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The metaphor of a potential epigenetic differentiation landscape broadly

suggests that during differentiation a stem cell approaches a stable equili-

brium state from a higher free energy towards a stable equilibrium state

which represents the final cell type. It has been conjectured that there is

an analogy to the concept of entropy in statistical mechanics. In this context,

in the undifferentiated state, the entropy would be large since fewer

constraints exist on the gene expression programmes of the cell. As differen-

tiation progresses, gene expression programmes become more and more

constrained and thus the entropy would be expected to decrease. In order

to assess these predictions, we compute the Shannon entropy for time-

resolved single-cell gene expression data in two different experimental

set-ups of haematopoietic differentiation. We find that the behaviour of

this entropy measure is in contrast to these predictions. In particular, we

find that the Shannon entropy is not a decreasing function of developmental

pseudo-time but instead it increases towards the time point of commitment

before decreasing again. This behaviour is consistent with an increase in

gene expression disorder observed in populations sampled at the time

point of commitment. Single cells in these populations exhibit different com-

binations of regulator activity that suggest the presence of multiple

configurations of a potential differentiation network as a result of multiple

entry points into the committed state.
1. Introduction
The programmes governing the function and fate of cells are to a large extent

driven by the coordinated activity of transcription factors forming complex

and dynamic gene regulatory networks (GRNs). The activities of transcription

factors and other genes involved in cell fate decisions can be measured by a

number of different gene expression quantification experiments. Until recently,

and due to technical limitations, for a given cell type such experiments had to

be done on an ensemble of many cells and, hence, gene expression quantifi-

cations represented the average over a given population. This averaging effect

hampered the analysis of finer regulatory mechanisms at the single-cell level,

the fundamental unit for any fate decision process. More recently, a number

of novel technologies have facilitated gene expression measurements for indi-

vidual cells, thereby opening up the possibility of quantifying heterogeneity

among cells of a given population and between related populations (for a

review, see, for example, [1]). Such heterogeneity could originate from extrinsic

factors, such as cell-to-cell signalling and surrounding temperature and

pressure, but also from the intrinsic noise generated by having few copies of

molecules involved in transcription and translation. Whether intrinsic noise is

simply a result of the stochastic nature of any cellular process or it actually
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Figure 1. Binary Shannon entropies during haematopoietic differentiation.
(a) Depiction of a haematopoietic stem cell differentiation tree. For each
of the cellular populations, we used single-cell gene expression for a
number of relevant genes as quantified in [3]. LTHSC, long-term haemato-
poietic stem cell; MPP, multipotent progenitor; CMP, common myeloid
progenitor; CLP, common lymphoid progenitor; GMP, granulocyte – monocyte
progenitor; MEP, megakaryocyte – erythroid progenitor. (b) Binary Shannon
entropy estimates based on single-cell expressions of all genes for each popu-
lation in (a), with standard error obtained with the jackknife method (see
text for details; the values are given in table 1). A significant increase in
entropy can be observed immediately after the first branching point, between
MPP and CLP/CMP.
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plays a mechanistic role in cellular decision-making processes

during differentiation is currently the object of intense study.

Entropy in statistical mechanics is a measure of disorder in

the macrostate of a system. The more different microstates are

visited the higher the entropy. Mathematically, the statistical

mechanical entropy is equivalent to the information-theoretic

Shannon entropy, where the latter measures the amount of

randomness in a probability distribution [2]. Hence, the

Shannon entropy of a probability distribution over gene

expression levels in a cell population measures the amount

of randomness or heterogeneity in its gene expression patterns.

Therefore, estimating the Shannon entropy of a cell population

might yield insights into the role of gene expression heterogen-

eity, which would be of particular interest in a context of state

transitions such as cellular differentiation.

With the upsurge of studies of stem cell commitment

processes during the last decade the subject of heterogeneity

is of particular interest. Since stem cells and progenitors host

the genetic programme potential for all mature cell types they

can give rise to, one would naively expect them to be strongly

disordered in terms of gene expression patterns compared

with the mature cells they originate. Expressing order or dis-

order as a lack thereof by means of entropy could be a

way forward in monitoring commitment of stem cells, and

differentiation towards mature cells.

We have therefore explored such scenarios of stem cell

commitment and differentiation for two haematopoietic

differentiation systems. (i) The first system [3] consists of

long-term haematopoietic stem cells (LTHSCs) which differ-

entiate into multipotent progenitors (MPPs) before

bifurcating into common myeloid progenitors (CMPs) or

common lymphoid progenitors (CLPs), as illustrated in

figure 1a. In this first system, we are interested in quantifying

the entropy while the system moves from less differentiated

to more differentiated compartments and, in particular, in

assessing how the entropy behaves before and after the first

major branching point. (ii) The second system is an example

of haematopoietic differentiation at a more fine-grained resol-

ution. We use gene expression data immediately before and

after an erythroid commitment decision [4] in the factor-

dependent multipotent haematopoietic cell line erythroid

myeloid lymphoid (EML). As in the first system, we are inter-

ested in assessing how entropy values change from a less to a

more constrained differentiation state, across the point where

an irreversible decision has been made.

2. Single-cell gene expression data
For this study, we considered two sets of previously

published single-cell quantitative reverse transcription poly-

merase chain reaction (RT-qPCR) data that included

candidate genes known to be involved at different stages

of haematopoietic differentiation. From Guo et al. [3], we

analysed the data from 179 regulators that included

lineage-specific transcription factors, epigenetic modifiers

and cell-cycle regulators. The expression of these genes

was quantified in a total of 191 cells from different stem

and progenitor cell populations: LTHSCs, MPPs, CLPs,

CMPs, granulocyte–monocyte progenitors (GMPs) and

megakaryocyte–erythroid progenitors (MEPs). For each

gene, expression is defined as log2 expression above the

system background Ct of 28 (i.e. 28 minus the measured

raw Ct). Ct values higher than 28 were transformed to 28
and defined as being 0 (no measurable gene expression).

For more experimental details on population sorting, the

PCR protocol and gene filtering/normalization we refer to

the original paper [3]. From Pina et al. [4], we analysed

single-cell gene expression data from different subpopulations

of the multipotent haematopoietic cell line EML. More specifi-

cally, we focused on RT-qPCR data for 17 genes measured in

319 self-renewing (SR), 109 erythroid-committed (CP) and 83

erythroid-differentiated (Ediff) cells. Through clustering and

multivariate methods, the CP population was further subdi-

vided into two compartments, CP1 and CP2, as described in

Teles et al. [5]. CP1 and CP2 have been inferred to be early

and late committed cells, respectively, given the similarity of

their gene expression profiles to the SR (in the case of CP1)

or Ediff (in the case of CP2) populations. For all genes,

expression was originally defined as DCt for each gene to

the reference gene (Atp5a1) and linearly transformed to

ln(230 – DCt), where 30 is the experimental detection limit.

For more information on culture conditions, cell sorting and

gene filtering/normalization we refer to [4].
3. Entropy estimation
The standard Shannon entropy is a function of a discrete

probability distribution while gene expression, in general, is

http://rsfs.royalsocietypublishing.org/
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measured on a continuous scale. Hence, the data need to be

discretized for the entropy to be measured. The alternative

is to estimate the generalized Shannon entropy for continu-

ous distributions (for example [2]). However, both

definition and estimation of continuous Shannon entropy

are afflicted with problems, such as requiring large data

and potentially returning negative values. We, therefore, do

not consider the continuous Shannon entropy any further

here, but we will offer some insights into its use in the context

of gene expression data in a forthcoming publication.

In discretizing continuous gene expression data into bins,

the decision of how many bins to use is a difficult one

when there is no obvious and biologically justified separation

between expression levels. Hence, in this study, only two

obviously separate levels are distinguished between: the zero

expression level and the greater-than-zero expression level.

From this, the binary Shannon entropy (equation (3.1)) is esti-

mated. The Shannon entropy of a binary probability

distribution P over two events (representing the two bins),

each with probability p0 and p1, respectively, is defined as

H(P) :¼ �p0 log2 (p0)� p1 log2 (p1), ð3:1Þ

where 0 log 0 :¼ 0. The Shannon entropy is symmetric in the

probabilities of the two events, it is zero whenever either p0 ¼

0 or p1 ¼ 0, and it is maximal when p0 ¼ p1 ¼ 1
2, in which case

H(P) ¼ 1.

The Shannon entropy for a joint probability distribution is

defined in a similar way. Let P12 be a joint distribution over

two binary events, with respective probabilities p00, p01, p10

and p11. Then the Shannon entropy over this joint distribution

is defined as

H(P12) :¼ �
X

i[{00,01,10,11}

pi log2 (pi), ð3:2Þ

with 0 log 0 :¼ 0 as before.

The entropies of the gene expression data in this study

were estimated using the maximum-likelihood method. It is

known that for cases of few bins and many data points this

estimator is optimal (e.g. [6, p. 1470]). The results were

compared with those obtained with other estimators such

as the non-parametric James–Stein-type shrinkage estimator,

developed by Hausser & Strimmer [6], and the Miller

Meadow estimator. No qualitative difference was observed.

The minor observed quantitative differences were due to a

systematic overcorrection in the Miller Meadow estimator

which lead to single entropies larger than 1, and due to a mis-

match between single entropies (H(P)) and self-joint entropies

(H(P11)) in the James–Stein-type estimator. All estimators,

together with other entropy estimators, were computed

using the R package ‘entropy’ [7].

Entropy is not the only measure of randomness or vari-

ation of a random variable. An obvious one to compare it

with is the variance. In the case of a binary random variable,

there is a straightforward mathematical relation between the

variance and the entropy. Using the same notation as in

equation (3.1), the variance of a binary random variable is

given by

Var(P) ¼ p1(1� p1): ð3:3Þ

The variance and the entropy of a binary probability distri-

bution both peak at p0 ¼ p1 ¼ 1
2 and are equal to zero for

p0 ¼ 0 or p0 ¼ 1. Thus, the variance computed for the same
dataset will show the same qualitative behaviour as the

entropy. We computed the sample variance for both gene

expression data sets (not included here) and found this

mathematical prediction confirmed.

The true strength of the Shannon entropy over other

statistical measures of randomness is both that it can be gen-

eralized to a set of n correlated random variables and that it

is an entry point to a whole set of information-theoretic tools

which quantify randomness of and correlations between any

number of variables. Less relevant here but still worth

noting is that the Shannon entropy is applicable to data

which are non-numeric, such as DNA sequences, molecular

configurations or written text. Furthermore, as mentioned in

the beginning, the Shannon entropy is proportional to the

statistical mechanical Gibbs entropy (although the debate

on the interpretation of this mathematical fact is still

ongoing [8]). Hence, the Shannon entropy can be used

directly in discussions of a potential epigenetic differen-

tiation landscape imposing statistical mechanical

constraints on genetic development through the laws of

thermodynamics.

3.1. Standard error of entropy estimates
To obtain the standard error (the root mean squared error) of

the entropy estimates, the non-parametric jackknife method

was used [9]. There are many comprehensive expositions of

this method, e.g. [10,11]. We briefly summarize it here: for

a set of n samples of a random variable (r.v.), an estimator

û of the r.v. (such as the mean, the variance or the entropy)

is computed n times, each time with one of the data points

being removed. Call this estimate û(i), where the ith data

point was removed. Efron showed [9] that the standard

error of the estimate is given by

sJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

Xn

i¼1

(û(i) � û(�))
2

s
, ð3:4Þ

where û(�) is the average of the estimates,

u(�) ¼
Xn

i¼1

û(i)

n
: ð3:5Þ

4. Results
4.1. Long-term haematopoietic stem cell differentiation
We estimated the binary Shannon entropy for all cell popu-

lations as defined by surface markers of the haematopoietic

differentiation tree (figure 1a) described in [3] from which

the gene expression data are also taken. The results are

shown in figure 1. Contrary to what has been conjectured

and to what could intuitively a priori be expected, entropy

was not found to be a continuously decreasing function

along the differentiation pathway (figure 1a). Instead, we

observed that entropy slightly decreases from the LTHSC

stage to the MPP stage and shows a significant increase

between the MPP stage and both the CLP and the CMP

stages, before decreasing again sharply between the CMP

and both the GMP and the MEP stages.

We have also computed the joint binary Shannon entropy

for all pairs of genes, shown in table 1. The observed trend is

the same as for the marginal (single gene) entropy: a slight

decrease from the LTHSC stage to the MPP stage, a

http://rsfs.royalsocietypublishing.org/


Table 1. Normalized binary Shannon entropies during haematopoietic
differentiation for pairs of genes (H(P12)) and single genes (H(P)) including
standard deviation, for a number of relevant genes as quantified in [3].
The values H(P) are plotted in figure 1.

H(P12) H(P)

LTHSCs 0.534+ 0.001 0.539+ 0.008

MPPs 0.508+ 0.001 0.514+ 0.008

CLPs 0.605+ 0.001 0.625+ 0.011

CMPs 0.576+ 0.001 0.598+ 0.013

GMPs 0.476+ 0.001 0.493+ 0.013

MEPs 0.457+ 0.001 0.470+ 0.013
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significant increase between the MPP and both the CLP and

the CMP stage, and a sharp decrease again between the

CMP and both the GMP and the MEP stages. The slightly

lower values of (normalized) H(P12) compared with H(P)

indicate that there are correlations in the gene expression

data. Note that P is a marginal distribution over single gene

expressions while P12 is the joint distribution. In general,

for a joint probability distribution P12 and its marginal P1

and P2 (in our case the two marginals are equal due to sym-

metry), the difference between the two (normalized)

entropies, H(P1)�H(P12) ¼ 1

2
I(P12 : P1P2), is half the mutual

information I(P12 : P1P2), where P1P2 is the product distri-

bution. The mutual information is a measure of correlation

on the joint distribution [2]. Such correlations may suggest

some level of coordination in the expression programmes,

which could potentially decrease the level of entropy when

considering two genes together when compared with the

entropies of single genes separately.

4.2. EML cell line erythroid commitment
To further investigate entropy dynamics during

differentiation, we estimated binary entropies for subpopu-

lations of the EML cell line immediately before and after

erythroid commitment, from SR to CP populations [4,5]

(figure 2a). As can be seen in figure 2b, the entropy values

are highest immediately after the decision point, similar to

what we observed for the MPP to CMP/CLP transition.

Entropy increases from SR to CP1 and decreases again from

CP1 to CP2 and from CP2 to Ediff, the late commitment

and terminally differentiated populations, respectively.

As previously described by the authors of [4,5], CP1 cells

show heterogeneity in the expression of known regulators of

the erythroid lineage such as Gata1 and Klf1. This obser-

vation is consistent with the notion that commitment can

be effected even in the absence of the so-called master regu-

lators, and that multiple network configurations can coexist

immediately after commitment, subsequently consolidating

and becoming more homogeneous in the population as

cells differentiate. We tried to further explore this scenario

by analysing the single-gene entropy behaviours for genes

involved in erythroid differentiation before and after commit-

ment (i.e. in SR versus CP1 populations). As can be seen in

figure 2c, Gata1, Zfpm1, Klf1, Epor and Lyl1 all show an

increase in entropy from SR to CP1, subsequently decreasing

through CP2 and Ediff. Interestingly, myeloid-affiliated genes

such as Mpo also show this pattern (PU.1 seems to increase in
entropy only in the late commitment CP1 population). Also

of note is the fact that Gata2 displays the opposite behaviour

to the other referred erythroid genes, decreasing in entropy in

CP1 to then increase again in CP2 and Ediff.
5. Discussion
The interpretation of these results calls for a more careful

interpretation of the entropy values and what they may sig-

nify in terms of the underlying biology of differentiation

(figure 3). Mathematically, a gene has maximum entropy

for a given population when half the cells of that population

express the gene and the other half does not. High entropy

just after a decision point, however, would be, naively, con-

trary to a more deterministic picture where, in order for a

cell to progress to a more differentiated state, a set of key reg-

ulators would be required to be active and, likewise, key

regulators of other lineages that could act as antagonists

would need to be repressed. If this assumption was correct,

we would expect the entropies of those key regulator genes

to be low after a branching point such as the MPP to CMP/

CLP transition, since they would be expected to be either

always present or always absent in all post-commitment

cells. Since cells can display a high level of heterogeneity in

expression of key regulators even after commitment has

occurred, this deterministic view is most probably not

entirely accurate. These observations suggest that commit-

ment into a more differentiated compartment could thus

occur through multiple pathways, each representative of a

different substate of the differentiation GRN. Higher values

of entropy would then be caused by the different expression

profiles of these GRN substates when more than one substate

is present in the population.

Our results are consistent with the notion that entropy, as

a measure of gene expression disorder, highlights the hetero-

geneous nature of cell fate decisions through multiple

pathways defined by different GRN configurations. In the

first analysed dataset, we observed that entropy increases

after the MPP branching point, with both CMP and CLP

populations showing significantly higher entropy values

than that of MPP. We further expanded on this observation

by analysing a second dataset which sampled populations

of the EML cell line, allowing the capture of cellular states

immediately before and after the erythroid commitment

boundary. As before, we observed an increase in entropy

immediately after commitment, from the SR to the CP1 popu-

lation, consistent with our previous results. Furthermore, we

explored the entropy values for single genes and observed

this SR-to-CP1 increase for known erythroid regulators (e.g.

Gata1, Klf1 and Fog1) as well as some myeloid regulators

(e.g. Mpo) (figure 2c; electronic supplementary material,

figure S1). Interestingly, Gata2 shows the opposite trend,

with entropy decreasing to zero in the CP1 population,

suggesting that for some regulators there is more stringent

regulation leading to all cells of the committed population

showing the same expression profile (in this case, all cells

express Gata2). This result is consistent with previous predic-

tions that Gata2 sets two regulatory modes in SR cells [5]: a

restrictive mode when not expressed, effectively blocking

commitment, and a permissive mode when expressed, allow-

ing commitment to occur through different combinations of

other regulators in the network.

http://rsfs.royalsocietypublishing.org/
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Figure 2. Binary Shannon entropies of the EML cell line. (a) Depiction of subpopulations of the EML cell line allowing the capture of states immediately before (SR,
self-renewing cells) and after (CP, committed progenitors) commitment. For each population, we used single-cell gene expression quantification for a number of
candidate genes as measured in [4]. CP1 and CP2 are, respectively, early and late committed progenitors; Ediff, erythroid-differentiated cells. (b) Binary Shannon
entropy estimates for all genes in each population in (a), with standard error obtained with the jackknife method (see text for details). Entropy values increase
immediately after the commitment boundary, in the transition between SR and CP1, decreasing again from CP1 to CP2 and Ediff. (c) Binary Shannon entropy
estimates for known genes of interest in erythroid (red) and myeloid (green) differentiation (error bars omitted for simplicity). For the remaining genes in the
dataset, please see the electronic supplementary material, figure S1.
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There are still a number of potential caveats and

unresolved questions that require further discussion. An

important point is that in both datasets the gene set was

chosen a priori and thus results are, by definition, biased. In

other words, the entropy behaviour we observe is dependent

on the set of genes under analysis. In both systems analysed

here, gene selection was informed by potential relevance for

the differentiation process, which in principle allows the

entropy values to be informative in that context.

Another question regards the biological interpretation of

high entropy values. In the context of the data, and in light

of the work of others, we assume the existence of multiple

entries into a committed or more differentiated state, in

which case the interpretation of high entropy is the presence

of disorder in the differentiation network, as given by that

snapshot of the population (figure 3). Our interpretation of

the temporary entropy increase due to the availability of sev-

eral pathways to the next stage has the implicit assumption

that, in this case, the choice among these is driven by internal

noise. An additional possibility is that the decision is effected

via an external signal as is suggested in [12]. In this work the

authors make an analogy with chemistry principles and pro-

pose the existence of a ‘transition state’, heterogeneous at the

population level, where individual cells exhibit different
transcriptional profiles resulting in interconvertible substates

of a differentiation gene expression network. The main differ-

ence between this transition state and what we consider to be

the committed state is the fact that in the latter, and in virtue of

the experimental data upon which we based our analysis, we

do not consider the existence of a reversion probability from

each of the subnetworks to a ‘pre-commitment’ configuration.

An alternative explanation, however, could be that high

entropy comes from a gene that is not actively regulated,

for instance, because it is not important for that population,

in which case we would expect a 50/50 presence at any

given moment for that population. This is very unlikely if

we assume that, in order to save energy resources, a cell

will most likely not express a gene until it has to do so [13].

In principle, high entropy genes could also be those with

cyclic behaviour, e.g. a cell cycle gene. However, such

genes are not included in our analysis.

Calculating joint entropies for more than one gene or

mutual information values for small sets of genes allows us

to distinguish potentially spurious high entropy values

from cases where high entropies are the result of some

degree of coordination between genes.

In the first part of our results, we followed the more

classical description of the haematopoietic branching tree

http://rsfs.royalsocietypublishing.org/
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(figure 1a). It should be noted however that this is not a con-

sensual description and multiple versions have been put

forward based on different types of data [14]. Guo et al.
suggest that their results support an alternative architecture

where lymphomyeloid lineage commitment may happen

upstream of the CLP/CMP separation [15–17]. In particular,

through network inference methods and further validation

experiments, they detected signs of coordinated MegE tran-

scriptional priming in haematopoietic stem cells. Using the

same set of 179 regulators, our entropy estimates still suggest

increased activity at the CLP/CMP bifurcation.

From the point of view of the data themselves, we delib-

erately use only the binary information of whether gene

activity is present or absent. A second aspect of the data is

the continuous distribution of values when the gene is

active, for which we are currently developing analysis pro-

tocols. From the biological point of view, we can say that

in this paper we assume a ‘digital’ approach to gene

expression where we consider all or nothing effects (the

gene is either on or off ). This may be a more adequate

approximation to some genes than others, where ‘analogue’

regulation by fine-tuning expression levels may be more rel-

evant. The digital and analogue views are also not mutually

exclusive and a more careful exploration of the mechanistic

basis and biological function of these two modes would

greatly benefit the community [18,19].

Related work includes [20], where it is argued in general

terms that cell population entropy is positively related to

developmental potency. In [21] one also investigates the

hypothesis that entropy is monotonically decreasing during

differentiation. The authors develop a Fokker–Planck-type

model for the expression of a single gene, Sca1, from which

they predict a probability density. They compute a differen-

tiation potential which they find to continuously decrease

and conclude that the initial density is close to the maximum

entropy distribution. In [22], the signalling entropy [23] is

computed for single-cell expression measurements during
stem cell differentiation. The main difference from our analy-

sis is in the computation of the entropy. The signalling

entropy is extracted from a known protein–protein network

whose edges are weighted by the single-cell expression

data. This gives rise to a random walk on the network from

which entropies are extracted. In contrast to this, our analysis

uses the raw expression data directly to compute the entropy

of the expression distribution, without the intermediate step

of a network. Their results differ from ours as they exhibit

a monotonic decrease throughout differentiation. All these

previous studies conclude that both the entropy and a

second variable, called free energy or developmental

potency, are decreasing continuously during the differen-

tiation process. Our analysis shows that the behaviour of

the entropy is different from what is expected from these

models. In figure 4, we show a schematic of the development

of entropy and free energy during development. The size of

the red circle indicates the first increasing and then

http://rsfs.royalsocietypublishing.org/
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decreasing entropy while the cell is on a free-energy slope

towards commitment. Ideally one would compute the free

energy from the data. But that requires a model for the

internal energy for which one needs the interactions between

all the participating genes together with model parameters,

neither of which are known. Furthermore, with commonly

used dynamic models, e.g. Hill equations, there is no

energy function correspondence.

In [25], a similar entropy analysis was done using a differ-

ent single-cell dataset. A non-monotonic decrease towards

differentiation was found. However, the entropy estimation

method does not take into account the dependency on the

number of bins the data are discretized into, which we

found to be significant—hence our choice to distinguish

between on and off values only. Also, in [25] no comment

is made on the statistical accuracy of estimating N/2 probabil-

ities from the measurement of N cells. Given the known

statistical limitation of a probability distribution estimate

from very sparse data, as is the case in [25], we hesitate to

make more detailed comparisons with our study.

The often repeated interpretation of (supposed) high

entropy in the stem cell stage is that a cell is maximally non-

committal with respect to its identity in a differentiated

stage. However, there might be a trade-off between high

entropy, which involves expression of about half the genes

but allows for a non-committal starting position, versus

low expression, which is energetically cheaper but does

not prepare for various different pathways to enter. In, for

example, [26], nonlinear dynamic models of differentiating

cells are presented, which can be considered to be a comp-

lementary approach to ours, where we in contrast present

experimental data and a non-parametric analysis in

terms of entropy.
5.1. Concluding remarks
In this study, we have found that the Shannon entropy is

not a decreasing function of developmental pseudo-time, as

predicted by others in the field, but instead it increases

towards the point of differentiation before decreasing again.

This behaviour was interpreted as different combinations of

regulator activity, suggesting the presence of multiple

configurations of the differentiation network as a result of

multiple entry points into the committed state.

Assuming that the interpretation of increased entropy

during commitment transitions is correct, a practical appli-

cation of entropy measurements along a differentiation

trajectory would be to measure the entropy in time series

or pseudo-time series [27] from static gene expression data

to obtain a signal for where crucial changes in development

take place. This would allow narrowing in on important

developmental transitions independently of surface marker

classification of cellular populations.
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