The serum concentration of four protein analytes monocyte
chemotactic protein (MCP-3, interleukin (IL-4, IL-5, and IL-
13)) were measured in all samples, using commercial ELISA
kits (Quantikine, R&D Systems, Minneapolis, MN, USA).
The measurements were performed according to the recom-
mendations provided by the supplier.
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2.5 Fabrication and processing of antibody

microarrays

For production of the antibody microarrays, we used a set-up
previously optimized and validated [7, 10, 17, 19]. Briefly, the
scFv microarrays were fabricated, using a noncontact printer
(Biochip Arrayer, PerkinElmer Life & Analytical Sciences),
which deposits approximately 330 pL/drop, using piezo
technology. The scFv antibodies were arrayed by spotting two
drops at each position and the first drop was allowed to dry
out before the second drop was dispensed. The antibodies
were spotted onto black polymer MaxiSorb microarray slides
(NUNC A/S, Roskilde, Denmark), resulting in an average of
5 fmol scFv per spot (range 1.5–25 fmol). Eight replicates of
each scFv clone were arrayed to ensure adequate statistics.
The on-chip performances of the antibodies have been pre-
viously validated e.g., [7, 10, 17, 20], for review see [6, 21]. In
total, 160 antibodies and controls were printed per slide
orientated in two columns with 8680 antibodies per column.
To assist the alignment of the grid during the quantification a
row containing Cy5 conjugated streptavidin (2 mg/mL) was
spotted for every tenth row. A hydrophobic pen (DakoCyto-
mation Pen, DakoCytomation, Glostrup, Denmark) was used
to draw a hydrophobic barrier around the arrays. The arrays
were blocked with 500 mL 5% w/v fat-free milk powder
(Semper AB, Sundbyberg, Sweden) in PBS overnight. All
incubations were conducted in a humidity chamber at room
temperature. The arrays were then washed four times with
400 mL 0.05% Tween-20 in PBS (PBS-T), and incubated with
350 mL biotinylated serum, diluted 1:10 (resulting in a total
serum dilution of 1:450) in 1% w/v fat-free milk powder, and
1% Tween in PBS (PBS-MT) for 1 h. Next, the arrays were
washed four times with 400 mL PBS-T and incubated with
350 mL, 1 mg/mL Alexa-647 conjugated streptavidin, diluted
in PBS-MT for 1 h. Finally, the arrays were washed four
times with 400 mL PBS-T, dried immediately under a stream
of nitrogen gas and scanned with a confocal microarray
scanner (ScanArray Express, PerkinElmer Life and Analyti-
cal Sciences) at 5 mm resolution, using six different scanner
settings. The ScanArray Express software V2.0 (PerkinElmer
Life and Analytical Sciences) was used to quantify the inten-
sity of each spot, using the fixed circle method. The local
background was subtracted and to compensate for possible
local defects, the two highest, and the two lowest replicates
were automatically excluded and each data point represents
the mean value of the remaining four replicates. The coeffi-
cient of correlation for intraassays was .0.99 and for inter-
assays .0.96, respectively.

2.6 Data normalization

Only nonsaturated spots were used for further analysis of the
data. Chip-to-chip normalization of the datasets was per-
formed, using a semiglobal normalization approach, con-
ceptually similar to the normalization developed for DNA
microarrays. Thus, the CV was first calculated for each scFv

and ranked. Fifteen percentage of the scFv antibodies that
displayed the lowest CV-values over all samples were identi-
fied, corresponding to 21 scFvs, and used to calculate a chip-
to-chip normalization factor. The normalization factor Ni was
calculated by the formula Ni = Si/m, where Si is the sum of
the signal intensities for the 21 scFvs for each sample and m
is the sum of the signal intensities for the 21 scFvs averaged
over all samples. Each dataset generated from one sample
was divided with the normalization factor Ni. For the inten-
sities, log2 values were used in the analysis.

2.7 Data analysis

All statistics and data analysis was performed in the statis-
tical language R [22]. The Sammon map, which is an unsu-
pervised analysis, was performed using Euclidean distance
in the space of all 129 analytes. Supervized classification was
done with a support vector machine (SVM) using a linear
kernel (Chih-chung, C., Chih-Jen, L., LIBSVM: a library for
support vector machines. 2007 http//:www.csie.ntu.edu.tw/
cjlin/libsvm) [23, 24]. A SVM attempts to find a hyperplane
that separates the two groups in the trainng set. A test sam-
ple is then classified depending on which side of the hyper-
plane the sample is located. The cost of constraints violation
(the parameter C in the SVM) was fixed to one, which is the
default value in the R function SVM, and no attempt was
done to tune it. This absence of parameter tuning was
chosen to avoid overfitting and to make the classification
procedure more transparent. The output of the SVM on a test
sample is a SVM decision value, which is the signed distance
of the sample to the hyperplane. In Figs. 1C and 2C, the split
into training and test set was done randomly once and kept
fixed from thereon. In Fig. 2A, a leave-one-out cross-
validation procedure is used. For every number K between 1
and 129 the following procedure was carried out. For a
training set, i.e., all samples except one, the K highest ranked
analytes with a Wilcoxon test were chosen, and a SVM was
trained with those K analytes. A SVM decision value was
then calculated for the left out sample with this classifier. As
is common practice, this was done for all samples in the
leave-one-out crossvalidation. Both variants, which are com-
mon practice, the fixed test set and leave-one-out cross-
validation procedures, ensure that the resulting performance
of the classifier can be regarded as blinded tests.

A receiver operating characteristics (ROC) curve was
constructed using the SVM decision values and the area
under the curve (AUC) was found. The ROC area was plotted
as a function of K.

3 Results

One approach to improved diagnosis of pancreatic cancer
would be to identify a set of biomarkers that is associated
with the malignancy. In an attempt to identify such a protein
signature linked to pancreatic cancer, we have designed the
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Figure 1. Scanned microarray image for a PA serum sample analyzed using recombinant antibody microarrays. The microarray is com-
posed of 129 recombinant scFv antibodies dispensed in eight replicates, each array providing 1280 data points (including controls).

Figure 2. Detection of PAs by serum protein expression analysis
using recombinant antibody microarrays. A multidimensional
analysis represented as an unsupervised Sammon plot based on
all 129 antibodies, directed against 60 different serum proteins,
where cancer patients (red, n = 24) are shown to be completely
separated from healthy subjects (blue, n = 20).

first large-scale microarray (Fig. 1) based on 129 recombinant
antibody fragments [7, 10, 17], directed against 60 serum
proteins, mainly of immunoregulatory nature (Table 2). In
this study, directly labeled sera from 24 pancreatic cancer
patients and 20 healthy patients were each incubated on
antibody microarrays. Bound analytes were subsequently
quantified, using a confocal scanner and fluorescence as
mode of detection. The statistical analysis was performed in
two steps. First, to test our ability to detect cancer, the
microarray data was displayed in an unsupervised Sammon
plot based on all 129 antibodies, directed against the 60 dif-
ferent serum proteins, and two distinct populations could be
distinguished (Fig. 2). This indicated the existence of a clear
difference between the cancer and the normal serum pro-
teomes, based on the serum proteins analyzed by the micro-
array. Secondly, we ran a leave-one-out crossvalidation, with
an SVM, and collected the decision values for each sample.
The decision value is the output of the predictor, and samples
with a prediction value above a threshold are predicted to be
pancreatic carcinomas. The threshold parameterizes the

Table 2. The different scFv specificities used for the antibody
microarray

Antigen (no. of clones) Antigen (no. of clones)

IL-1a (3) GLP-1 (1)
IL-1b (3) GLP-1R (1)
IL-1-ra (3) C1q (1)
IL-2 (3) C1s (1)
IL-3 (3) C3 (2)
IL-4 (4) C4 (1)
IL-5 (3) C5 (2)
IL-6 (4) Factor B (1)
IL-7 (2) B (1)
IL-8 (3) Properdin (1)
IL-9 (3) C1-INH (1)
IL-10 (3) CD40L (1)
IL-11 (3) PSA (1)
IL-12 (4) Leptin (1)
IL-13 (3) LDL (2)
IL-16 (3) Integrin a10 (1)
IL-18 (3) Integrin a11 (1)
TGF-b1 (3) Procathepsin (1)
TNF-b (3) Tyrosine-protein kinase BTK (1)
TNF-b (4) Tyrosine-protein kinase JAK3 (1)
INF-g (3) B-lactamase (1)
VEGF (4) Lewisx (2)
Angiomotin (2) Lewisy (1)
MCP-1 (3) B cell lymphoma ag (1)
MCP-3 (3) Sialo Lewisx (1)
MCP-4 (3) MUC-1 (1)
Eotaxin (3) Streptavidin (control) (1)
RANTES (3) Digoxin (control) (1)
GM-CSF (3) FITC (control) (1)
CD40 (4) TAT (control) (2)

trade-off between sensitivity and specificity and is often, but
not always, set to zero. The 24 pancreatic carcinoma sam-
ples obtained decision values in the interval from 0.30 to
1.93, and the healthy samples in the interval from 21.84 to
20.30. Thus, with a threshold value of zero or any other
value between 20.30 and 0.30, the cancer versus healthy
samples were correctly classified with an ROC area (AUC)
of 1.
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In a further attempt to illustrate the clear separation be-
tween the cancer and the normal group and also to identify
the individual serum biomarkers, we randomly selected a
training set from the total of 44 samples. The training set
consisted of 28 samples, 18 cancer and 10 normal samples. A
condensed set of biomarkers consisting of 19 nonredundant
serum proteins, that differed significantly (p,0.05) between
cancer and normal samples could be selected from the
training set (Fig. 3A). These differentially expressed proteins
were subsequently used to construct a dendrogram of the 28
training samples as well as of the 16 samples used as an in-
dependent test set. As seen in Fig. 3B, the test samples were
all correctly classified.

Importantly, the protein signature, defined by the train-
ing and used for classification of the independent test sam-
ples, seemed to be associated with PAs, since it differed from
serum signatures found by our microarray setup in other
cancers such as gastric [17] and breast adenocarcinomas [20].
The expression of four of the serum biomarkers in the sig-
nature, discriminating between cancer and normal samples,
were also confirmed using conventional ELISA. The data for
IL-13, as a representative example, is shown in Fig. 4.

While an early detection of cancer has its merits, espe-
cially in pancreatic cancer, serum protein profiling has also
been suggested as the approach to define signatures that
might be associated with clinical parameters [24]. Predictions
of expected survival time would be of high relevance for the
therapeutic regimes assigned to each patient. Consequently,
in an attempt to further interrogate our recombinant anti-
body microarray platform, we compared two cohorts of can-
cer patients consisting of 18 short survivors (,12 months)

and five long survivors (.24 months), respectively. Leave-
one-out crossvalidation was used to assess the prediction
accuracy for every number of analytes between 1 and 129.
This allowed us to estimate the size of a signature, i.e., the
number of analytes, without considering the nature of an
individual analyte. For every fixed number of analytes, every
sample was left out of the training set once and the number
of analytes separating the short and long survivors in the
training set were chosen. An SVM was trained using those
analytes, and the decision value for the left out sample was
collected. The decision values, one for each of the 23 sam-
ples, were then used to construct ROC curves and the AUC.
Figure 5A shows the AUC as a function of the number of
analytes in the signature.

It was evident that the two different cohorts can be dis-
criminated, with an ROC area (AUC) of .0.80. Figure 5A
also shows that protein signatures consisting of less then
approximately 26 analytes yielded more variability and less
robust signatures. Consequently, to obtain less variability
and still keep the number of analytes to a minimum, we
chose to work with a signature size of 29 analytes for further
analysis. The ROC curve for 29 analytes had an AUC value of
0.86 (Fig. 5B).

To illustrate the predictive ability of a signature consist-
ing of 29 proteins, the cancer patients (n = 23) comprising
short- and long-term survivors, were randomly split into a
training set of 13 patients and a test set of 10 patients. The 29
most significant analytes in this training set (Wilcoxon test)
were then used to train an SVM and the prediction values
were plotted against each patient. Figure 6A shows that the
training set classified the samples correctly. The test set of

Figure 3. Comparison of protein expression serum signatures from pancreatic cancer patients versus healthy subjects. (A) Two-way hier-
archial cluster analysis based on the 19 nonredundant serum protein analytes that were found to be differentially expressed (p,0.05) in
cancer patients versus healthy controls, using a training set composed of 28 samples (18 cancer and 10 controls). Columns represent
donors, where red is cancer patients (PA) and blue is healthy controls (N). Each row represents a serum biomarker, as denoted on the right
hand side, where each pixel demonstrates the expression level of that particular biomarker in each donor (over-expression (red), under-
expression (green), or no change (black) in pancreatic cancer sera vs. normal sera). (B) Two-way hierarchial cluster analysis of a test set
(marked by arrows) composed of 16 serum samples (six cancer and ten controls) using the biomarker signature identified in (A). For visu-
alization, the training set is also included in the dendrogram.

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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Figure 4. Validation of the antibody microaray data using ELISA.
The serum levels of several of the candidate biomarkers, such as
IL-4, IL-5, IL-13, and MCP-1, were confirmed using ELISA. A
representative result, obtained for IL-13 is shown.

ten different patient samples was then classified, using this
signature. The prediction values of the test samples are
shown in Fig. 6B. All patients surviving ,12 months were
correctly classified, using an SVM prediction value threshold
of 0. One long-term survivor was misclassified. The 29 most
significant analytes separating long- and short-term survi-
vors were subsequently identified as 21 nonredundant
serum proteins (eight out of the 29 analytes were duplicates
but defined by different antibody clones). The differential
expression levels of the 21 nonredundant proteins in all
patients are shown as a heat map in Fig. 7, where the short
and long survivors are grouped. However, a study with more
than 18 short survivors and five long survivors is needed to

establish a survival classifying protein profile, although the
data indicates the possibility for the existence of such a pro-
file. When analyzing the individual proteins there was no
strict consensus patter among the serum proteins, although
it was evident that cytokines, such as IL-1a, IL-3, IL-8, and IL-
11 were upregulated in short term survivors, while Rantes,
IL-16, IL-4, and eotaxin were mostly upregulated in long
term survivors. The significance of this remains to be vali-
dated but it could indicate a more active T-cell compartment
in the latter population.

4 Discussion

Antibody microarrays have evolved over the last several years
from a promising tool, in affinity proteomics, to an approach
that is starting to deliver promising results, in particular in
oncoproteomics [3, 9, 17, 25]. The main focus of these
endeavors has been to detect cancer at an early stage, to pre-
dict tumor relapse and treatment resistance, or to select
patients for a particular treatment regime [3]. This is, in par-
ticular, important for cancers with poor prognosis, which is
also intrinsic to pancreatic cancer since it rapidly metasta-
sizes to, e.g., lymph nodes, lungs, and peritoneum [14] and is
difficult to diagnose at an early stage. However, the ability of
a biomarker signature to distinguish between different car-
cinomas or between cancer and inflammation has so far
been difficult to achieve [26], for review see [3]. The reason for
the observed distinction between cancer and normal serum
proteomes in this study is most likely dependent on the
range of antibody specificities on the microarray, which is
also recently supported by the rationally designed array,

Figure 5. Influence of signature size on the discrimination between short (,12 months) versus long (.24 months) surviving cancer
patients. (A) ROC area as a function of the number of analytes, from 1 to 129, included in a tentative predictor signature, based on a leave-
one-out crossvalidation, using all 23 cancer patients. (B) The ROC area of a serum biomarker signature, based on 29 identified analytes.
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Figure 6. Identification of a signature discriminating between short (,12 months) versus long (.24 months) surviving cancer patients. (A)
Identification of the 29 most significantly expressed analytes, between short (red) and long (blue) survivors, based on a training set com-
posed of ten short survivors and three long survivors. This corresponds to 21 nonredundant serum proteins. (B) Classification of a test set
(marked by arrows) composed of ten samples (eight short survivors and two long survivors) into short survivors (red) and long survivors
(blue), using the signature identified in (A). For visualization, the training set is also included in the plot.

Figure 7. A heatmap of individ-
ual analytes from short survi-
vors versus long survivors. The
columns represent cancer
patients, where blue is long
(.24 months) survivors and red
is short (,12 months) survivors.
See legend to Fig. 3A for color
coding.

reported by Sanchez-Carbayo et al. [9]. These investigators
could stratify patients with bladder tumors on the basis of
their overall survival, using antibodies generated against dif-
ferentially expressed gene products. During the last years, we
have developed a high-performing, recombinant antibody
microarray platform for complex proteome analysis [6, 7, 10,
17, 21], by evaluating and optimizing key technological pa-
rameters [6] such as probe and substrate design [7, 18, 21,

27], array/assay design [10, 19], and sample format [7, 10, 19].
This has allowed us to perform differential protein expres-
sion profiling of the human plasma proteome, using the
optimized scFv microarrays targeting mainly immuno-
regulatory proteins. In agreement with previous result, this
antibody microarray displayed sensitivities in the picomolar
to femtomolar range, allowing us to detect low-abundant
analytes, such as cytokines. Furthermore, we maintained an

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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assay reproducibility with a coefficient of correlation in the
range of 0.96–0.99, which is a key feature of multiplexed
analysis and which compares well with previous reports [8,
10, 17].

Patients with pancreatic cancer are often diagnosed late,
resulting in a poor prognosis. Due to low incidence it is fairly
difficult to gather large sample numbers, especially for long-
term survivors, i.e., .24 months. We had access to 24 patients
for this study, which using a rigorous statistical evaluation
still supported an attempt to classify cancer and normal pro-
teomes. We have employed an SVM for supervised classifica-
tion. Very similar results were obtained with a naive Bayesian
classifier (data not shown). The SVM separated the two
groups by finding a hyperplane in space of all analytes, from
which the prediction or decision values were found (Fig. 6B).
The hyperplane and, thus, the classification of groups, was
determined by the training set. The performance of the clas-
sifier was then estimated by using an independent test set.
Very importantly no overlap between the training and test set
was allowed. However, a dataset can randomly be split into
different training and an independent test set. The final
result then depends on the split into training and test set.
Consequently, we used crossvalidation as the procedure of
making several splits of our dataset and used the average
performance of the test sets as a measure of the accuracy of
data classification. Thus, in the leave-one-out crossvalidation
that was performed, the test set contains one sample and the
training set contains the remainder. The performance of the
SVM as measured by the ROC curve was very good. The nor-
mal and pancreatic carcinoma samples were remarkably well
separated, with a gap between the two groups.

In this study, we did not compare the cancer patients
with a cohort of patients with chronic pancreatitis. This
could have been a relevant comparison, although the differ-
ential diagnosis of cancer and pancreatitis is normally not a
problem, due to improved magnetic resonance cholangio-
pancreatography (MRCP) to visualize the biliary tract and
pancreatic ducts. However, since chronic pancreatitis most
probably would have displayed an inflammatory signature,
we compared the present signature associated with pan-
creatic cancer with several other signatures associated with
inflammation. The present pancreatic cancer associated bio-
marker signature only had eotaxin, IL-5, and IL-13 in com-
mon with 14 biomarkers found as a result of a Helicobacter
pylori-based infection, associated with gastrointestinal cancer
[17], indicating that our pancreatic signature was not related
to general inflammation. Furthermore, our signature was
not similar to serum biomarkers found in systemic lupus
erythematosus, an autoimmune disorder with a significant
inflammatory component (Wingren et al., manuscript in
preparation). The signature was also completely different
from what Orchekowski et al. [8] reported, when profiling
pancreatic cancer serum samples, using a microarray based
on monoclonal and polyclonal antibodies. They analyzed
serum proteins, such as albumin, transferrin, and hemoglo-
bin, as well as more common inflammation markers, such

as CRP, serum amyloid A, and Igs together with eight dif-
ferent cytokines. Furthermore, our present cancer signature
contained a number of overexpressed Th2 cytokines (IL-4, -5,
and -13), whereas classical Th1 cytokines (IL-12 and TNF-b)
were downregulated. This was also in agreement with the
study of Bellone et al. [28], who showed that blood-derived
monocytes from pancreatic cancer patients were primed to
develop a TH2-like response, rather than a TH1-like re-
sponse, with increased expression of IL-4, and decreased
expression of IL-12 [28]. Taken together, the proposed serum
signature associated with pancreatic cancer does not resem-
ble any of the reported inflammatory signatures. In the
comparison between cancer versus normal subjects, there
was a different gender, and age distribution between normal
and pancreatic patients, which opens the possibility that our
classifier is affected by age or gender instead of cancer. As
can be seen in Table 1, there is a skewed age distribution be-
tween the cancer and normal samples. The cancer patients
were on average older than the normal persons, which opens
up the possibility that the signature proteins distinguished
age instead of cancer, i.e., that age is a confounding factor.
However, if that was the case, the normal samples from older
subjects would have been classified as cancer, and the cancer
samples from younger subjects would have been classified as
normal, which did not happen. All samples were correctly
classified as normal or cancer by both the hierarchical clus-
tering (Fig. 3B) and the SVM. The same argument applies to
gender, i.e., if the classifier was predicting females instead of
cancer, the ten males with cancer and the two normal
females would have been misclassified.

In conclusion, using a recombinant antibody microarray
against immunoregulatory proteins, we have been able to
detect PAs and discriminate between cancer versus normal
serum proteomes. The first attempt to define a signature
capable of predicting survival of cancer patients was also
made. Taken together, the result indicates the power of af-
finity oncoproteomics, in particular based on antibody
microarrays, for future clinical decision making.
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