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Recent SU(3) lattice Monte Carlo data (244 and 16 4) are analyzed in terms of a simple string model. Good agreement is 
found. Observed similarities between SU(3) and three-dimensional SU(2) indicate that the string theory is indeed an effective 
one. 

One of  the major results from numerical studies 
of  lattice gauge theories has been the establishment 
of  a nonvanishing string tension that exhibits approx- 
imate scaling. However, this fact does not necessarily 
mean that the mathematical idealization of an effec- 
tive string theory is correct in describing Monte Carlo 
data. In ref. [1 ] this question was investigated by con- 
fronting the predictions of  a simple string model with 
large R X T Wilson loops from three-dimensional 
SU(2). The agreement was remarkably good. Even 
the adjoint Wilson loops were successfully described 
by the corresponding adjoint ("gluon") string theory 
[2]. In this paper we pursue these ideas using recent 
four-dimensional SU(3) Monte Carlo data [ 3 -7 ] .  

The string picture. A few years ago it was demon- 
strated [8] that chromoelectric flux tubes roughen 
when stretched out. The low-frequency fluctuations 
responsible for this delocalization also modify the in- 
terquark potential (or Wilson loops). In refs. [8,1 ] 
these modifications were studied by considering a 
general class of string models described by an effec- 
tive action 

S = c f f d r  dt [Vx±Vx± 

+ terms containing higher derivatives]. (1) 

Performing the R X T integral over the wiggling trans- 
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verse coordinates xl(r, t) one obtains for the Wilson 
loop (neglecting the higher derivatives) 

- i n  W(R, r)  = o O ) R r  + dO) (R + r )  + cO) 

- (d  - 2 ) (~  lr T[R + ¼1nR 

l ~ z  n=l l n [ 1 - e x p ( - 2 ~ n T / R ) ] ) .  (2) 

Eq. (2) has two salient features. The vibrational terms 
(the bracket) have no parameters depending on the 
underlying local field theory. It only depends on the 
number of transverse dimensions, d - 2, in which the 
string lives. Also, it is R ~, T symmetric despite its 
asymmetric appearance. The terms in the large pa- 
rentheses strongly mimic a (T/R + R/T)-behaviour 
in the R X T region considered here (albeit with a 
coefficient differing from (d - 2 )~  4 r0. From eq. (2) 
one obtains the potential 

In W(R, T) 
V(R) = - lim 

T~.o T 

= aO)R + dO) - (d - 2 ) ~  ~R. (3) 

The 1/R-term in eq. (3) is universal and of long-dis- 
tance origin in contrast to the ordinary Coulomb po- 
tential as(A)/R. A similar result was obtained in ref. 
[9], where in the leading order of a l id expansion, 
the potential 

V(R) oR(1 2 2 1/2 = -- R e/R ) (4) 

was obtained. This result has later been shown to be 
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valid for arbitrary d [10].  Here R 2 = rr(d - 2)/12o 
C 

is the critical distance, below which the effective string 
picture breaks down. In four dimensions this amounts 
to R c ~ 0.7/x/~ whereas in three dimensions one has 
R c ~ 0.5/x/~. Expanding eq. (4) at large R yields 

V(R) = oR - ~ rr(d - 2)/R 

-- (rr2/288o) (d - 2)2/R 3 . . . .  (5) 

Here we recognize the universal 1/R-term of  eq. (3) 
and we also observe that  the next  term is theory- 
dependent  through o. It is related to the terms con- 
mining higher derivatives(dim = 4) in eq. (1); their con- 
tr ibutions to finite T Wilson loops have not yet  been 
calculated. It is presumably reasonable to assume a 
"brute force" symmetrized form 

- l n  W(4)(R, T) -- [(a - 2)2/0] (T/R 3 + R/T3). (6) 

In ref. [1] eq. (2) was successfully confronted with 
three-dimensional Monte Carlo data. Three reasons 
motivated this choice o f  theory:  

(i) The fewer degrees of  freedom allow the use of  
rather large loops (6 X 12) with reasonable statistics. 

(ii) The "universal" 1/R-term in eq. (2) differs from 
the real Coulomb term,  which is logarithmic in three 
dimensions. They are hence easier to distinguish. 

(iii) The critical distance R e is lower, in terms of  
lattice spacings, for three-dimensional SU(2) than for 
four-dimensional SU(2) and SU(3) in respective scaling 
region. 

Encouraged by  this success we will now proceed 
to confront  four-dimensional SU(3) Monte Carlo data 
with the simple string model  (eq. (1)) despite the ab- 
sence o f  the virtues ment ioned above. 

SU(3) Monte Carlo data and its limitations. The 
interquark potential  can be extracted from Monte 
Carlo data either by measuring Wilson lines or Wilson 
loops. With each method  there is an associated penal- 
ty ;  Wilson lines on a large lattice build up dominating 
parameter  contributions,  whereas Wilson loops are 
exponential ly suppressed at large R X T. At reason- 
ably large R and for/3 ~> 6.0 there are essentially five 
sets of  Wilson-loop data at our disposal (see table 1). 

Which loop sizes are relevant for a nonperturbative 
string model  comparison at various/3? The answer is 
given by  the Alvarez bound (eq. (4)), R c = 0 . 7 / X / - ~ .  
In fig. 1 we show the loop sizes surviving this con- 
straint at/3 = 6.0. 

Table 1 
Presently available high-statistic Wilson-loop data for ~ > 6.0, 
used in our fits. 

/3 Lattice Max Ro T Authors [ref.] 

6.0 164 8.8 de Forcrand [6] 
164 8-8 Bowler et al. [5] 
164 6-8 (8,8) Barkai et al. [4] 
123. 16 6°8 Brooks et al. [3] 

6.1 123.16 6.8 Brooks et al. [3] 

6.2 164 6°8 (8.8) Barkai et al. [4] 
123. 16 6°8 Brooks et al. [3] 

6.3 244 12.12 de Forcrand [7] 
164 8°8 Bowler et al. [5] 
123. 16 6°8 Brooks et al. [3] 

6.4 164 6°8 Barkai et al. [4] 
123. 16 6°8 Brooks et al. [3] 

The pure perturbative region of  R and T is on the 
other hand approximately l imited by  the value of  R 
where [11,12] 

V(R) = g14 ~r {R ln [1 / (ApR)2] )  -1 

X (I - ~..1°21- {ln[1/(ApR)2]}/ln[1/(ApR)2]) (7) 

exhibits a maximum. Using a/A 2 ~ 1.1 × 104 [3,4] 

and Ap = 82.07A 0 one finds Rma x ~. 0.4/h/'0"-~. 
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Fig. 1. Loop sizes included in the analyses of refs. [3,4]. The 
scales are chosen such that areas are approximately propor- 
tional to the corresponding sum of statistical weights. The 
drawn line limits the nonperturbative region T, R > R c *, 0.7• 
x/~ at # = 6.0. 
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Previous analyses o f  the SU(3) potential. The two 
data sets of  Barkai et al. [4] and Brooks et al. [3] 
have been analyzed in terms of  a string-potential by 
the respective authors. In both  cases R = 2 loops are 
included in all fits involving a 1/R-term. Since the to- 
tal statistical weight of  In IV(R, T) with T/> R / >  2 in 
these data sets exceeds that of  the remaining points 
T > R  > 2 by  a factor 3 (see fig. 1), it is not uncon- 
ceivable that the 1/R-coefficient obtained in this way 
represents a mixture of  the perturbative one in eq. (7) 
and (d - 2)~r/24 in eq. (3). Secondly the T[R-contri- 
bution to In IV(R, T) is an asymptotic form valid for 
T >> R ,  and must therefore be accompanied by the 
remaining term in the large parentheses of  eq. (2) for 
T ~ R. In ref. [4] Creutz ratios are considered in- 
cluding the domain T < R where 

1_ 
Z J  In [ 1  - exp (-2zmT/R)] 

2 nl= 
(8) 

in eq. (2) gives significant contributions. In ref. [3] 
the constraint T ~> R + 1 is used and nonleading terms, 
iilcluding log R,  are neglected. Below we will con- 
front all SU(3) Monte Carlo data, referred to in ta- 
ble 1, with the full expression of  eq. (2). 

Our analysis. We focus on the ~3 >t 6.0 region. First 
we subtract from the measured - l n  IV(R, T) the term 
in eq. (8), which amount to a very small correction 
unless T < R - 1. For each pair of  R and/~, with R 
t> 3, we fit to a straight line in T. As a result we ob- 
tain a slope and an intercept for each R and/3: 

- ln  IV(R,T) - (d - 2 ) {  ~ ln[1 - exp (-27rnr/R)] 

= [el ( f l )R + 02(~) + e303)/R] r 

+ [~)4(/~)1n R + O2(fl)R + e5(~) ] .  (9) 

The perimeter term ®2, appearing both in the slope 
and the intercept, is by far the dominating term. With 
a total of  53 pairs of  R and fl at our disposal, we thus 
perform 53 two-parameter fits, each to 6 - 8  different 
T-values. The statistical weights are W(R, T)/o(R, T), 
where o(R, T) denotes respective standard deviation. 
The bulk of  the ×2/DOF values lies in the range I - 4  
for these fits. 

For the largest set of  data, ref. [7],  we have also 
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>=.917 

Fig. 2. The parameters 01 and ®2 as def'med by eq. (9). In- 
stead of O 1 we have plotted the rescaled variable O1 defined 
by ~1 = o/A~ = 01(81r2/3/33) -102/121 exp (81r2/~/33). The #- 
dependence of ®2 is negligible in the interval considered here. 
Statistical errors are (1-3)% (see text). The plotted values 
for ®2 are the average of the ones extracted from the slope 
and the intercept of eq. (9). 

tried to raise the minimum size of  the loops to 4 and 
even 5 units. This increase does not change the values 
of  the parameters significantly. 

The Oi(fl) resulting from a fit to these 53 points 
are shown in figs. 2 and 3. First we conclude that the 
string model predictions for O3(/3 ) and O4(/~) are very 
well described by the data. For the string tension we 
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Fig. 3. The parameters ®3 and 04 as defined in eq. (9). The 
dotted lines are the universal string model predictions of eq. 
(2). Statistical errors are (1-3)% (see text). 
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obtain the average 

o/A 2 = 0.917 X 104, (10) 

which is somewhat lower than in refs. [3,4]. Finally 
the perimeter term O2(/~ ) shows almost no ~-behaviour 
in the interval we consider. This is as expected since 
this term originates from self-interactions and hence 
scales like 1//3 because 

<,>-oxp( fS,(x ,)-.,y.) ,1,) 
C C 

which with dim A(x - y )  = 2 gives In W ~ (R + T)/~. 
Note that the perimeter term can be extracted from 
both the slope and the intercept in eq. (9). 

The quoted errors for the parameters Oi(13 ) are 
quite small ( (1-3)%).  One should keep in mind, 
though, that we have a rather small set o f  data at our 
disposal and the error definition is therefore some- 
what arbitrary, due to correlations. We have omitted 
the 123 X 16 data ofref .  [3] in figs. 2 and 3, since 
these points show a somewhat larger spread although 
their average are well consistent with remaining higher 
statistics data. The spread of  data points in figs. 2 and 
3 might either indicate a realistic error estimate or 
the presence of  systematic errors In the Monte Carlo 
data. 

We conclude from this analysis that the simple 
string model (eq. (1)) nicely describes available SU(3) 
data for R > R c. 

Hints o f  higher order effects. The many fits per- 
formed allow us to notice a small but systematic devia- 
tion from the linearity in T expected from eq. (2). 
This small discrepancy appears at all values of/7 and 
R (see fig. 4a). These deviations are o f  course also 
present and larger when fitting any other linear form 
of  T to In W(R, T). The deviations are not  finite lat- 
tice size effects since they are present for all sets of  
data. Neither do they seem to depend on the partic- 
ular choice of  theory, since they also appear in three° 
dimensional SU(2) as shown in fig. 5. Do these devia- 
tions result from the higher derivative term in eq. (5)? 
In fig. 4a we have indicated the functional form of  
a (T/R 3 + R/T3).term (eq. (6)). It certainly works 
in the right direction. When performing a three-param- 
eter x2-fit with this functional form, the deviations 
no longer show any systematics (see fig. 4b). Further- 
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Fig. 4. (a) Deviations of eq. (9) from a straight line in T (af- 
ter subtracting eq. (8)) forR = 4, 5 and 6 at ~ = 6.0 using 
the data of ref. [6]. The dashed line shows the expected func- 
tional form of the higher order term (cf. eq. (6)). (b) The 
same deviations as in (a) after including the term ofeq. (6) 
in the fit. 

more the T/R3-coefficient comes out with the right 
sign. (Needless to say, the quality of  the data is insuf- 
ficient for precise fit.) Finally, when comparing four- 
dimensional SU(3) with three-dimensional SU(2) at 
compatible/3 (say ~ = 6.2 with o = 0.04 and 13 = 5.5 
with o = 0.073 respectively) we find that the ratio of  
the deviations approximately equals 8, which is what 

3: 

I 

0. 

z, 

13 =5.0 

v 

A 

o f t ,  
v 

z, t, 

, 13=5.5 
~. R=2  
v R=3  
[]  R=4  

[]  

v 

o 

A 

2 3 / , 5 6 7 8 9  

Fig. 5. Deviations of eq. (9) from a straight line in T (after 
subtracting eq. (8)) for three-dimensional SU(2) [ 1 ] for R 
= 2, 3 and 4 at/3 = 5.0 and 5,5 respectively. 
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one expects from the (d - 2)2/o-factor in eqs. (5) and 
(6). We take this fact as a further evidence that  the 
string model  really works as an effective long-distance 
theory for non-abelian latt ice gauge theories in the 
continuum region. 

In summary we have found that  existing SU(3) 
Monte Carlo data are in good agreement with the lead- 
ing "universal" term (eq. (2)) from the simple string 

theory of  ec~. (1). For  the string tension we fmd the 
average o/A~ = 0.917 X 104. A minor deviation from 
eq. (2) is observed, which hints at the presence of  the 
correction term in eq. (6). The magnitude of  this de- 
viation when comparing SU(3) with three-dimensional 
SU(2) is as expected from eq. (6). This fact is an addi- 
t ional support  for the string model  indeed being the 
effective theory for non-abelian theories at large dis- 
tances. 

We thank Steve Otto for making the data of  ref. 
[3] available to  us prior to publication. One of  us 
(C 2 . )  has benefi t ted from fruitful conversations with 
Jan Ambj¢rn.  We have also benefi t ted from the ef- 
ficient compilat ion of  unpublished data by Anna and 
Peter Hasenfratz. 
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