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We consider SU(2) lattice gauge theory in three dimensions. The Wilson loops are found to 
be well described by a simple string model in the approximate scaling region. 

1. Introduction 

Monte Carlo calculations have provided much insight into the nonperturbative 
structure of lattice gauge theories. In the four-dimensional case there is usually the 
difficulty that the lattice sizes considered are too small and, due to the exponential 
decrease of the string tension, the “scaling-window” is rather small. In this paper 
we shall therefore study SU(2) lattice gauge theory in 3 euclidean dimensions. The 
advantage is that (with limited computer time) the lattice size can be increased 
relative to the 4-dimensional case, and that the string tension decreases rather slowly 
like const/p2. We use a 162 x32 lattice which enables us to measure relatively large 
Wilson loops (up to 6 x 12) with reasonable statistics. 

Previously SU(2) lattice gauge theories in three euclidean dimensions have been 
studied in ref. [l, 21. The advantage of our work relative to the previous ones is that 
we use a larger lattice ( lo3 + 162~32) and have larger statistics. 

In a previous paper [3] it was pointed out that the 3-dimensional case is well 
suited for a comparison between QCD and (some) string models. This is in part 
due to the better statistics. However, it is also due to the fact that in 3 dimensions 
the “universal” Coulomb potential [4] -&r/R is different from the “true” Coulomb 
potential which varies like In R. Hence in 3 dimensions there is a better chance of 
distinguishing these 2 contributions to the potential. 

The main results of this paper are that we find that the string tension scales to a 
good approximation and that the R x T Wilson average W( R, T) is well represented 
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by a simple string model with the action 

S = c 
I 

dr dt Vx,Vx,, (1.1) 

This paper is organized as follows: in sect. 2 we discuss the numerical methods. 

In sect. 3 we give results for the string tension and in sect. 4 we compare our 
numerical results with the simple string model (1.1). Sect. 5 contains some con- 
clusions. 

2. Numerical methods 

For fi between 3.0 and 6.5 our Monte Carlo data were generated by using the 
discrete 120 element subgroup of SU(2) [4]. The discrete group freezes for p around 
7.5, and the advantage of using it disappears around 6.5 due to the low acceptance 
rate in the Metropolis algorithm. This low acceptance rate is forced upon us at high 
p since the change in the action, AS, when updating a link, cannot be chosen 
arbitrarily close to zero. 

The number of sweeps used for thermalization of the lattice is given in table 1, 
and the number of measurments at each /3 is given in table 2. Two subsequent 
measurements were separated by 5 sweeps. One measurement included measuring 
all R x T loops, the maximum (R, T) being (4,6) at /3 = 3.0 and (6, 12) at /3 = 6.5. 
The size of the lattice was 16 X 16 X32 and the average of the R x T loop was taken 
over all 2 x 16 x 16 x32 R x T loops that could be placed in the lattice with the 
T-direction along the long lattice direction. 

The statistical errors of the Wilson loop averages or of other observables like the 
Creutz ratios, were estimated by grouping the N measurements together in bunches 
of n. For these new N/n “measurements” we used the standard formula for the 

TABLE 1 

Number of sweeps used for thermalization 

P 3.0 3.5 4.0 4.5 

cold start 
600 

start: 3.0 
600 

cold start 
2800 

start: 4,0 
1400 

P 5.0 5.5 6.0 6.5 

cold start 
5700 

start: 6.0 
at 1000 

6000 

start: 5.0 
at 3000 

4000 

start: 6.0 
at 1000 

6000 
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TABLE 2 

Number of measurements 

P No. of measurements 

3.0 400 
3.5 400 
4.0 400 
4.5 400 
5.0 800 
5.5 800 
6.0 800 
6.5 800 

(2.1) 

statistical error a, (0) : 

We observed an increase in a, of the order of 20% when n increased from 1 to 20. 
For n 2 20 a,(O) stayed constant. 

3. The string tension 

The 3-dimensional SU(2) lattice gauge theory is defined by the standard Wilson 
action: 

(3.1) 

s=fCTrU,, 
r.0 

(3.2) 

where the link variables U,, E SU(2) and q stands for the plaquettes at r. The action 
reduces to the usual continuum action S = a j d3x F$, if we write 

u,, = eigAE(r)T” 
(3.3) 

P =4/&a, (3.4) 

Tr T”Tb = iaab. (3.5) 

In three dimensions the bare coupling constant gt has the dimension of mass. The 
theory is super renormalizable and if we assume that g, is the only mass scale which 
enters into the theory in the continuum limit, we can write for the string tension 

(3.6) 
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or (assuming that the string tension survives in the continuum limit a + 0): 

(T= cg’, (a+O), (3.7) 

aa’=c/p* (a-,0). (3.8) 

These equations are of course based on the assumption that no additional mass 
parameter, like an infrared cutoff, is needed in order to define the theory. 

In order to verify (3.8) we have measured the Ceutz ratios 

x( R, T) = -In 
W(R, T)W(R-1, T-l) 

W(R, T-l)W(R-1, T)’ 
(3.9) 

where W( R, T) is the expectation value of an R x T Wilson loop. x( R, T) measures 
cru* if the exponent of W(R, T) contains an area term, a parameter term and a 
constant. 

In ref. [2] the authors have estimated that the crossover region occurs for /3 = 2-3. 
Since our data sampling starts at p = 3 we have thus passed the crossover region. 
Also, ref. [2] contains an estimate of the perturbative terms, which are of order l/p 
with l/p’ corrections. From [2] it is quite clear that these corrections cannot account 
for the data when R > 1 and T > 1. We refer the reader to [2] for a detailed discussion 
of these points. 

In fig. 1 and table 3 we present our data for the Creutz ratios x(R, R) together 
with the lowest-order perturbative results. These results are more accurate than 
those obtained in ref. [2], but within the error bars there is agreement, showing that 
the discrete group is reliable up to p = 6.5. 

From fig. 1 it is seen that we are far from the lowest-order perturbative results 
for ,y( R, R). It is also seen that for p b 5.0 one has a relation 

x(R, R)=++G(R), (3.10) 

where C,(R) is small and decreasing with R. 

X(3,3) x 
x14,41 0 
x(5,5) A 

P*xIR,RI X16,61 v 

3.0 

2.0 

3.0 4.0 5.0 6.0 

Fig. 1. The Creutz ratios. The straight lines for R = 2, 3,4, 5 represent lowest-order perturbation theory. 
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TABLE 3 

The Creutz ratios 

B x(3,3) x(4,4) x(5,5) x(6,6) 

3.0 0.380 (10) 

3.5 0.268 (5) 0.30 (3) 
4.0 0.200 (2) 0.195 (10) 

4.5 0.157 (2) 0.148 (6) 0.141 (27) 

5.0 0.1275 (20) 0.1135 (22) 0.108 (11) 

5.5 0.1060 (15) 0.0906 (22) 0.082 (8) 0.086 (20) 

6.0 0.0908 (10) 0.0772 (20) 0.067 (3) 0.064 (10) 

6.5 0.0778 (8) 0.0662 (14) 0.062 (3) 0.057 (5) 

How can we understand a relation like (3.10)? A simple explanation seems to be 
possible. Some time ago Liischer suggested that a string should have a universal 
Coulomb correction of the form -(d -2)r/24R, d being the number of space-time 
dimensions [5]. Since the correction is independent of p it would change (3.8) into 
a relation like (3.10). One can check that it has the right order of magnitude to 
account for the difference between (3.8) and (3.10) seen in the data of fig. 1. In the 
next section we will therefore investigate this possibility in detail. 

4. Comparison with a string picture 

A “universal” type of correction to the string tension was suggested some time 
ago by Liischer [5]. He showed that the action (1.1) is to be considered the leading 
term in a wide class of string models. When integrating S in eq. (1.1) over x,, in 
the path integral for T > R he obtained 

I 
dx,(r,t)exp(-S)=exp- mRT+S(R+T)-&(d-2)r$+O(T/R2) 

1 1 , (4.1) 

in d space-time dimensions. The third term is the “universal” Coulomb correction. 
It is not quite universal, however. As a counter-example one can mention the 
Polyakov string [6]. This string carries new degrees of freedom (the metric field) 
which are not governed by eq. (1.1). If the coefficient in front of the Liouville term 
in Polyakov’s string model is not zero, the third term in (4.1) is vanishing [7]. 

In our Monte Carlo data we never really have T P R satisfied, so we need to 
calculate (1 .l) for all T, R. It is not clear that (1.1) is a good measure .for the 
correction to the pure string when T = R. Indeed, corrections of the order 0( T/ R2) 

might become large. We will assume that the action ( 1.1) is a reasonable approxima- 
tion (even when T = R) and turn to the calculation of the Wilson average from 
eq. (1.1). 

One expands X~ = xz +6x,, where x”,’ corresponds to the “classical” minimal 
surface of the Wilson loop. The first term in S in (1.1) then gives the area behaviour. 
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The transverse fluctuations give rise to a correction 
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SS = c 
I 

dr dt (VSX,)~. (4.2) 

If we are in 3 dimensions Sx, = Sx,(r, t) has only one component. In d dimension 
it has d -2 components. The next step is to perform the functional integral over 
the wiggling Sx,, using the usual boundary condition 

6x,=0 on aD, (4.3) 

where D is the R x T Wilson loop and aD its boundary. The contribution to the 
partition function 2 from 6s in (4.2) is 

I 
98x, exp- c [I dr dt (VSX,)~ = det (-V2)1’2. 1 (4.4) 

If w’, are the eigenvalues of the laplacian -V2 on D with Dirichlet boundary 

conditions (4.3) we have 

OJ~,~=(~)‘+(~)‘, n,m>O, 

and the determinant in (4.4) can be written as 

det (-V2)“2 = n (w~/~~)-“~ 
9 

(4.5) 

(4.6) 

The sum in the exponent can be written as 

where &(a,, . . . al; k) is Epstein’s zeta function defined by 

+* 
.a% * * . at; k) = 1 [(aln,)2+* * - (aln,)2]-k, 

-m 

(n,, . . . , nJ # (0,. . . , 0) . 
(4.8) 

Using the known results for 2, as given in ref. [S] it is not hard to evaluate (4.4), 
and one gets 

det ( -V2)“2 = exp- 
[ 

h7ijiT-f f ln(1-e-2”“T’R)+~1n (Rp) , (4.9) 
II=1 1 

where p is a constant. The expression is symmetric in T and R. Had we done the 
calculation not in 3 dimensions but in d dimensions, the exponent in (4.9) should 
be multiplied by a factor (d -2). 
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If the Wilson loops W(R, T) are well represented by a string we would now 
expect them to behave as 

-In W(R, T)= V(R, T)=a(p)RT+d(P)(R+T) 

+ -_87r$-alnR+f z ln(l-e 
[ n=O 

-2-nTlR)] . (4.10) 

The perimeter term d(P)(R + T) is needed when one uses other regularization 
methods than the zeta function regularization. (In our Monte Carlo calculations we 
are obviously using the lattice regularization.) 

Inspired by (4.10) we try a five-parameter fit to our data of the form 

-In W(R, T)=B,(P)RT+B,(P)(R+T)-8,(/3)T/R 

- t%(P) ln R +6(P) (4.11) 

for T 5 R. The sum over the logarithmic terms are small for T 3 R and we neglect 
it. 

In fig. 2 we show the results of a least squares fit to the data for R between 2 
and 4. The results can also be found in table 4. First of all it can be seen that the 
string tension e,(p) scales well for p > 5.0. We also note that t& and 0, agree well 
with the values predicted from the string model (4.10). The error bars should be 

TABLETS 

Comparison of measured and fitted values for W(R, T) with p = 5.0 

R T W(R, T) measured W(R, T) fitted Deviation 

2 2 

2 3 
2 4 

2 5 

2 6 

2 I 

3 3 

3 4 

3 5 

3 6 

3 I 
4 4 

4 5 

4 6 
4 I 

0.4379 (4) 0.4360 4.63 

0.3072 (6) 0.3079 -1.36 

0.2167 (7) 0.2175 -1.27 

0.1533 (6) 0.1536 -0.50 

0.1086 (6) 0.1085 0.11 

0.0768 (6) 0.0766 0.33 

0.1898 (7) 0.1891 1.11 

0.1186 (7) 0.1189 -0.52 

0.0747 (6) 0.0748 -0.13 

0.0471 (6) 0.047 1 0.10 

0.0296 (5) 0.0296 0.02 

0.0662 (6) 0.0662 0.01 

0.0374 (6) 0.0375 -0.25 

0.0213 (5) 0.0212 0.16 

0.0120 (5) 0.0120 -0.02 

The numbers in brackets give the statistical errors in the last digits. The deviation is 

given by Wmcasvrcd- W,, divided by the standard deviation in the measured W. This 

deviation is calculated keeping more digits in the W’s. The 8’s corresponding to the above 

fit are given by: 0,=0.095+0.006, 6,=0.22ItO.O2, f&=0.12*0.02, 6,=0.19*0.04, 05’ 

-0.17 f 0.02. 
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TABLETS 

Comparison of measured and fitted values for W(R, T) with /3 = 5.5 

R T W( R, T) measured W( R, T) fitted Deviation 

2 2 

2 3 
2 4 

2 5 

2 6 
2 7 

2 8 
2 9 

3 3 

3 4 
3 5 

3 6 

3 7 

3 8 

3 9 

3 10 

4 4 

4 5 
4 6 
4 7 

4 8 

4 9 
4 10 

0.4842 (5) 

0.3564 (7) 

0.2638 (8) 

0.1955 (8) 

0.1449 (8) 

0.1075 (8) 

0.0797 (7) 

0.0590 (6) 

0.2360 (9) 

0.1581 (10) 

0.1063 (10) 

0.0715 (9) 

0.0483 (8) 

0.0327 (7) 

0.0221 (6) 

0.0150 (5) 

0.0968 (9) 

0.0594 (9) 

0.0366 (8) 

0.0226 (6) 

0.0143 (5) 

0.0090 (5) 

0.0056 (4) 

0.4824 3.90 

0.3573 -1.25 

0.2646 -1.01 

0.1960 -0.58 

0.1451 -0.29 

0.1075 0.01 

0.0796 0.10 

0.0590 0.03 

0.2336 2.68 

0.1576 0.42 

0.1064 -0.15 

0.07 18 -0.34 

0.0485 -0.23 

0.0327 -0.02 

0.221 0.03 

0.0149 0.12 

0.0958 0.99 

0.0595 -0.13 

0.0370 -0.46 

0.0230 -0.64 

0.0143 -0.02 

0.0089 0.19 

0.0055 0.08 

The numbers in brackets give the statistical errors in the last digits. The deviation is 

given by Wmeasured- W,, divided by the standard deviation in the measured W. This 

deviation is calculated keeping one more digit in the w’s. The 0’s corresponding to the 

above fit are given by: 0,=0.073*0.006, 8,=0.21*0.02, f&=0.12*0.02, 0,=0.16*0.04, 

t$ = -0.18+0.03. 

multiplied by a factor of 2 when we include the variations in e,(p) which come 
from making all kind of cuts in all data available for 2 s R s 6; T s R. From table 
4 it is apparent that a ,y2-fit using the 3-parameter ansatz 

-1n W(R,T)=Bl(p)RT+8,(R+T)+8,(P)- $r$+alnR 1 (4.12) 

for T 3 R will be quite good, as is indeed the case. 
If we include R = 1 we do not obtain good fits. We therefore conclude that the 

string picture seems to work from distances R 3 24 or, introducing the string tension 
u: ,bR 3 0.5. It is interesting that this lower limit almost exactly coincides with the 
critical distance R, = Jm found by Alvarez [9]. For R < R, one expects the 
string picture to break down (see ref. [9]). 
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TABLE~C 

Comparison of measured and fitted values for W(R, T) with fi = 6.0 

R T W( R, T) measured W(R, T) fitted Deviation 

2 3 0.4012 (7) 0.4010 0.37 
2 4 0.3084 (9) 0.3085 -0.08 
2 5 0.2373 (9) 0.2374 -0.08 
2 6 0.1826 (9) 0.1826 -0.02 
2 7 0.1405 (9) 0.1405 0.03 
2 8 0.1081 (9) 0.1081 -0.01 
2 9 0.0831 (8) 0.0832 -0.05 
2 10 0.0640 (8) 0.0640 0.06 
3 3 0.2800 (9) 0.2798 0.24 
3 4 0.1979(11) 0.1982 -0.24 
3 5 0.1402(11) 0.1404 -0.14 
3 6 0.0994 (10) 0.0994 -0.01 
3 7 0.0706 (9) 0.0704 0.16 
3 8 0.0499 (8) 0.0499 0.06 
3 9 0.0353 (7) 0.0353 -0.03 
3 10 0.0250 (6) 0.0250 0.00 
4 4 0.1293 (12) 0.1293 0.01 
4 5 0.0850 (11) 0.0852 -0.13 
4 6 0.0562 (10) 0.0561 0.02 
4 7 0.0371 (9) 0.0370 0.10 
4 8 0.0244 (8) 0.0244 0.08 
4 9 0.0160 (6) 0.0161 -0.04 
4 10 0.0106 (5) 0.0106 -0.02 

The numbers in brackets give the statistical errors in the last digits. The deviation is 
given by Wmeasur=d- W,, divided by the standard deviation in the measured W. This 
deviation is calculated keeping one more digit in the Wk. The 0’s corresponding to the 
above fit are given by: 0, =0.062*0.004, 0,=0.20*0.01, 0,=0.12+0.01, 0,=0.22*0.01, 
e5= -0.12~0.01. 

Another check of eq. (4.10) consists of taking the second derivative of V(R, T) 

with respect to R: 

-&V(R,T)=-2 -g-;-$ln R + ; ln (1 _e--Z74-/R (4.13) 
n=l 

In fig. 3 we have plotted the discrete version of 

(4.14) 

constructed from R = 2, 3, 4. The data agree very well with (4.14). 

As a final consistency check we have shown in fig. 4 the measured Creutz ratios 

x(R, T) and the “corrected” string tension Xstring(IZ, T) obtained by subtracting 
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TABLE 4d 

Comparison of measured and fitted values for W(R, T) with p = 6.5 
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R T W(R, T) measured W( R, T) fitted Deviation 

2 2 0.5614 (4) 0.5589 5.56 

2 3 0.4424 (6) 0.443 1 -1.10 

2 4 0.3504 (7) 0.3512 -1.23 

2 5 0.2781 (8) 0.2784 -0.48 
2 6 0.2206 (8) 0.2207 -0.14 
2 7 0.1750 (8) 0.1750 0.02 
2 8 0.1388 (7) 0.1387 0.19 
2 9 0.1102 (6) 0.1100 0.33 
2 10 0.0873 (6) 0.0872 0.19 

2 II 0.0690 (6) 0.0691 -0.11 

2 12 0.0547 (5) 0.0548 -0.08 

3 3 0.3224 (8) 0.3227 -0.38 

3 4 0.2374 (9) 0.2382 -0.89 
3 5 0.1756 (10) 0.1758 -0.24 

3 6 0.1298 (10) 0.1298 0.05 
3 7 0.0959 (9) 0.0958 0.17 

3 8 0.0708 (8) 0.0707 0.13 
3 9 0.0523 (7) 0.0522 0.14 

3 10 0.0385 (7) 0.0385 0.05 

3 11 0.0284 (6) 0.0284 -0.10 
3 12 0.0210 (6) 0.0210 -0.04 
4 4 0.1637 (11) 0.1640 -0.30 
4 5 0.1138(11) 0.1139 -0.17 
4 6 0.0791(10) 0.0791 -0.04 
4 7 0.0551 (9) 0.0550 0.20 
4 8 0.0382 (8) 0.0382 0.08 
4 9 0.0267 (7) 0.0265 0.25 
4 10 0.0185 (6) 0.0184 0.10 
4 11 0.0127 (6) 0.0128 -0.13 
4 12 0.0089 (4) 0.0089 -0.07 

The numbers in brackets give the statistical error sin the last digits. The deviation is 

given by Measured - W,, divided by the standard deviation to the meausred w’s The 0’s 

corresponding to the above fit are given by: 19, = 0.050*0.003, 0r = 0.196* 0.004, 
0,=0.128*0.005, f&=0.23*0.01, B,=-0.11*0.02. 

from x( R, T) the part coming from the string vibration. The correction has the form 

X(& T) =,?(R, T) +& 
1 

R(R- 1) 
+A(& T), (4.15) 

where A( R, T) is a minor positive correction coming from the sum of logarithms 

in V(R, T). It is only important for R = T, R = T - 1 and R = T - 2. From fig. 4 it 

follows that 

TC(R, T)=a, (4.16) 
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5.0 5.5 6.0 6.5 
-B 

L -P 
5.0 5.5 6.0 6.5 

Fig. 2. The parameters 0,. f&, OS and e4 as defined by eq. (4.1 I). 

where (+ is independent of (JZ, T) as it should be if it were a measure for the string 

tension. 

By now we would be tempted to conclude that by the same time scaling to the 

continuum limit begins, the Wilson loops W( R, T) are very well represented by the 

simple string model with action (1 .l). We should however check that the deviation 

from scaling that is seen in the measured Creutz ratios could not have an alternative 

perturbative explanation, although this seems somewhat unlikely when we consider 

the perturbative regions in fig. 1. 

The lowest-order perturbative potential is easily calculated using the continuum 

propagators. These are excellent approximations to the lattice propagators when 
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13=6.5 P=6.0 

T 
4 6 

T 
8 10 12 4 6 8 10 

A 

0.12~- 

I : -T 
4 6 8 10 

Fig. 3. Comparison of the discrete version of eq. (4.14) with the data. 

the distance is two or more lattice spacings. One gets 

VCR, qwt= 4 l C,p,[TInR+RlnT 

+T(m-ln(l+Jl+(R/T)*)) 

+R(JI+(TIR)2-ln(l+~l+(T/R)‘))+C(R+T)], (4.17) 

where C2 is the Casimir of the fundamental representation of SU(2): C2 = i and the 

constant C depends on the cutoff used. For C = 0.32 eq. (4.17) fits the exact values 

calculated in ref. [2] within a few percent for R, T 2 2. 

Calculating the correction to x(R, R) from (4.17) one gets the analogue of eq. 

(4.15) 

x(R, R) =X(R, R) +--$ In &+A(R) , 1 (4.18) 

where A (R) is a small negative quantity of the order of 10% relative to the logarithmic 

term. 

The result of applying (4.15) and (4.18) to square loops is shown in fig. 5. As 

already mentioned, the corrected i( R, R) gives a consistent interpretation as a string 

tension in the sense that it is independent of R. This is clearly not the case for 
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Fig. 4. The Creutz ratios for different areas and different p’s. The black dots represent the Creutz ratios 

corrected for string vibrations (see eq. (4.15)). 

j(R, R). It should also be mentioned that the order of magnitude of the “string 
tension” j(R, R) is such that the correlation length l/,/m is smaller than the 
size of the largest loops (5 x 5,6 x6). This makes it hard to understand why one 
should add a perturbative part to the potential for distances larger than the correla- 
tion length, because then the propagation of massless gluons should be strongly 
damped and one-gluon perturbative corrections irrelevant. In three dimensions we 
are in the lucky situation that even for a fixed /3 we are able to distinguish clearly 
between the perturbative Coulomb potential (as in (4.18)) and the “universal” string 
Coulomb potential (as in (4.15)). This is in sharp contrast to the situation in four 
dimensions. The data definitely seem to favour the string model potential. 

5. Conclusions 

We have seen that an excellent representation of the data from W( R, T) is obtained 
by the simple string model with the action of eq. (1.1). 
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Fig. 5. The Creutz ratios for square loops. The string correction is given by eq. (4.15). The perturbatively 

corrected ,y’s are given by eq. (4.18). It is seen that the perturbative corrections lead to a string tension 
which depends on R, in contrast to the string corrections. 

It is of importance to realize that we cannot see the short-distance behaviour in 
the transverse direction of the string (flux tube). Thus eq. (1.1) should be regarded 
as an effective action for distances much larger than the width of the flux tube. 

It is well known that Lorentz invariance is broken for the simple string (1.1) 
(except for a critical dimension) [lo]. QCD is of course expected to be Lorentz 
invariant and one may criticize our fit because of this. However, the lack of Lorentz 
invariance only occurs if one insists that the string picture is mathematically correct 
down to distances compatible with the transverse extension of the flux tube. Such 
an assumption is of course physically unreasonable. On the contrary, one expects 
the string to be a mathematical idealization, which is valid only for distances larger 
than the width of the flux tube. Therefore the breaking of Lorentz invariance is not 
an objection to the action (1.1) if one takes the point of view that it is an effective 
action, valid only for distances large compared to the transverse extension of the 
flux tube (the appearance of a tachyon in dual models is also an ultraviolet problem). 

We have found that the string picture occurs already at relatively small distances 
between the test quarks. Therefore one would expect the lowest glueball mass to 
be rather large since it is expected to be of the inverse flux tube width. We are at 
the moment investigating this expectation by a direct calculation of the lowest 
glueball mass. 

We thank B. Nilsson and P. Amundsen for valuable assistance in computer issues. 
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