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We study 3-dimensional SU(2) lattice gauge theory w~th respect to dimensional reduction By 
Monte Carlo calculations we find that this reduction Is vahd to a good approximation (within 

10%) The adjolnt string tension is found to scale approximately We also compare the adjomt 
string tension w~th a string theory 

I. Introduction 

In a previous paper  [1] we have invest igated the p h e n o m e n o n  of d imens iona l  

reduct ion  m four -d imens iona l  SU(2) lattice gauge theory It turns  out that to a good 

app rox ima t ion  (~-10%) the four -d imens tona l  theory reduces to the cor responding  

two-d imens iona l  theory at large distances.  

In  the present  paper  we investigate whether  a similar  p h e n o m e n o n  holds in 

th ree -d imens iona l  SU(2) lattice gauge theory Thus we want  to investigate whether  

at large distances the th ree-d imens iona l  theory reduces to the cor responding  two- 

d imens iona l  theory 

D imens iona l  reduct ion  has been shown explicit ly to occur in solid state physics 

[2] for systems descr ibed by r andom fields If  certain assumpt ions  are satisfied a 

d -d imens iona l  system in a r andom field has a large distance behav iour  which is 

eqmva len t  to the same ( d - 2 ) - d l m e n s i o n a l  system without  the external  r a n d o m  

field I f  the Q C D  ground  state can be characterized by a r a n d o m  colour  magnet ic  

field, it was then suggested by two of the authors  [3] that a p h e n o m e n o n  similar  to 

the sohd state case could  occur in Q C D  However,  the reduct ion  d --~ (d - 2 )  is based 

on some simplifying assumpt ions ,  and  in general  more complicated reduct ions  are 

expected even in sohd state physics 

The ma in  mot iva t ion  for the work reported in the present  paper  is therefore to 

study if the d -~ (d - 2) reduct ion is valid in QCD.  I f  it is valid, a th ree-d imens iona l  
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system would not reduce approximately to a two-dimensional system at large 

distances 
Our result is that to a good approximation a three-dimensional SU(2) lattice 

gauge theory does reduce to the same two-dimensional theory at large distances 

Thus we conclude that the d-~ ( d - 2 )  reduction IS not operative in the QCD case. 
The plan of this paper is the following: in sect. 2 we remind the reader of a few 

features relevant for dimensional reduction, and m sect 3 we present our results 
In sect 4 we compare with a string theory. Sect 5 contains a discussion of the 

confinement mechanism, and sect 6 contains some conclusions 

2. Dimensional reduction 

The phenomenon of dimensional reduction has been discussed in much detail in 

our previous paper [1] We shall therefore not repeat this discussion However, we 

would like to point out a few features which are of relevance for the three-dimensional 

case discussed in the present paper 
In the solid state example discussed in ref. [2] the quenched free energy has the 

form 

where o" is the order parameter The main point is thus that the d ~ (d - 2) reduction 

IS based on the simple linear couphng between the magnetic field h and the order 

parameter ~r However, one can think of other possible couplings (e g a minimal 

coupling) and in general the reduction d-~ ( d - 2 )  is therefore not expected to be 

valid [4] 
In the case of QCD the situation is indeed that we have a very complicated 

dynamical system which by its own self interactions is supposed to produce the 

disordered ground state Hence it is really not surprising that the situation in QCD 
is different from that of eq (2 l) In this connection it should also be remembered 

that in lattice QCD there is dimensional reduction in the strong coupling limit in 

the form any dim ~ 2 dim at large distance [l]. 

3. Results on dimensional reduction in the (approximate) scaling region 

We shall now present our results on dimensional reduction in the approximate 

scaling region. In another paper [5] we have discussed the Monte Carlo method 
used to obtain the numerical data Let us only mention here that the lattice size was 
32 × 162 and that we used the discrete subgroup of SU(2) to generate the configur- 

ations. The fl range was 3.0 ~</3 <~ 6.5 and for the larger values of/3 we used ~6000 
sweeps for thermalizatlon and subsequently performed 800 measurements. It was 
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pointed out in ref [5] that for /3 >~ 5 0 one has approximate scaling We refer the 
reader to ref [5] for further discussion. 

We consider the Creutz ratios 

xj(g, T) = - I n  W~(R, T ) W j ( R - 1 ,  T - l )  (3 1) 
Wj(R, T -  1) Wj(R - l, T) 

He re j  = ½, l, 3, is the lsospin quantum number  and Wj (R, T) is the Wilson average 
for quarks in the j th  representation Thus W1/2 is the usual Wilson average for 
quarks in the fundamental  representation, whereas W1 is the adjolnt Wilson average 
As discussed in [l], dimensional reduction leads to the prediction 

)6(g, T) Cj j ( j  + I) 
- 3 , ( 3 2 )  

XI/2( R, T) C1/2 

provided/3  IS large enough (This is the case for the data used in this paper  ) In 
eq (3 2) Cj in the Casimlr operator for quarks with isospln j and in two dimensions 
(3 2) follows because the string tension there can be calculated from lowest-order 
perturbation theory the two-dimensional Coulomb potential is linear 

In fig 1 we show our results for the fundamental  string tension Xt/2(R, T) If  
scaling holds one has X~/2-~ C//3 2 This follows from the superrenormahzabil i ty of  
QCD m three dimensions as well as from the conjecture that the infrared cut-off 
disappears in gauge mvarlant  quantities [6] For/3/> 5 0 it is seen that one can draw 
an envelope around/32 g = 2 In fact, a more detailed analysis allowing for the fact 
that the string between the heavy quarks can vibrate, shows that the string tension 
scales very well for/3 >~ 5 0 The X ratios measure the string tension and the umversal 
Coulomb potential [7] which comes from roughening This potential is independent 

F,g 1 

~32x R,R) 

3 0  

2 0  

The Creutz 

x ( 3 , 3 )  x 
x ( 4 , 4 )  o 
X(5 ,5)  a 
×(6,6 ) v 

R=2 

? o # o o ~ ~ / ~ = 3  

~ R 5  

30 4 0  5 0  6 0  

ratios for the fundamental string tension The strmght hnes represent the perturbat~ve 
(one-gluon exchange) predictions 
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Xj(R,T) 
XI/2(R,T ) [] 2×3 ,, 3x3 x /+×3 A L~x~. 

10 

3'o 3's 4'o 4's s'o s's go is --- p 
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5 ( j : 3 /2 )  

8 1 3 ( j : I )  

Fig 2 Comparison of the prediction (3 2) with our Monte Carlo data 

of/3 and therefore the X ratios do not have exact scahng (for details we refer to 

ref [5]) In sect 4 we are going to do a similar analysis for the "adjolnt string" 
In fig 2 we show our results for the quantities (3 2) It is seen that to a good 

approximation dimensional reduction holds The result (3 2) in three dimensions 

cannot be of perturbatlve nature From fig 1 it is obvious that even for the smallest 

Wilson loop considered, the XI/2 ratios are far from their perturbatlve values Neither 
has (3 2) anything to do with strong coupling The strong coupling expansion predicts 
a ratio of 2j instead of 4×j(j  + 1), simply because the leading term in the strong 

couphng expansion for lsospln j quarks consists of 2j layers of plaquettes covering 

the mlmmal surface spanned by the Wilson loop 
It should be emphasized that the string tension for j -- 1 (and, m particular, for 

j = 2, 3, ) Is "unconventional",  whereas the j = ½, 3, string tensions are conven- 

tional The emergence of "unconventional" string tensions in 4 dimensions has been 
observed by Bernard [8] and by us [1] For very large loops (larger than present 

day lattices) one expects 

l e k(R+T) C e -°- djRT-b(R+T) Wadj(R , T)  = - ~  + " +possibly other terms (3 3) 

Here the first term dominates for very large loops This is due to the fact that the 
adjolnt string can be broken by screening of the adjoint quarks by means of a gluon 
pair created from the vacuum. However, our numerical results shown m fig 2 (as 
well as the four-dimensional results [1, 8]) indicate that ~dj scales to the same extent 
that the fundamental stnng tension scales Thus we expect the second term in eq 

(3 3) to survive m the continuum limit, irrespective of the fact that it Is subdommant 
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To put this m more physical  terms the adjolnt  string can of  course break, but before 

it breaks it has to be formed.  

4. The "adjoint string" 

In this sectmn we shall investigate the adjoxnt string in more  detail 
As a l ready ment ioned,  Luscher, Symanzlk  and Welsz [7] found  that for quarks 

with lsospln J =½, - l n  W l / 2 ( R  , T) contains a " C o u l o m b "  term 

-24~r(d-2) x T / g ,  T>>R (41)  

In (4 1) d is the d imension of  space- t ime Eq (4 l) is derived under  the assumpt ion  
that one has a string between the heavy quarks in the Wilson loop Physically (4 l) 
arises f rom roughening the string vibrates In transverse directions (hence the factor  

d - 2  in (4 l)) As Luscher  showed [7], the " t ransverse"  effective act ion at large R, T 

should  be 

f 
S e r  f = O" J d2~ O~x± O~,xi + s u b d o m m a n t  terms (4 2) 

This follows from locality and symmetry  considerat ions In eq (4 2) x± ts the 

transverse displacement  o f  the string In our  MC data we do not have T>> R When 
calculating (4 2) with x i  = 0 on the boundary ,  one gets (see ref [5]) 

- l n  W(R, T) = o'RT+d(R + T) 

- ~rT/e+¼1n(R~)+½ 52 l n ( l - e  2=.r/R) (43)  
n = l  

The funct ion in the last bracket is symmetr ic  in R and T despRe its asymmetr ic  

appearance  
If  we now turn to the adloint  string one would naively expect it to be composed  

of  two strings in the same sense as one can imagine an lsospln-1 quark to be made  

of  two isospln-½ quarks These strings can o f  course interact From fig 2 we have 

seen that the Creutz ratios xj(R, T) follow the predict ion from dimensional  reduct ion 
quite well, 1 e the adjolnt  X's are 3 s times the fundamenta l  X's It is therefore natural 
to assume that the two strings forming the ad jomt  strmg interact in such a way as 

to give the quadrat ic  Caslmlr  opera tor  Th~s corresponds  to vector a d d m o n  

In ana logy with (4 3) we therefore make a fit o f  the type 

- l n  Wj , ( R , T ) = O , ( f l ) R T + O 2 ( f l ) ( R + T ) + O 3 ( f l )  

-8[  ~rrT/R .=,~ ln(l-e-2=nT/R)] (44)  

In tables 1-4 we give the resulting X 2 fits We see that the data for In Wj_~(R, T) 
are mdeed  very well represented by a fit o f  the type (4 4) It should be ment ioned  
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TABLE 1 

Comparison of measured and fitted values for Wadj(R , T) with /3 = 5 0 

R T W(R, T) W(R, T) Deviation 
measured from fit 

2 2 0 1129(3) 0 1127 - 0 5  
2 3 0 0442 (3) 0 0447 1 6 
2 4 0 0177 (2) 0 0177 0 l 
2 5 0 0072 (2) 0 0704 - 1 3 
2 6 0 0029 (1) 0 0028 - 0  5 
2 7 0 0012 (2) 0 0011 - 0  3 
3 3 0 0126 (2) 0 0125 - 0  7 
3 4 0 0034 ( 1 ) 0 0036 1 2 
3 5 0 00098 (13) 0 00101 0 3 
4 4 0 00078 (14) 0 00074 - 0  3 

The numbers m brackets give the statistical errors m the last &gmts The 
deviation is gwen by Wri t -  Wme . . . . .  d divided by the standard deviation 
of the measured W The deviation is calculated keeping one more d~glt 
in the W's The O's corresponding to the above fit are given by 01 = 
0 2 7 ± 0 0 1 ,  0 2 = 0 5 5 + 0 0 3 ,  0 3 = - 0 3 0 ± 0 0 6  The X 2 of the fit is 097 

TABLE 2 

Comparison of measured and fitted values for Wadj(g , T) wtth fl = 5 5 

R T W(R, T) W(R, T) Deviation 
measured from fit 

2 2 0 1466 (4) 0 1465 - 0  2 
2 3 0 0650 (4) 0 0653 0 7 
2 4 0 0293 (3) 0 0292 - 0  6 
2 5 0 0132 (2) 0 0130 - 0  7 
2 6 0 0058 (2) 0 0058 - 0  03 
2 7 0 0026 ( 1 ) 0 0026 0 3 
2 8 00010(1) 00012 10 
2 9 0 0005 ( 1 ) 0 0005 0 2 
3 3 0 0219 (3) 0 0222 0 9 
3 4 0 0076 (2) 0 0077 0 6 
3 5 0 0026 (2) 0 0027 0 3 
3 6 0 0010 (2) 0 0009 - 0  6 
3 7 0 00054 (10) 0 00032 - 2  3 
4 4 0 0022 (1) 0 0021 - 0  5 
4 5 0 00054 (12) 0 00058 0 3 

The numbers in brackets give the statistical errors m the last digits The 
deviation is given by W~t- Wmeasured divided by the standard deviation 
of the measured W The devtatlon is calculated keeping one more digit 
m the W's The O's corresponding to the above fit are O~ = 0 197 + 0 008, 
0 2 = 0 5 9 + 0 0 2 ,  0 3 = - 0 4 0 ± 0 0 4  The ,~2 of the fit is 1 07 
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TABLE 3 

C o m p a r i s o n  o f  m e a s u r e d  and  fitted va lues  for Wadj(R, T) with fl = 6 0 

R T W(R, T) W(R, T) D e w a t l o n  
m e a s u r e d  from fit 

2 2 0 1820(4) 0 1818 - 0 6  
2 3 0 0893 (4) 0 0898 1 5 
2 4 0 0447 (3) 0 0445 - 0  7 
2 5 0 0222 (2) 0 0220 - 0  7 
2 6 0 0108 (2) 0 0109 0 4 
2 7 0 0055 (2) 0 0054 - 0  5 
2 8 0 0027 (2) 0 0027 - 0  3 
2 9 0 0014 (2) 0 0013 - 0  5 
2 10 0 00085 (15) 0 00066 -1 3 
3 3 00345 (3) 00351 1 9 
3 4 0 0139 (3) 0 0140 0 1 
3 5 0 0057 (2) 0 0056 - 0  8 
3 6 0 0023 (2) 0 0022 - 0  5 
3 7 0 0008 ( 1 ) 0 0009 0 4 
4 4 0 0046 (2) 0 0046 - 0  2 
4 5 0 0017 (1) 0 0015 -1 5 
4 6 0 00049 (15) 0 00050 0 04 

The  n u m b e r s  m brackets  gtve the statistical errors m the last digits The 
d e w a t l o n  is g iven  by W r i  t - W . . . . . . .  d div ided  by the s tandard d e w a t l o n  
o f  the m e a s u r e d  W The  d e w a t l o n  is ca lcu lated  k e e p i n g  one  m o r e  digit 
m the W's The O's c o r r e s p o n d i n g  to the a b o v e  fit are 0~ = 0  159+0 005, 
0 2 = 0 5 6 ± 0 0 1 ,  0 s = - 0 3 5 ± 0 0 3  T h e x  2of the  f it lS 100 
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8 that if we had changed the factor ~ in front o f  the last term m (4 4) to 1, the X 2 

values increase from ~1  to ~ 1 0  Further ~t should be ment ioned that if we had used 
the lower llmlt R >/1 instead of  R >12, the resulting fits would  have been bad This 

is in accordance w~th a remark in ref [5], where it was noticed that a critical distance 
Rc = 2 almost  exactly coincides with the critical distance Rc = x/~r/12~ found by 
Alvarez [9]. It was discovered by Alvarez that for distances be low Rc the string 
picture breaks down This ts in complete  agreement wtth our Monte  Carlo results 

In fig 3 we show the values for 0~/3 2 obtained for the adjolnt string and for the 
fundamental  string [5] We compare the adjolnt values for 0~/3 2 with the prediction 
from dimenstonal  reduction obtained by multiplying the fundamental  0~/3 2 by 3 8- It 

ms seen that the agreement is excellent 

5. On the confinement mechanism 

The results obtained in this paper as well as m ref [1] indicate that dimensional  
reductton works well (within ~ 1 0 % )  on lattice sizes which can be handled with 
present day computers From the observed approximate scaling (see e g fig 3) one 



540 J Ambjarn et al / Stochasuc confinement (II) 

TABLE 4 

Comparison of measured and fitted values for W.dj(R, T) w~th/3 = 6 5 

R T W(R, T) W(R, T) Deviation 
measured from fit 

2 2 02171 (4) 02166 -1  1 
2 3 01154(4) 01163 21 
2 4 0 0625 (4) 0 0626 0 4 
2 5 0 0339 (3) 0 0337 - 0  9 
2 6 0 0184 (2) 0 0179 2 3 
2 7 00101 (3) 00098 - 1  1 
2 8 0 0055 (2) 0 0053 -1 1 
2 9 0 0028 ( 1 ) 0 0028 0 6 
2 10 00014(1) 00015 1 5 
2 11 0 00075 (15) 0 00082 0 5 
3 3 0 04998 (42) 0 05072 1 8 
3 4 0 0224 (3) 0 0225 0 3 
3 5 0 0101 (2) 0 00998 - 0  3 
3 6 0 0045 (2) 0 0044 - 0  6 
3 7 0 0020 (2) 0 0020 0 1 
3 8 0 00096 (15) 0 00087 - 0  6 
3 9 0 00041 (12) 0 00039 - 0  2 
4 4 0 0083 (2) 0 0084 0 5 
4 5 0 0033 (2) 0 0032 - 0  8 
4 6 0 0013 (1) 0 0012 -1 3 
4 7 0 00053 (14) 0 00045 - 0  6 
5 5 0 00087 (14) 0 00102 1 0 

The numbers m brackets give the stattstlcal errors in the last digits The 
deviation is given by Wn,-  W ......... d &vlded by the standard deviation 
m the measured W The dewatmn ~s calculated keeping one more digit 
m the W's The 0's corresponding to the above fit are given by 01 = 
0134±0003 ,  0 2 = 0 5 3 ± 0 0 1 ,  0 ~ = - 0 2 9 ± 0 0 2  T h e x  2 o f  the fitls 1 12 

t h e n  e x p e c t s  t h a t  t h i s  p h e n o m e n o n  s h o u l d  o c c u r  a l s o  o n  l a r g e r  l a t t i c e s  a n d  in  t h e  

c o n t i n u u m  

A s  e x p l a i n e d  in  [1],  d i m e n s i o n a l  r e d u c t i o n  l e a d s  t o  a d i s o r d e r e d  v a c u u m  T h i s  

c a n  b e  s e e n  m t e r m s  o f  t h e  s p e c t r a l  d e n s i t y  T h u s ,  al l  o u r  r e s u l t s  c a n  b e  u n d e r s t o o d  

b y  s a y i n g  t h a t  t h e  c o l o u r  m a g n e t i c  f lux  a ,  d e f i n e d  b y  t h e  W i l s o n  l o o p  w i t h  r e s p e c t  

to  t h e  p a t h  C 

u ( C ) = S 2  0 e . . . .  ( 5 1 )  

is s t o c h a s t i c  w i t h  a p r o b a b d l t y  d i s t r i b u t i o n  p c ( a )  s a t i s f y i n g  ( C  -- C~ + C2) 

Io • pc(Oe) = 2  d f l  s i n  2 f l p c , ( f l ) p c 2 ( o t - - f l )  (5 2) 
77" 

Thzs  a l s o  e x p l a i n s  t h e  e m e r g e n c e  o f  a n  " a d j o m t  s t r i n g "  
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o FUNDAMENTAL STRING TENSION 

• ADJOINT STRING TENSION 

ADJOINT STRJNO TENSION 
AS PREOICTED BY DIHENSIONAL 
REDUCTION 

55 60 65 
Lp 

Fig 3 The parameter O~fl 2 for the fundamental and the adlolnt strings, as well as a comparison with 
d~menstonal reduction 

As already men t ioned ,  the fact that the adjo in t  string can break (and hence lead 

to the per imeter  behavlour)  does not  prevent  one from asking why it is formed m 

the first place The SltUanon is somewhat  s imilar  to the fundamen ta l  string in the 

presence of light quarks This string can also break,  thus leading to a per imeter  

behav lour  The main  physical  point  is, however,  the abil i ty of the vacuum to form 

the string itself For  further  discussion we refer to [1] 

6. Conclusions 

The main  conc lus ion  of this paper  is that d imens iona l  r e d u c n o n  from d = 3 to 

d = 2 works well within ~ 10% for SU(2) lattice gauge theory Therefore the s i tuat ion 

is not  s imilar  to the solid state example  in ref [2] Another  conc lus ion  is that the 

adjo ln t  string tens ion  scales (approximate ly)  to the same degree that the fundamen ta l  

string tens ion  scales This means  that conf inement  schemes based on the centre 
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( w h i c h  the  a d l o m t  r e p r e s e n t a t i o n  c a n n o t  see)  s e e m  to be  r u l e d  ou t  In  v i e w  o f  the  

s l m d a r  resu l t s  o b t a i n e d  fo r  f o u r  d i m e n s i o n s  [1] it thus  a p p e a r s  tha t  the  c o n f i n e m e n t  

m e c h a n i s m  is en t i r e ly  d u e  to d i s o r d e r  o f  t he  c o l o u r  m a g n e t i c  flux (5.1). 
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