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Abstract. We present high statistics MC calculations 
of the static potential in three-dimensional SU(2) for 
a wide range offl values on a 243 lattice. The deviations 
from area law are unambiguously demonstrated by use 
of 2nd lattice R derivative. After a clear crossover at 
fl = 4.5 the data show signs of an effective string 
roughening up to fl = 6.5, while scaling is not strictly 
obeyed in this interval. Pure fermionic strings do not 
provide better fits. The effect of regularization pre- 
scription on the effective string model up to two-loop 
correction is discussed and is found to be small. We 
also make a comparative study of existing data on 
Z(2) and SU(3) together with new data on four- 
dimensional SU(2) presented here. It is pointed out 
that standard variance reduction methods as applied 
especially to Wilson lines are plagued by severe long 
range auto-correlations, whereas larger Wilson loops 
are less affected. 

1 Introduction 

With the emergence of accurate lattice Monte Carlo 
data on the static interquark potential, efforts have 
recently been devoted to analyze this potential in terms 
of effective string theories [1-4]. Such an analysis is 
motivated for two reasons. First of all it is of course 
very interesting to get an understanding of the non- 
abelian long distance dynamics. Secondly, and of more 
urgent importance, such studies are crucial for the 
extraction of the string tension a from the data. Since 
this extraction is model dependent the presence or 
absence or even choice of an effective string theory 
strongly affects the value for a and also its scaling 
properties. , ' "  

An effective string theory is defined by a general 
class of partition functions of the type (for the bosonic 
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case) 
_ _ f i r  z(e'r)=e-~"rf'Dx• 2 ! idrdt(Vxl'Vxl)o 

+ higher derivative terms t" (1) 

In the case of the Nambu string the quartic part of 
the last term amounts to 

a drdt(- I. 2 2 OrXl )2 )  & =  - 5 0  a[(Vx,) ] +(a, xl A 

(2) 

where the fields x• are defined on a surface with appro- 
priate boundary conditions on a R x Tboundary loop. 
Fermionic fields can of course also be introduced. As 
is wellknown, such an effective theory, if indeed 
realized in MC data, will manifest itself with its zero 
energy roughening terms I-5], which modifies the linear 
interquark potential. For a bosonic string one gets, 
keeping the gaussian term 

7"C 
d 2) -1 (3) v ( r ) = a r - ~ (  - r 

where ( d -  2) is the number of transverse dimensions 
in which the string lives. When analyzing MC data 
for finite R • T Wilson one has for the bosonic string 

- l o g  W(R, T) = aRT+ P(R + T) 
+ c + (d - 2)qB(R, T) (4) 

where 
roT 

qB(R,T)- 24R �88 

+ �89 ~ log(1 - e -2~n(T/R)) (5) 
n= I  

which is related to (3) through 

1 
V(R) = lim - ~ log  W(R, T). (6) 

T--+m 
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Corresponding expressions can be derived for the 
Polyakov counterparts [2, 4]. When confronting string 
model predictions with MC data it is preferable to use 
(3) where also the finite Tbehaviour enters the analysis. 

Encouraging results for the bosonic string exists for 
SU(2) in 3 dimensions (SU(2)3) [1] and SU(3) [2,4]. 
The predictions of (1) and (2) are universal in the sense 
that they are first order prediction in loop expansions 
of the effective string theory and hold for a whole class 
of bosonic string theories [5]. Summing up all the 
terms [6, 7], predictions for the position of the decon- 
fining phase transition can be obtained [8] at least 
for the Nambu string. When comparing the values for 
Tc/w/-a for SU(2) in 3 and 4 dimensions very good 
agreement is found for the Nambu string, whereas for 
S U(3) and S U(N ~ ~)  another string model seems to 
be present [4]. 

Recently also fermionic string theories have been 
proposed for describing the long distance properties 
of gauge theories. Predictions for the Neveau-Schwarz 
model are discussed in [9] and a pure Dirac string is 
treated in [10]. At first sight fermionic strings might 
seem to be odd creatures for pure gauge theories (all 
data analyzed so far are in the quenched approxima- 
tion). However, there are indications from strong 
coupling analysis of Z(2)3 gauge theory that the string 
formation is restricted to paths in a way that resembles 
constraints from Fermi-Dirac statistics [11,12]. In 
fact, the theory can be formulated in terms of a 2 
dimensional theory of quantized surfaces with only 
fermionic degrees of freedom. It is therefore not totally 
unreasonable that the resulting theory, quartic in 
fermion fields, could show up in an effective fermionic 
string. If so, the effective string might also apply to 
the strong coupling region of SU(2)3. The authors of 
ref. [10] have analyzed MC data on Z(2)3 gauge theory 
with a pure fermionic (Dirac) string theory and claim 
encouraging results. 

It is therefore worthwhile to reexamine the situation 
in the non-abelian cases of SU(2)3, SU(2) and SU(3). 
In this paper we present new high statistics data on 
SU(2)a and SU(2) and also reanalyze available data 
on Z(2)3, SU(2) and SU(3). With our new data on 
SU(2)a we are able to probe distances out to 4-5 
correlation lengths and are thus safely out of the 
perturbative region [4]. 

We will consider the second lattice R derivative of 
the logarithm of the W-loop expectation values. This 
operation disentangles the roughening contribution 
from the area law [1]. The linearity in T compensate 
the increase of error as T increases. The deviations 
from area law are unambiguosly extracted without use 
of any assumed functional form or fitting procedure. 
The onset of finite size effects can be seen for large 
loops. 

We have also supplemented our analysis of the data 
with a simpleminded test of how lattice artifacts might 
influence the potential. That is, to what extent are (3) 
and (5) valid when only a few lattice spacings are 

involved? One should remember that (3) and (5) are 
continuum formulae that contain all roughening 
modes contributing when the sources are at a distance 
R apart. On the lattice, at least in the strong coupling 
sense, it might be difficult for all modes to contribute 
for small or moderate R. By explicitly summing up 
the modes with a lattice cutoff, some feeling of the size 
of corrections arising from a change of the regulariz- 
ation prescription, or to some extent of lattice artifacts, 
may be obtained. We have performed this up to 
two-loop corrections. 

Finally, we will discuss the purely numerical matter 
of long-range autocorrelations that we have found 
when implementing standard methods of variance 
reduction [13] into the MC algorithm. This should 
serve as a warning that some earlier MC data may 
suffer from underestimated errors. 

2 String theory predictions 

We will shortly review the results within a continuum 
formulation of the effective string where the necessary 
regularization is performed using Riemann (-function 
methods. For a bosonic string we will also comment 
on the effect upon those expressions when we impose 
some other prescription, exemplified by a lattice cutoff. 
For a more complete review of the former case, see 
ref. [4]. 

A. Bosonic string 

For the bosonic string we have already given the 
modification of the parametrization of the Wilson loop 
in (4) and (5). We note that the expression, (5), spite 
its appearance, is symmetric in R~--~ T, while here put 
in a form to ease the investigations as R ~< T. While 
the T/R coefficient is universal even when higher order 
derivative terms are included, this is not necessarily 
true for the whole expression. Actually, also the 
Polyakov smooth string has been shown to possess 
this T/R behaviour in the limit of large d and R [14]. 

The two-loop contribution of the Nambu string is 
obtained as the expectation value of $4 in (2) with 
respect to the gaussian part of the action. It can be 
expressed in terms modular functions [4, 15] and has 
a 1/a dependence. 

In evaluating the determinant appearing from the 
gaussian part of the action, as well as the infinite sums 
occuring in the two-loop expressions, some specific 
regularization prescription must be used when 
summing up zero-modes. While our physical results 
of course should not depend on the scheme, the string 
as realized in the finite distance MC data may well be 
sensitive to the cutoff. After all we are examining 
continuum strings down to distances of a few lattice 
spacings. In order to test the sensitivity of our results 
to the procedure chosen, we have calculated the lattice 
regulated version of the bosonic one-loop contribution 



in (5). Using the ordinary lattice laplacian one gets 

-logW(R,r)= {(R-1)(r-1)log~+ yep} 
P 

(7) 
where 

Ep = 4 - 2 cos pa - 2 cosp2 

n 2n ( T -  1)n 
P 1 - T '  T .. . . .  T 

n 2rt ( R -  1)n 
P 2 - R ,  R " ' "  R 

Subtracting those parts which renormalize o-, P and c, 
we define the one-loop contribution as 

qL(R, T) = ~ log(4 -- 2 cos p, - 2 cos p2 ) 
P 

16 
- �88 log ~ (R + T) + ~ log 2 (8) 

where G ~ 0.916 is Catalan's constant. The sum over 
p we calculate numerically. 

Two-loop contributions can be treated in a similar 
way, but the expressions become more involved. A 
typical sum has the form (using a central lattice 
derivative) 

sin2pl/2 sin 2 p2/2 
Y, 2 
p Ep 

In order to compare with the continuum expression for 
the Nambu string we have calculated the full form for 
each R and T numerically. The contribution to the 
area term can be explicitly found and is - R T(d - 2)/2o-. 

The tachyonic content of the bosonic string sets a 
lower bound where the interquark potential becomes 
imaginary. Of course, an effective string theory must 
therefore be supplemented by a restriction of its 
validity to distances R larger than some critical Rc, 
below which the ultraviolet features of these theories 
appear. Mvarez [6] derived a closed expression for 
the potential in a lid expansion 

V(R) = aR~/(1 - (Rc /R)  2) 

where 

R c = ~/rt(d - 2)/12o-. (9) 

This expression is actually valid for any d in the case 
of the Nambu string [7]. Our standpoint will be to 
exclude from the fits those points representing physical 
distances below R c. 

B. Fermionic string 

A fermionic string will in general result in a T/R term 
with a coefficient different from the bosonic one. The 
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value of the coefficient depends on the boundary 
conditions. For a Dirac spinor field with boundary 
phase ~b = n/2, for which the authors of [10] claim 
encouraging results, one obtains 

- n  T 1 ~ log(l+e_2~(,_l/2)rm ) (10) 
qD(R,T)= 96 R 4,=1 

We note the disappearance of the log R term, as 
compared to the bosonic case of (5). 

C. Neveu-Schwarz sector 

Finally we give the roughening contribution for a 
Neveu-Schwarz string 

qys(R, T) 

= q,(R, T) + qM(R, T) 

_-nT16  R �88176176 +e-2=("-l/2)r/R1 + e -2="r/R 
(11) 

where the contribution from the antiperiodic 
Majorana spinor is qM = 2qD. We will only shortly 
comment on this possibility since the dominance of 
the bosonic contribution makes it somewhat difficult 
to distinguish it from the scalar string. 

3 Calculations 

A. Algorithm 

For our measurements of Wilson loops in SU(2) we 
have used the isocahedral subgroup. We have worked 
on a 243 lattice, using the Metropolis algorithm for 
updating. In the measuring procedure we have imple- 
mented the variance reduction techniques of [ 13]. This 
amounts to interchanging links to larger objects with 
equal mean but smaller variance. In practice we replace 
a measured link by its expectation value U~ with 
respect to its neighbours. Let X + denote the sum of 
the ordered products of the other three links in 
plaquettes U[] with U, at its border, so that 

UuX- ~-= ~ U D, (12) 

In the case of SU(2) the result of the integration can 
be written as 

u '  = x i2(fl,~) 1 
" "I1(fl~) 4' ~ = v c ~ x "  (13) 

where 11 and 12 are modified Bessel functions. For the 
isocaheder subgroup the operation takes us outside 
the group and must therefore be performed after a 
translation to the continuous group. The new link 
values and its new norm are then found from a dense 
tabulation, and our measured objects are finally 
constructed using the continuous group. Measure- 
ments will thereby take considerably longer time than 
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Fig. 1. a Values of the correlation F(R)= (L(R)L(0))- (L(0)) 2 
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Fig. 3. Autocorrelations Faro o for the configuration average of the 
Polyakov loops as a function of the number of intermediate sweeps. 
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updating of the lattice. Another method frequently 
used is to evaluate the local integrals by MC methods 
or to be more precise by applying a local multihit 
technique to measured links. We note that the four 
links situated at the corners of the Wilson loop cannot 
be modified since their neighbours include links 
involved in the loop itself. Compared to Wilson lines 
these links will induce larger fluctuations of the 
modified loops. 

We allow for 5 sweeps between every measurement 
and use at least 5000 sweeps to thermalize the system. 
The number  of sweeps used for measurements range 
from 800 to 3500 with emphasis on fl = 5.5. Errors in 
the measured quantities are estimated by a standard 
procedure. Da ta  are grouped together in bins of sizes 
up to ~ 100. The bins are regarded as independent 
measurements and standard errors calculated amongst  
them. Errors are only accepted if stable as the size of 
the bins are varied. 

B. Autocorrelations 

Using the above error analysis we find that long-range 
autocorrelations tend to survive the variance reduction 
and cause errors as large the original ones. 

Let us illustrate this with measurements of 
Polyakov loops on a 6.163 lattice at # = 2.25, which 
is far from the finite temperature phase transition. In 
Fig. la, b values of the correlation between Polyakov 
loops during 1000 sweeps are shown, with and 
without variance reduction. It  is clearly seen that 
whereas short-range fluctuations are damped out 
long-range ones are still present after the variance 
reduction. The corresponding autocorrelations are 
given in Fig. 2, where we also compare with results 
from a 8.163 lattice. Finally we give the result of an 
error analysis for Polykov loop values in Fig. 3. 
Increasing the bin size we find that the real error is 
not decreased by the variance reduction method. We 
conclude that a real gain in statistics can be obtained 
only for rather large objects. In fact, we do find an 
improvement for large enough Wilson loops. 

Partly because of this observation, and partly 
because we are looking for long-range phenomena, we 
have made a choice of the measuring frequency so as 
to increase statistics for larger loops at the cost of the 
smaller ones. This feature will allow for stable fits in 
the analysis presented here. 

4 C o n f r o n t a t i o n  with  data  

A. General procedure 

In order to see if the data reveal systematics that can 
be adhered to the appearance of a roughened string, 
we have used two different methods. As a first step we 
have performed least-squarefits. Excluding data points 
probing distances smaller than the critical distance 
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Rc, (9), we have fitted our S U(2)3 data to the expression 

- l o g  W(R, T) = 01R T + 02(R 4- T) + 04 + 03q(e , T) 
(14) 

with q(R, T) given by (5), (8) or (10). The parameter 
03 corresponds to the effective number of transverse 
dimensions d -  2. We have also tested the inclusion 
of two-loop contribution with yet one parameter. With 
a fixed value of the d - 2 parameter we have checked 
the zZ-values for different choices of q(R, T). These are 
shown in Table 1. It is seen that the values are 
considerably lowered when a scalar or a Dirac string 
is assumed, as compared to the case of vanishing 
q(R, T). However, no major difference between these 
two strings appears (this conclusion differs from [10]). 

Because of the universality of the T/R term one 
might want to use different parameters in front of the 
different terms in q(R, T). Another and more direct 
way of obtaining more detailed information on the 
deviations from the area law behaviour is to consider 
the second lattice derivative of log W with respect to R 

O~log W(R, T) 

= log { W(R -- 1, T)W(R + 1, T)/W(R, T)2}. (15) 

Assuming (4), this quantity will be sensitive only to 
the roughening contribution q(R, T). As a function of 
T, for fixed R, it asymptotically tends to a straight line 
with slope and intercept determined by the T/R term 
and the log R term, respectively. These can be found, 
even by eye, from a plot and compared with theory. 
Furthermore, the onset of finite lattice size effect as 
well as the small deviations from the straight line 
behaviour induced by the last term in q(R, T) at T ~ R 
is clearly seen and does not affect the extraction, see 
Fig. 5e, f. The spread of the points allow us to estimate 
reasonable errors of the coefficients despite the strong 
correlation in R and T between W-loops. 

B. S U(2)3 

This theory is well suited for an in-depth string model 
study. One can obey the Alvarez bound, (9), for a wide 
range o f / /  values and still have enough large sized 
loops available for a meaningful string model com- 
parison. Actually we are probing distances, with little 
effort, as large as those obtained in the best available 
data on SU(3) on a 244 lattice when measured in terms 
of correlation lengths! We are able to test couplings 
f r o m / / =  3.5 to 6.5. In Table 2 we give our data and 
statistics. The resulting fitted parameters are shown in 
Fig. 4a-c for different couplings and assumed string 
functionals. Our results for// /> 4.5 are in good agree- 
ment with effective string prediction, with a slight 
preference for the bosonie alternative. Moving towards 
stronger coupling we observe a dramatic breakdown 
of the string picture at fl ~ 4.0. The d - 2 parameter 
raises rapidly and the fit deteriorates. For the fermionic 
string the breakdown is displaced towards somewhat 
lower//-value, 
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Table 1. Z2-values for fits of the data to eq. (14) with q(R, T) given by 
(5) (Z~), (8) (Z~) or (10) (Z~), normalized to the value Zo obtained for 
vanishing q(R, T). The parameter 03 has been fixed to d - 2 which 
means that the number of parameters is three for all fits 

Theory fl Zc2/Z 2 Z~/Zo 2 Z2./Zg 

SU(2)3 3.0 0.96 0.96 0.96 
3.5 0.49 0.48 0.80 
4.0 0.54 0.46 0.56 
4.5 0.67 0.59 0.32 
5.0 0.50 0.50 0.37 
5.5 0.16 0.14 0.19 
6.0 0.09 0.09 0.19 
6.5 0.33 0.37 0.10 

SU(2)4 2.25 0.48 0.34 0.46 

SU(3)4 6.3 0.65 0.62 0.32 

The second derivative, see Fig. 5a-g, reveals that 
the agreement between data the lowest order scalar 
string prediction is not perfect. Due to their sign, the 
deviations cannot be explained by including the two- 
loop contribution of the Nambu  string (compare with 
Fig. 6a-c). 

C. SU(2)4 

In order to test the d -  2 dependence, we perform a 
MC-calculation also for the four-dimensional case at 
fl = 2.25 using the same algorithm and methods as in 
the 3-dimensional case, see Table 1. Guided by the 
behaviour of SU(2)3 we have chosen a rather small 
fl-value. Thus R c is small. Using a value a = .20 we 
obtain Rc = 1.5a. At this ~r the second derivative is 
only reliable at R = 3, see Fig. 5c. 

D. Z(2)3 

Data  on Z(2)3 were obtained and analyzed in [113] 
and were found to be well described by a Dirac string. 
We add to their investigation a study of D~log 
W(R,  T), the result of which is shown in Figs. 5b and 
6c. Neither a bosonic nor a Dirac string is quite 
compatible with this result. The discrepancies from a 
lowest order bosonic string picture is however not 
surprising if one takes into account the fact that the 
data are taken close to the critical point at which the 
correlation length becomes large. Using the string 
tension values given in [10] one finds that Rc ,,~ 2.5, 
3, 4, 5 and 5a respectively for the analyzed coupling 
values. Since all the measured Wilson loops have R ~< 4 
we cannot expect them to be described by the bosonic 
string. 

E. SU(3h 

Finally we will for comparison also reanalyze the very 
high statistics data from [16,19] on SU(3). As 
discussed in [4] the value of Rc is rather high, ranging 
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Table 2. 

su(2h 
R x T beta = 3.0 beta = 3.5 beta = 4.0 beta = 4.5 
2 • 2 0.044279(279) 0.247098(703) 0.320755(479) 0.383557(663) 
2 • 3 0.009564(93) 0.130336(495) 0.193193(329) 0.252367(511) 
2 • 4 0.002019(44) 0.069014(339) 0.117097(292) 0.166996(383) 
2 • 5 0.000463(21) 0.036694(279) 0.071067(252) 0.110524(361) 
2 • 6 0.000100(7) 0,019342(157) 0.043038(173) 0.073629(242) 
2 • 7 0.000023(2) 0.010279(85) 0.026078(109) 0.048952(144) 
2 • 8 0.000005(1) 0.005478(64) 0.015798(86) 0.032499(122) 
2 • 9 0.021586(101) 
2 • 10 0.013758(243) 

3 x 3 0.000966(46) 0.052792(641) 0.095124(453) 0.141531(777) 
3 • 4 0.000089(17) 0.021492(291) 0.047697(260) 0.080336(381) 
3 x 5 0.000007(7) 0.008889(205) 0.024015(217) 0.045630(315) 
3 x 6 0.000005(3) 0.003649(103) 0.012129(141) 0.026339(198) 
3 • 7 0.000000(1) 0.001515(53) 0.006067(77) 0.015118(116) 
3 • 8 0.000652(37) 0.003039(57) 0.008682(94) 
3 • 9 0.004999(73) 
3 x 10 0.002585(181) 

4 • 4 0.006850(240) 0.020107(296) 0.039303(379) 
4 x 5 0.002221(104) 0.008590(165) 0.019269(204) 
4 • 6 0.000765(59) 0.003674(95) 0.009667(131) 
4 x 7 0.000296(29) 0.001540(49) 0,004861(80) 
4 • 8 0.000136(20) 0.000647(37) 0,002428(60) 
4 • 9 0.001226(46) 
4 x I0 0.000556(83) 

5 x 5 0.000611(95) 0.003112(184) 0.008130(212) 
5 • 6 0.000187(36) 0.001169(65) 0.003538(97) 
5 • 7 0.000055(19) 0.000428(33) 0.001536(59) 
5 • 8 0.000018(13) 0.000176(24) 0.000678(45) 
5 x 9 0.000287(34) 
5 • 10 0.000114(64) 

6 • 6 0.000035(29) 0.000419(52) 0.001244(89) 
6 • 7 0.000146(21) 0.000438(37) 

6 x 8 0.000058(15) 0.000145(28) 
6 • 9 0.000050(20) 
6 • 10 -0.000006(26) 

7 x 7 0.000011(12) 0.000030(18) 0.000118(35) 
7 x 8 0.000018(10) 0.000022(19) 
7 • 9 0.000002(14) 
7 • 10 -0.000007(16) 

8 x 8 0.000006(6) 0.000020(11) 
8 •  
8 x l O  

9 •  
9 x l O  

su(2h 
beta = 5.0 beta = 5.5 beta = 6.0 beta = 6.5 beta = 2,25 
0.437562(621) 0.483611(322) 0.519464(1145) 0.55889(59) 0.158059(261) 
0.306607(591) 0.355840(310) 0.395080(954) 0.43923(63) 0,072269(139) 
0.216583(494) 0.263645(260) 0.301569(803) 0.34636(61) 0.033425(55) 
0.152946(496) 0.195414(268) 0.230723(781) 0.27369(66) 0.015571(36) 
0.108172(389) 0.144808(178) 0.176654(566) 0.21650(57) 0,007243(17) 
0,076703(249) 0.107406(119) 0.135379(377) 0.17111(41) 0,003392(9) 
0.054258(214) 0.079660(108) 0.103674(336) 0.13534(39) 
0,038341(187) 0.059078(95) 0,079416(295) 0.10713(36) 
0.026293(404) 0.044025(187) 0,061189(854) 0.08481(33) 

0.188568(1006) 0.235226(584) 0.274406(1435) 0.31872(13) 0.025471(131) 
0.118178(598) 0.157913(300) 0.191971(769) 0.23302(81) 0.009210(33) 
0.073995(539) 0.106083(286) 0.135014(703) 0.17099(86) 0.003399(19) 
0.046574(387) 0.071240(t88) 0.095099(470) 0,12607(68) 0.001251(9) 
0.029382(231) 0.047943(118) 0.067118(293) 0.09278(46) 0.000467(5) 
0.018471(185) 0.032268(t00) 0,047287(249) 0.06840(41) 
0.011585(144) 0.021712(84) 0.033332(209) 0.05048(36) 
0.006876(345) 0.014666(154) 0.24033(580) 0.03729(32) 

0,066163(690) 0.096497(329) 0.124068(824) 0.15890(100) 0.002682(21) 
0.037098(422) 0.059293(204) 0.080745(508) 0.10887(71) 0.000810(9) 
0.020825(294) 0.036417(143) 0,052694(345) 0.07516(58) 0.000245(5) 
0.011650(172) 0.022382(91) 0,034561(218) 0.05183(40) 0,000072(3) 
0.006575(131) 0.013788(75) 0.022583(178) 0.03586(34) 
0.003694(103) 0.008485(61) 0.014772(146) 0.02484(29) 
0.002002(197) 0.005238(93) 0.009743(287) 0.01722(24) 

0.018550(483) 0.033439(238) 0.048737(594) 0.06983(98) 0.000201(8) 
0,009228(217) 0.018852(113) 0.029560(269) 0.04529(54) 0.000050(3) 
0.004620(121) 0.010618(71) 0.018111(166) 0.02949(35) 0.000011(2) 
0.002348(93) 0.005989(57) 0.011025(132) 0.01911(29) 
0.001220(75) 0.003350(46) 0.006731(106) 0.01238(24) 
0.000478(150) 0.001832(71) 0.004062(223) 0.00805(20) 

0.004011(195) 0.009768(110) 0.016713(255) 0.02758(63) 0.000010(2) 
0.001781(80) 0.005043(50) 0.009560(114) 0.01687(30) 0.000002(1) 
0.000823(62) 0.002592(40) 0.005437(90) 0.01025(24) 
0.000386(49) 0.001303(32) 0.003114(71) 0.00620(20) 
0.000133(60) 0.000631(40) 0.001783(109) 0,00374(16) 

0.000729(74) 0.002385(48) 0.005059(108) 0,00971(31) 0.000001(1) 
0.000330(43) 0.00t 108(27) 0.002670(601) 0.00553(18) 
0.000131(35) 0.000495(22) 0.001421(478) 0.00309(14) 
0.000081(41) 0.000208(23) 0.000775(535) 0.00171(11) 

0.000151(50) 0.000449(31) 0.001318(66) 0.00290(19) 
0.000066(29) 0.000171(17) 0.000659(36) 0.00146(11) 
0.000077(33) 0.000053(19) 0.000386(41) 0.00070(8) 

0.000035(32) 0.000056(20) 0.000293(40) 0.00059(12) 
0.000044(25) 0.000012(15) 0.000174(33) 0.00019(7) 

from three to five lattice spacings. From the second 
derivative in fig. 5d we conclude that the data contain 
a T/R term with a coefficient differing no more than 
a few percent from (d - 2)zc/24, see Fig. 6b.As to fl = 6.3 
we only find deviations from this value at R = 2 which 
should certainly be in the perturbative region. Unlike 
the situation in S U(2)3 the two-loop expression here 
works in right direction in order to explain the 

devia t ions  from the one-loop prediction. However, 
such an explanation requires, due to the 1/o- depen- 
dence, that the deviation increases as fl increases. Such 
a behaviour cannot be seen. 

Note that the Neveu-Schwarz string, (11), also fits 
data reasonably well. As advocated in [9], this 
string gives a better prediction for To~ale than the 
simple scalar one. 

5 Summary 

In summary we have obtained S U(2)3 data for W-loops 
in a MC calculation especially designed for the purpose 
of extracting an effective string potential. We point 
out the severe long-range auto-correlations appearing 
for small objects and W-lines when variance reduction 
techniques are applied. The data allow for a good fit 
to the bosonic roughened potential for all fl values 
> 4.5, but a closer analysis reveals that scaling is not 
perfect and data contain more systematic deviation 
than can be explained by bosonic effective strings of 
lowest order, or by Nambu string up to two-loop 
corrections. Performing a lattice regulated roughening 
calculation does not change this conclusion. 

For fl below 4.5 we see a rapid breakdown of the 
picture of a roughening modified linear potential. This 
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is clearly far beyond the transition seen in strong- 
coupling expansions and might signal the restoration 
of rotational symmetry. No shift into Dirac string can 
be seen. 

The clear presence of a term constant in T and 
nonlinear in R signals either perturbative contri- 
butions from finite size boundary perimeter term, or, 
taking the string for granted at these distances, a 
typical bosonic log R contribution. 

Comparing with existing data on SU(3), a very 
similar picture emerges. Here distances in correlation 
lengths are smaller, of order 1. If a transition to a 
perturbative region is already present it is certainly 
very smooth. A T/R term is clearly present with a 
coefficient only few percent off its predicted value from 
roughening. 

Finally we have reanalyzed available Z(2)3 data 
where we find little evidence of the reported fermionic 
behaviour. 
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