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We study 3-dimensional SU(2) lattice gauge theory with respect to dimensional reduction By
Monte Carlo calculations we find that this reduction 1s vahd to a good approximation (within
=10%) The adjoint string tension ts found to scale approximately We also compare the adjoint
string tension with a string theory

1. Introduction

In a previous paper [1] we have investigated the phenomenon of dimensional
reduction n four-dimensional SU(2) lattice gauge theory It turns out that to a good
approximation (=10%) the four-dimensional theory reduces to the corresponding
two-dimensional theory at large distances.

In the present paper we investigate whether a similar phenomenon holds 1n
three-dimensional SU(2) lattice gauge theory Thus we want to investigate whether
at large distances the three-dimensional theory reduces to the corresponding two-
dimensional theory

Dimensional reductton has been shown exphcitly to occur in solid state physics
[2] for systems described by random fields If certain assumptions are satisfied a
d-dimensional system in a random field has a large distance behaviour which 1s
equivalent to the same (d —2)-dimensional system without the external random
field If the QCD ground state can be characterized by a random colour magnetic
field, 1t was then suggested by two of the authors [3] that a phenomenon similar to
the solid state case could occur in QCD However, the reduction d - (d —2) 1s based
on some simplifying assumptions, and 1n general more complicated reductions are
expected even 1n solid state physics

The main motivation for the work reported 1n the present paper 1s therefore to
study 1f the d - (d —2) reduction 1s valid in QCD. If 1t 1s valid, a three-dimensional
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system would not reduce approximately to a two-dimensional system at large
distances

Our result 1s that to a good approximation a three-dimensional SU(2) lattice
gauge theory does reduce to the same two-dimensional theory at large distances
Thus we conclude that the d - (d —2) reduction 1s not operative in the QCD case.

The plan of this paper 1s the following: in sect. 2 we remind the reader of a few
features relevant for dimensional reduction, and 1n sect 3 we present our results
In sect 4 we compare with a string theory. Sect 5 contains a discussion of the
confinement mechanism, and sect 6 contains some conclusions

2. Dimensional reduction

The phenomenon of dimensional reduction has been discussed 1n much detail 1n
our previous paper [1] We shall therefore not repeat this discussion However, we
would like to point out a few features which are of relevance for the three-dimensional
case discussed 1n the present paper

In the solid state example discussed 1n ref. [2] the quenched free energy has the
form

e FM= J do exp [—J. ddx{é(Vo)z+5r|0|2+“|0|4+h"}1| , 21)

where o 1s the order parameter The main point 1s thus that the d - (d —2) reduction
1s based on the simple linear coupling between the magnetic field h and the order
parameter o However, one can think of other possible couplings (¢ g a minimal
coupling) and i general the reduction d > (d —2) 1s therefore not expected to be
vahd [4]

In the case of QCD the situation 1s indeed that we have a very complicated
dynamical system which by its own self interactions is supposed to produce the
disordered ground state Hence it 1s really not surprising that the situation in QCD
1s different from that of eq (2 1) In this connection it should also be remembered
that 1n lattice QCD there 1s dimenstonal reduction 1n the strong coupling limit 1n
the form any dim -2 dim at large distance [1].

3. Results on dimensional reduction in the (approximate) scaling region

We shall now present our results on dimensional reduction 1n the approximate
scaling region. In another paper [5] we have discussed the Monte Carlo method
used to obtain the numerical data Let us only mention here that the lattice size was
32 x16” and that we used the discrete subgroup of SU(2) to generate the configur-
ations. The B range was 3.0=< 8 =<6.5 and for the larger values of 8 we used ~6000
sweeps for thermalization and subsequently performed 800 measurements. It was



J Ambjgrn et al |/ Stochastic confinement (II) 535

pointed out 1n ref [5] that for 8= 5 0 one has approximate scaling We refer the
reader to ref [5] for further discussion.
We consider the Creutz ratios

W,(R, T)W,(R-1,T-1)

R T)=-1
YR =y R T-DW(R-1,T)

(31

Herej =1 1,3, 1stheisospin quantum number and W,(R, T)1s the Wilson average
for quarks in the jth representation Thus W,,, is the usual Wilson average for
quarks in the fundamental representation, whereas W, 1s the adjoint Wilson average
As discussed 1n [1], dimensional reduction leads to the prediction

X(RT) G ju+l)
X1/2(R, Ty G % ’

provided B 1s large enough (This 1s the case for the data used in this paper ) In
eq (3 2) C, 1n the Casimir operator for quarks with isospin jy and 1n two dimensions
(3 2) follows because the string tension there can be calculated from lowest-order
perturbation theory the two-dimensional Coulomb potential 1s linear

In fig 1 we show our results for the fundamental string tension x,,»(R, T) If
scaling holds one has x,,,= C/B” This follows from the superrenormahizability of
QCD 1n three dimensions as well as from the conjecture that the infrared cut-off
disappears in gauge invariant quantities [6] For 8 =5 0 it is seen that one can draw
an envelope around 8%y =2 In fact, a more detailed analysis allowing for the fact
that the string between the heavy quarks can vibrate, shows that the string tension
scales very well for 8= 5 0 The y ratios measure the string tension and the umversal
Coulomb potential 7] which comes from roughening This potential 1s independent

(32)

Xx(3,3) x
X(4,4) ©
X{5,5) &
BZX(R,R) x(6,6) V¥
R=2
x x
x 5 % x x x -
o 8 ¢ o4 ° R=3
- A § v
204 - R=4
////R=5
. - ; } B

30 40 50 60

Fig 1 The Creutz ratios for the fundamental string tension The straight lines represent the perturbative
(one-gluon exchange) predictions
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Fig 2 Comparison of the prediction (3 2) with our Monte Carlo data

of B and therefore the y ratios do not have exact scaling (for details we refer to
ref [5]) In sect 4 we are going to do a similar analysis for the ““adjoint string”

In fig 2 we show our results for the quantities (3 2) It 1s seen that to a good
approximation dimensional reduction holds The result (3 2) in three dimensions
cannot be of perturbative nature From fig 1 1t 1s obvious that even for the smallest
Wilson loop considered, the x,,, ratios are far from their perturbative values Neither
has (3 2) anything to do with strong coupling The strong coupling expansion predicts
a ratio of 27 instead of $xj(j+1), simply because the leading term 1n the strong
coupling expansion for 1sospin j quarks consists of 2; layers of plaquettes covering
the mimimal surface spanned by the Wilson loop

It should be emphasized that the string tenston for = (and, n particular, for
J=2,3, )is “unconventional”, whereas the y = 1.3 string tensions are conven-
tional The emergence of “unconventional” string tensions 1n 4 dimensions has been
observed by Bernard [8] and by us [1] For very large loops (larger than present
day lattices) one expects

1
W,4(R, T)= N e KR¥D) 4 ¢ o7 RT=PRYT) | 5ossibly other terms (3 3)

Here the first term dominates for very large loops This 1s due to the fact that the
adjoint string can be broken by screening of the adjoint quarks by means of a gluon
pair created from the vacuum. However, our numerical results shown 1n fig 2 (as
well as the four-dimensional results [ 1, 8]) indicate that o4, scales to the same extent
that the fundamental string tension scales Thus we expect the second term 1n eq
(3 3) to survive 1n the continuum limit, irrespective of the fact that 1t 1s subdominant
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To put this 1n more physical terms the adjoint string can of course break, but before
1t breaks 1t has to be formed.

4. The ‘““adjoint string”

In this section we shall investigate the adjoint string 1n more detail
As already mentioned, Luscher, Symanzik and Weisz [7] found that for quarks
with 1sospin j =3, —In W, ,5(R, T) contains a “Coulomb” term

—Lm(d—-2)xT/R, T>R 41)

In (4 1) d 1s the dimension of space-time Eq (4 1) 1s derived under the assumption
that one has a string between the heavy quarks in the Wilson loop Physically (4 1)
arises from roughening the string vibrates in transverse directions (hence the factor
d—21n (4 1)) As Luscher showed [7], the “transverse” effective action at large R, T
should be

Sqa=0 J' d’¢ d,x, 3.x, +subdominant terms (42)

This follows from locality and symmetry considerations In eq (42) x, is the
transverse displacement of the string In our MC data we do not have 7> R When
calculating {4 2) with x, =0 on the boundary, one gets (see ref [5])

—In W(R, T)=cRT+d(R+T)
—I:ZI47TT/R +iIn (Ru)+5 ¥ ln(l—ez’"'T/R):| (43)
n=1

The function 1n the last bracket 1s symmetric i1n R and T despite 1ts asymmetric
appearance

If we now turn to the adjoint string one would naively expect 1t to be composed
of two strings 1n the same sense as one can 1magine an 1sospin-1 quark to be made
of two 1sospin-3 quarks These strings can of course interact From fig 2 we have
seen that the Creutz ratios x,(R, T) follow the prediction from dimensional reduction
quite well, 1 e the adjoint x’s are % times the fundamental y’s Tt 1s therefore natural
to assume that the two strings forming the adjoint string interact 1n such a way as
to give the quadratic Casimir operator This corresponds to vector addition

In analogy with (4 3) we therefore make a fit of the type

—In W,_ (R, T) = 6,(B)RT +6,(B)(R+T) +65(B)
—g[%wT/RHln(Ru)—é Y 1n<1—e‘2”"”")] (44)

In tables 1-4 we give the resulting x” fits We see that the data for In W,_,(R, T)
are indeed very well represented by a fit of the type (4 4) It should be mentioned
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TABLE 1
Comparison of measured and fitted values for W.a,(R, T) with B =50

R T W(R, T) W(R, T) Deviation
measured from fit
2 2 01129(3) 01127 05
2 3 00442 (3) 00447 16
2 4 00177 (2) 00177 01
2 5 00072 (2) 00704 -13
2 6 00029 (1) 00028 -05
2 7 00012 (2) 00011 -03
3 3 00126 (2) 00125 -07
3 4 00034 (1) 00036 12
3 5 000098 (13) 000101 03
4 4 000078 (14) 000074 -03

The numbers 1n brackets give the statistical errors 1n the last digits The
deviation 1s given by Wy, — W ..., divided by the standard deviation
of the measured W The deviation 1s calculated keeping one more digit
in the W’s The 6’s corresponding to the above fit are given by 6, =
027+001, ,=055+003, 8;=—-030+006 The x° of the fit 1s 0 97

TABLE 2

Comparison of measured and fitted values for W4 (R, T) with 8 =55

R T W(R, T) W(R, T) Deviation
measured from fit

2 2 01466 (4) 01465 -02
2 3 00650 (4) 00653 07
2 4 00293 (3) 00292 06
2 5 00132(2) 00130 07
2 6 00058 (2) 00058 -003
2 7 00026 (1) 00026 03
2 8 00010 (1) 00012 10
2 9 00005 (1) 00005 02
3 3 00219 (3) 00222 09
3 4 00076 (2) 00077 06
3 5 00026 (2) 00027 03
3 6 00010 (2) 0 0009 -06
3 7 000054 (10) 000032 =23
4 4 00022 (1) 00021 -05
4 5 000054 (12) 000058 03

The numbers 1n brackets give the statistical errors 1n the last digits The
deviation 1s given by Wi — W_ .. divided by the standard deviation
of the measured W The deviation 1s calculated keeping one more digit
in the W’s The 8’s corresponding to the above fit are 8, =0 197+ 0 008,
8,=059£002, 6;,=—040+004 The x” of the fit 1s 1 07
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TABLE 3
Comparison of measured and fitted values for W, (R, T) with 8 =60

R T WI(R, T) W(R, T) Deviation
measured from fit

2 2 0 1820 (4) 01818 -06
2 3 00893 (4) 00898 15
2 4 00447 (3) 00445 -07
2 5 00222(2) 00220 -07
2 6 00108 (2) 00109 04
2 7 00055 (2) 00054 -05
2 8 00027 (2) 00027 -03
2 9 00014 (2) 00013 —-05
2 10 0 00085 (15) 0 00066 -13
3 3 00345 (3) 00351 19
3 4 00139 (3) 00140 0l
3 5 00057 (2) 00056 -08
3 6 00023 (2) 00022 -05
3 7 00008 (1) 0 0009 04
4 4 00046 (2) 0 0046 —02
4 5 00017 (1) 00015 -15
4 6 000049 (15) 000050 004

The numbers 1n brackets give the statistical errors 1n the last digits The
deviation 1s given by Wy, — W, .. ieq divided by the standard deviation
of the measured W The deviation 1s calculated keeping one more digit
in the W’s The @’s corresponding to the above fit are 6, =0 159+ 0 005,
6,=056+001, 8,=-035:003 The x* of the fit 1s 1 00

that 1f we had changed the factor £ In front of the last term in (44) to 1, the X’
values increase from =1 to =10 Further 1t should be mentioned that 1f we had used
the lower limit R =1 instead of R =2, the resulting fits would have been bad This
1s 1n accordance with a remark 1n ref [5], where 1t was noticed that a critical distance
R.-=2 almost exactly coincides with the cntical distance Rc= Vr/120 found by
Alvarez [9]. It was discovered by Alvarez that for distances below R the string
picture breaks down This 1s in complete agreement with our Monte Carlo results

In fig 3 we show the values for 8,8° obtained for the adjoint string and for the
fundamental string [S] We compare the adjoint values for 6,8 with the prediction
from dimenstonal reduction obtained by multiplying the fundamental 6,8° by § It
1s seen that the agreement 1s excellent

5. On the confinement mechanism

The results obtained 1n this paper as well as in ref [1] indicate that dimensional
reduction works well (within =10%) on lattice sizes which can be handled with
present day computers From the observed approximate scaling (see e g fig 3) one
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TABLE 4
Comparison of measured and fitted values for W, (R, T) with 8=65

W(R, T) W(R, T)

R T measured from fit Deviation
2 2 02171 (4) 02166 -11
2 3 01154 (4) 01163 21
2 4 00625 (4) 00626 04
2 5 00339 (3) 00337 -09
2 6 00184 (2) 00179 23
2 7 00101 (3) 00098 -1
2 8 00055 (2) 00053 -11
2 9 00028 (1) 00028 06
2 10 00014 (1) 00015 15
2 11 0 00075 (15) 000082 05
3 3 004998 (42) 005072 18
3 4 00224 (3) 00225 03
3 5 00101 (2) 000998 -03
3 6 00045 (2) 00044 -06
3 7 00020 (2) 00020 01
3 8 000096 (15) 0 00087 -06
3 9 000041 (12) 0 00039 -02
4 4 00083 (2) 00084 05
4 5 00033 (2) 00032 -08
4 6 00013 (1) 00012 -13
4 7 000053 (14) 0 00045 -06
5 5 000087 (14) 000102 1o

The numbers in brackets give the statistical errors in the last digits The
deviation 1s given by W, — W__ . . divided by the standard deviation

m

in the measured W The deviation 1s calculated keeping one more digit
in the W’s The 8’s corresponding to the above fit are given by 6, =
01340003, 8,=053001, 8,=-029+002 The x° of the fit1s [ 12

then expects that this phenomenon should occur also on larger lattices and in the
continuum

As explained 1n [1], dimensional reduction leads to a disordered vacuum This
can be seen 1n terms of the spectral density Thus, all our results can be understood
by saying that the colour magnetic flux «, defined by the Wilson loop with respect
to the path C

0
u(C)=Q<e _,a)m, (51)
0 e
1s stochastic with a probability distnibution p(«) satisfying (C = C, +C,)
2 kis
Pc(a)=;J dg SIHZBP(,(B)PQ(G_ﬂ) (52)

O

This also explains the emergence of an “adjoint string”
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Fig 3 The parameter 8,8 for the fundamental and the adjoint strings, as well as a comparison with
dimensional reduction

As already mentioned, the fact that the adjoint string can break (and hence lead
to the perimeter behaviour) does not prevent one from asking why i1t 1s formed 1n
the first place The situation 1s somewhat similar to the fundamental string 1n the
presence of light quarks This string can also break, thus leading to a perimeter
behaviour The main physical point 1s, however, the ability of the vacuum to form
the string itself For further discussion we refer to [1]

6. Conclusions

The main conclusion of this paper 1s that dimensional reduction from d =3 to
d =2 works well within =10% for SU(2) lattice gauge theory Therefore the situation
1s not stmilar to the sohd state example 1n ref [2] Another conclusion 1s that the
adjoint string tension scales (approximately) to the same degree that the fundamental
string tension scales This means that confinement schemes based on the centre
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(which the adjoint representation cannot see) seem to be ruled out In view of the
similar results obtained for four dimensions [1] 1t thus appears that the confinement
mechanism 1s entirely due to disorder of the colour magnetic flux (5.1).

References

[1] J Ambjgrn, P Olesen and C Peterson, Nucl Phys B240 [FS12] (1984) 189
[2] Y Imry and S K Ma, Phys Rev Lett 35 (1975) 1399,
A Aharony, Y Imry and S K Ma, Phys Rev Lett 37 (1976) 1364,
K B Efetovand A1 Larkin, ZhETP 45 (1977) 1236,
AP Young,J Phys C10 (1977) 1257,
G Panisi and N Sourlas, Phys Rev Lett 43 (1979) 744
[3] J Ambjgrn and P Olesen, Nucl Phys B170 [FS1] (1980) 60,
P Olesen, Nucl Phys B200 [FS4] (1982) 381
[4] J Hertz, private communication (1983)
{5] J Ambjgrn, P Olesen and C Peterson, Nucl Phys B244 (1984) 262
[6] K Wilson, Phys Rev D10 (1974) 2445,
R Jackiw and S Templeton, Phys Rev D23 (1981) 2291,
T Appelquist and R Pisarski, Phys Rev D23 (1981) 2305
[77 M Luscher, K Symanzik and P Weisz, Nucl Phys B173 (1980) 365,
M Luscher, Nucl Phys B180 [FS2] (1981) 317
[8] C Bernard, Phys Lett 108B (1982) 431 and Nucl Phys B219 (1983) 341
[9] O Alvarez, Phys Rev D24 (1981) 440



