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Abstract--The mean field theory ( MFT) learning algorithm is" elaborated and explored with respect to a variety 
of tasks. MFT is benchmarked against the back-propagation learning algorithm ( BP) on two different.feature 
recognition problems: two-dimensional mirror symmetry and multidimensional statistical pattern classification. 
We find that while the two algorithms are very similar with respect to generalization properties, MFT normally 
requires a substantially smaller number of training epochs than BP. Since the MFT model is bidirectional, rather 
than Jeed-forward, its use can be extended naturally from purely ,functional mappings to a content addressable 
memory. A network with N visible and N hidden units can store up to approximately 4N patterns with good 
content-addressabilio'. We stress an implementational advantage for MFT: it is natural /br VLSI circuitry. 
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1. INTRODUCTION 

1.1. Background 

Adaptive learning procedures for massively-parallel 
networks of primitive computing elements are pres- 
ently subject to intense investigation. One such widely 
used learning algorithm is the back-propagation pro- 
cedure (BP) (Rumelhart ,  Hinton,  & Williams, 1986). 
In this algorithm, a set of input patterns are propa- 
gated in a feed-forward manner  through a multilayer 
network. For each pattern,  the resulting output sig- 
nal is compared with a desired value and the error 
is recorded. The connection strengths, or weights, 
are then adjusted such that the error measure is min- 
imized via gradient-descent.  This algorithm falls into 
the category of supervised learning. 

Another  example of a supervised learning algo- 
rithm is the Boltzmann machine (BZ) (Ackley, Hin- 
ton. & Sejnowski, 1985). In this algorithm, learning 
takes place via two phases. First, the network is run 
with both the input and the output units clamped, 
Co-occurrency probabilities are measured after the 
system has reached a global energy minimum. This 
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procedure is then repeated with only the input units 
clamped. The weights are then adjusted according 
to gradient-descent in an information-theoretical 
measure. In order to reach a global energy minimum 
in each phase of this process, it is necessary to use the 
very time-consuming simulated annealing method.  
This, combined with measuring the co-occurrence 
statistics, makes the Boltzmann machine one or two 
orders of magnitude slower than BP. Consequently,  
there has been relatively little experimentation with 
the Boltzmann machine. 

In Peterson and Anderson (1987), it was con- 
vincingly demonstrated that the stochastic simulated 
annealing process in the Boltzmann machine can be 
replaced by a set of deterministic equations in the so- 
called mean field theory approximation.  This Mean 
Field Theory Learning Algorithm (MFT) typically 
provides a substantial speed-up over the Boltzmann 
machine. 

In this work we compare BP to MFT with respect 
to a variety of tasks. These algorithms differ in a 
number  of ways. Their basic ingredients are very 
different: 

• Error  Measure. BP uses a sum over squared errors 
whereas MFT uses an asymmetric information-the- 
oretic error measure.  

Recently a back-propagation algorithm bascd on a similar 
measure has been proposed (Baum & Wilczck, 1988: Hopficld, 
1987). 
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• Notion of Final State. The final state in BP is reached 
when the signals have propagated in a feed-for- 
ward manner through the network to the output 
units. This is in contrast to MFT where no such 
intrinsic direction exists. The connections are bi- 
directional, and the system settles to steady state 
as does a physics system with many degrees of 
freedom. 

• Locality of Updating. In BP, the error is propa- 
gated backwards from the output units and the 
weights are updated successively. In MFq', the sit- 
uation is very different; the local correlations mea- 
sured in the two phases are the seeds for updating 
the corresponding weights. 

MFT has more potential than BP regarding range 
of applicability and hardware implementation: 

• Applicability. With its strict partitioning of visible 
units into input units and output units, BP is de- 
signed for feature recognition. 2 MFT (or the Boltz- 
mann machine) is not limited to this paradigm; 
visible units are not forced to adopt a fixed input 
or output functionality, and the algorithm can 
therefore be used as a con ten t  addressable  memory '  

(CAM) as well as being used as a pure feature 
recognizer. In addition, MFT networks (without 
training) can be used for combinatorial optimiza- 
tion problems (Hopfield & Tank, 1985; Peterson 
& Anderson, 1988; Peterson & S6derberg, 1989). 

• VLSI implementation. The MFT equations rep- 
resent steady state solutions to RC-equations of 
the corresponding electrical circuit (Hopfield 
& Tank, 1985). This fact, together with the local 
nature of the weight updating, facilitates a VLSI 
implementation. 

1.2. Motivation and Results 

The BP algorithm has been used extensively with 
encouraging results in applications ranging from small 
toy problems such as parity and encoder problems 
(Rumelhart, Hinton, & Williams, 1986) to more re- 
alistic ones such as mapping written text to phonemes 
(Rosenberg & Sejnowski, 1987), classifying sonar 
signals (Gorman & Sejnowski, 1988), predicting the 
structure of proteins (Qian & Sejnowski, 1988), and 
playing backgammon (Tesauro & Sejnowski, 1988). 
The MFT algorithm is a more recent development 
and has not yet been explored to the same extent. 
Given MFT's VLSI potential and inherent parallel- 
ism, it is important to investigate its potential for 
feature recognition problems beyond the testbed of 
toy problems in the original work (Peterson & An- 

2 Throughout this paper, we are referring to standard back- 
propagation, not to recurrent backpropagation (Pineda, 1987; Ru- 
melhart et al., 1986) or other variants. 

derson, 1987). MFT's potential as a content address- 
able memory should also be explored. The objectives 
of this work are thus twofold: First, we compare the 
performance of BP versus MFT with respect to learn- 
ing and generalization properties for two feature 
recognition problems: two-dimensional mirror sym- 
metry and multidimensional statistical pattern clas- 
sification (two overlapping Gaussians). We find the 
two algorithms approximately equal in generaliza- 
tion power. For the mirror symmetry problem, the 
number of training epochs required for MFT is sub- 
stantially less than that required for BP. For the over- 
lapping Gaussians problem, an appropriate variant 
of the algorithms removes the difference in their 
learning times. Both algorithms essentially achieve 
the theoretical Bayesian limit on this problem, We 
find this particularly impressive since, due to the sta- 
tistical nature of the problem, inconsistent training 
is unavoidable. 

Second, we explore MFT as a content addressable 
memory. This is a somewhat novel approach to CAM. 
In the Hopfield model for CAM (Hopfield, 1982), 
N visible units are used to store N~bit patterns: Our 
approach is very different. A layer of N hidden units 
are used to build an internal  representat ion o f  the 

s tored N - b i t p a t t e r n s .  We are able in this way to store 
approximately 4N patterns with reasonable content- 
addressability, which should be compared to the 
loading factor 0.1N for the Hopfield model. 

This paper is organized as follows: In section 2 we 
briefly review the ingredients of the MFT algorithm. 
Section 3 contains a comparison ol' BP and MFT 
performance for the mirror symmetry and statistical 
pattern classification problems. The novel approach 
to CAM is described in section 4, and section 5 con- 
tains a brief summary and outlook. 

2. MEAN FIELD THEORY LEARNING 

2.1. The Boltzmann Machine 

The Boltzmann machine (Ackley, Hinton, & 
Sejnowski, 1985) is a learning algorithm for systems 
with or without hidden units. The dynamics are based 
on the Hopfieid energy function (Hopfield, 1982) 3 

1 .~. IS,5', (1) 
i , i  I 

where Si is the state of unit i, either 1 or - 1 ,  4 and 
Tii is the weight between units/:and j. The sums run 
over both visible (input/output):and hidden units. 

Throughout this paper, the notation S -  (s~ . . . . .  s,, . . . 
SN) is used. 

In Hopfield (1982), - 1 and 1 are used, whereas in Ack|ey 
et al. (1985), 0 and 1 are used. Changing to 0 and 1 is not essential 
in the development of the Boltzmann machine. 
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The model learns by making an internal represen- 
tation of its environment. The learning procedure 
changes weights so as to minimize the distance be- 
tween two probability distributions, as measured by 
the so-called G-function 

G = x2 p,, log P" ~ (2) 

where P, is the probability that the visible units are 
collectively in state oe when their states are deter- 
mined by the environment. P~ represents the desired 
probabilities for these states. The corresponding 
probabilities when the network runs freely are de- 
noted P2. G is zero if and only if the distributions 
are identical: otherwise it is positive. A slightly mod- 
ified version of eqn (2) can be defined for the case 
when the visible units are partitioned into input (c0 
and output (//) units 

0 = ~ Q,, ~_, P,,I,, log p~,, (3} 
/ ;  

where Q,, is the probability of the state c~ over the 
input units and P/;~,, the probability that the output 
units are in a state fl given an input state a. Again, 
both Q,~ and P/¢i,, are determined by the environment. 
P~r,, is the probability that the system is in an output 
state fl when the input units are clamped in the state 
a. Again, G is positive and is zero if PI~t,, = P/'¢t,," The 
Boltzmann machine recipe for changing T, such that 
G or d; is minimized is as follows: 

1. Clamping Phase. The values of the input and 
output units of the network are clamped to a training 
pattern, and for a sequence of decreasing tempera- 
tures T,,, T,_~ . . . . .  T,, the network of eqn (1) is 
allowed to relax according to the Boltzmann distri- 
bution 

P(,~} ~ e ,{;),T {4) 

where P(S)  denotes the probability that the state 
will occur given the temperature T. At T = 7"{, 

statistics are collected for the correlations 

p, = (s,s,). (5) 

Relaxation at each temperature is performed by up- 
dating unclamped units according to the heatbath 
algorithm (Ackley et al., 1985) 

[ P(S, , 1) = 1 + exp T,,S]T . (6) 

2. Free Running  Phase. The same procedure as 
in Step 1 is used, but this time the network runs freely 
(G) or with only the input units clamped ((~). Cor- 
relations 

p~ = (S,S,) (7) 

are again measured at T = T0. 

3. Updating. After each pattern has been pro- 
cessed through Steps 1 and 2, the weights are updated 
according to 

aT, ,  - q(/,,, - p,',) (8) 

where q is the learning rate parameter. Equation (8) 
corresponds to gradient descent in G(G) (Ackley et 
al., 1985). Steps 1, 2, and 3 are repeated until no 
more changes in T,, take place. 

2.2. The Mean Field Theory Approximation 

The mean field theory approximation is a well 
known technique in physics, particularly for spin- 
systems (Glauber, 1963). Extensive studies of the 
applicability of this approximation and refinements 
thereof has been made for spin-glass systems (Me- 
zard, Parisi, & Virasoro, 1987), which are closely 
related to bidirectional neural network models. Here 
we limit ourselves to its crudest form, the naive mean 
field theory approximation,  for which a derivation 
and discussion can be found in the appendices of 
Peterson and Anderson (1987) and Peterson and An- 
derson (1988). Here we briefly list the key points and 
equations. 

The exact form of eqn (4) reads 

P(,s:) c " " '  - (9) 
z 

where the partition function is given by 

Z 22 e ~' " "  (10) 

The summation over all possible neuron configura- 
tions S = (& . . . . .  S~.) is computationally explosive 
with problem size. Replacing this discrete sum with 
a multidimensional integral yields 

t I 

where Vi = (S,) are the mean field variables and the 
free energy is given by 

' [ 1 
F(I). T) = E(1)) + T,..~, (l + V,)Tlog(l. + V,) 

(1 - V,)1 log(l - V,)]. (12) + 

The saddlepoints of eqn (10) are given by the mean 
field theory equations 

V, = tanh(• T, ,V/T)  (13) 
\ 1 : 1  

which represent steady state solutions to the RC- 
equations (Hopfield, 1984) 

dt U, + tanh T,. V, (14) 
\ l  I 

v, = U , / T  (]5) 
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used by Hopfield and Tank (1985) for the TSP-prob- 
lem. A straightforward iteration of eqn (13) gives 

¢ 

j V M ) / T )  V,(t + At)  = tanh\~_.~( T, (16) 

and similarly for eqns (14, 15). 
As is shown in Appendix B, the partition function 

of eqn (10) can be approximated by the value of the 
integrand at the saddlepoint solution (V = ~'(,) given 
by eqn (13). 

Z ~ Ce .~;,~.J~ 1 (17) 

This naive mean field theory approximation is ex- 
pected to increase in accuracy as the system size N 
grows. However, Peterson and Anderson (1987) 
demonstrated that the approximation works amaz- 
ingly well in the learning algorithm context even for 
relatively small systems (O(10) neurons). This ob- 
servation is at first glance in sharp contrast with what 
is known from studying the dynamics of spin glasses. 
where this crude method gives relatively inaccurate 
results (Mezard et al., 1987). One must keep in mind. 
however, that in the learning algorithm context, rel- 
atively small discrepancies in the settling process are 
very likely averaged out. 

The benefits of using this approximation when 
annealing are obvious: the CPU-demanding sto- 
chastic process is replaced by the iterative solutions 
to a set of coupled nonlinear equations. The smooth 
sigmoid function of eqn (13) "fakes" a system of 
binary neurons at a temperature T. 

2.3. Mean Field Theory Learning 

With this mean field theory approximation, the 
Boltzmann machine procedure above takes the fol- 
lowing form: 

Clamping phase. The stochastic unit updating of eqn 
(6) is replaced by solving (13), and the correlations 
P~i are now given by 

p,, =- v , v , .  ( i s )  

Here (and in the next equation) we make the sim- 
plifying assumption that the true correlations V,j fac- 
torize. This approximation holds very well in all the 
cases we have encountered so far. 

Free phase. Similarly, in the free phase 

p,', = V,V,. (19) 

As discussed above, the definition of the free phase 
can vary. In most applications of the Boltzmann ma- 
chine and mean field theory to date, free has meant 
clamping only the input units (in the clamped phase, 
both input and output units are clamped). This is the 
variant used in our feature recognition studies. AI- 
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ternative modes are discussed in section 4 in the con- 
text of content,addressable memory applications. 

Weight updating rule. This is the same as in eqn (8), 
which is easier to see in the mean field theory ap- 
proximation. Since P~ is independent of T,;, the de- 
rivative of G with respect to the latter is given by 

OG 0 ,. p,, 
aT;, - a ~  ~,, e'' t,,~ (2ot 

and correspondingly for C 

OG 0 V Q,, ~ ply,, log P:';,, (21 
aE,. aE, ~ 

,, P 

where 

and 
/ 

' = " ~ ' / ; E  , • , r ,  e ( 2 3 )  

I~ L()'7 

5 ~ } ( . , '  . . 

In eqns (22) and (23), {S}(') and {~},0) denote sets of 
with the input and input/output units clamped. 

respectively. Again using the mean field theory ap- 
proximation, the sums can be rewritten as integrals 
which in turn can be approximate d by the saddle- 
point values of the integrands. One gets for log P'~ 
and log P;;,, 

log P~, = (F - F~"')/T (24) 

and 

log PZ, = (F~') - ~"')/T (25) 

where the free energies F, F ~, and F "°) correspond 
to the conditions of no units clamped, input units 
clamped, and input/output units clamped, respec- 
tively. With a uniform P, (or Q,) distribution, that 
is, with all environmental patterns presented with 
equal frequencies, eqns (22) and (23) yield (8). With 
these expressions for log P~, and tog P~/~, explicit 
expressions for G and G (eqns (2) and (3)) are easily 
obtained. 

2.4. Choice of Parameters 

To use the MFT algorithm, one needs to specify 
a few parameters: initial T,j values, annealing sched- 
ule, learning rate, and weight u ~ a t i n g  frequency. 
Also, it is sometimes useful to fix the size o f  the  
weight changes. Furthermore~ when u s i ~  MFT, BP, 
and other such algorithms, there are two subtle but 
important issues that arise: [ - I, I] versus{0, 1] rep- 
resentation, and endpoint versus midpoint success 
criterion in the testing phase. 
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2.4. l. lnitial T~ i values. The network is initialized to 
random T# values in the range [ - a ,  a]. The choice 
of a is related to the choice of final temperature (see 
below), because <L~) sets the scale of the energy in 
eqn (l) and therefore of the temperature T for a 
given level of fluctuations (see eqn (4)). We use 
a = (1.5 and 1.0 throughout this work. 

2.4.2 Annealing schedule. We use a geometric an- 
nealing schedule 

T,~ 7',, x k" (2(0 

where T,, is the initial temperature, T, is the final 
temperature, and k < 1. In principle, T,,,~,~ should 
change as the learning progresses since E in (1) 
changes. In other words, the location of the phase 
transition point varies with learning (see Figure 1). 
We speculate that if this changing phase transition 
temperature were known, one could operate the al- 
gorithm at that temperature instead of annealing. 

We have for simplicity chosen to use a fixed T,,,~, 
in our applications. There is a trade-off between a 
slow annealing schedule (k large) with few sweeps/ 
temperature and a fast annealing schedule (k small) 
with a htrge number of sweeps/temperature. In prac- 
tice, the total number of sweeps required to achieve 
a certain learning quality is a constant, relatively in- 
dependent of the annealing rate, provided the final 
temperature is chosen reasonably. 

There is a more systematic way of chosing initial 
T, and the temperature scale# For a given initial 7-,,, 
compute the average <AE) = <E/T~iV~) for the hidden 
units and set T,,,~,:,, equal to this value. Then anneal 
to T,,,;,~ = :~T,n,i~,,. With this choice of T,,,~,~ ~ <AE,), 
to good approximation AE/T  = O(1). This process 
of choosing T,~,~,,~ is then repeated for every learning 
cycle. However. we have stuck to the recipe above 
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FIGURE 1. E(T) for various learning passes for the 2-4-1 XOR 
problem. 

;This  was first suggested in Prager, Harrison, and Fallsidc 
(1986) in the context of the Boltzmann machine. 

since no quantitative improvements were achieved 
in our applications with this more elaborate method. 

2.4.3. Learning rate. Ideally, one should adapt the 
learning rate as the learning progresses. In principle. 
this could be done by monitoring G after each learn- 
ing pass. In the Boltzmann machine, such a calcu- 
lation (see eqn (2)) is very time-consuming. In the 
MFT approximation on the other hand, G can be 
computed using the saddle point approximation in 
(17). However, it turns out that for the relatively 
small problems we deal with, the approximation is 
not accurate enough for this purpose; the relatively 
modest errors occurring when solving eqn (12) get 
exponentiated when constructing G. (For large enough 
N, however, we expect it to become feasible to com- 
pute G in this way.) We have therefore for simplicity 
chosen the learning rate to be either constant or mon- 
otonically decreasing in our applications. 

2.4.4. Weight updating frequency. Ideally, perhaps, 
each step taken in weight space would reflect the 
influence of the entire training set. One expects that 
in most cases positive and negative contributions will 
result in moderately sized weight changes, but with 
a large number of weights and training instances the 
contributions can fail to balance out and some weight 
changes can become inappropriately large. There- 
fore, a balance must be found between the learning 
rate and the number of training examples presented 
between weight updates. In problems with incon- 
sistent training, many examples should be presented 
between weight changes (see below). 

2.4.5. "Manhattan" updating. In eqn (8), the weights 
are changed according to gradient descent, that is, 
steps in weight space are taken along the gradient 
vector--each gradient component (weight change) 
will be of different size. If one instead updates with 
a fixed step size x, 

AT], = a • sgn(p, - p',) (27) 

a step is taken in a slightly different direction along 
a vector whose components are all of equal size. 
Everything about the gradient is thrown away except 
the knowledge of which "quadrant"  it lies in: learn- 
ing proceeds on a lattice. In situations where it is 
advisable to present many examples before taking a 
step in weight space, we have found this "Manhat- 
tan" updating procedure to be beneficial. We think 
the reason is related to the discussion above: the 
gradient rule, in this situation, is likely to produce 
weight changes which vary greatly in magnitude, and 
thus finding a suitable learning rate is difficult. This 
is not the case with the "Manhat tan"  updating of eqn 
(27), where the weight change sizes are bounded and 
fixed. 
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2.4.6. [ -  1, 1] versus [0, 1] representation. In section 
2 we used [ - 1 ,  1] representation for the neurons. 
With a linear transformation, the whole formalism 
could trivially be redone for [0, l] representation 
with one important difference: in the [ - 1 ,  1] case. 
both "on-on" and "off-off" correlations are counted 
as positive correlations in the learning rule of (8), 
but in the [0, 1] case, only "on-on" correlations are 
counted (Alspector & Allen, 1987; Peterson 8: An- 
derson, 1987). For this reason we expect faster learn- 
ing for both BZ and MFT when using the [ -  I, 1] 
alternative. For BP, one also expects the [ - t ,  1] 
representation to allow faster learning since, like BZ 
and MFT, this algorithm is unable to modify weights 
on connections from input units that are set to zero 
(Stornetta & Huberman, 1987). With respect to gen- 
eralization power, the situation could very well be 
the opposite. In cases where two neurons are un- 
decided, that is, have values near 0.0 and (/.5, re- 
spectively, no learning takes place in the [ -  1, l] 
case, whereas this "uncertainty" is emphasized with 
a positive correlation in the [0, l] case. In other 
words, one expects less "stiff" learning in the latter 
case and hence perhaps better generalization. 

A separate issue also affects learning times: in BP, 
the weight update rule is proportional to the deriv- 
ative g'(x) of the gain function g(x) = tanh(x). This 
derivative is maximum at the midpoint and falls off 
to zero at the endpoints. Since the derivative factor 
causes weights to change more slowly as the unit's 
value moves away from the midpoint," a longer learn- 
ing time can be expected for BP than for MFT. 7 

2.4.7. Endpoint versus midpoint success criterion. As 
a success criterion in the learning process, a value 
fairly close to the target is typically demanded of both 
BP and MFT (e.g., ]Vsl > 0.8 in [ -  1, 1] represen- 
tation); we call this an endpoint criterion. When test- 
ing for generalization, the question arises whether 
this same endpoint criterion should be used or just 
a midpoint criterion: V, on the correct side of 0. It 
turns out that the performance of BP is sensitive to 
this choice while MFT is insensitive to it. When trained 
with endpoints as targets, MFT output units tend to 
take on values near the endpoints during generali- 
zation testing, 8 while BP outputs often take on in- 
termediate values. This difference between the al- 
gorithms is very likely due to the feed-forward vs. 

~' Driving a BP unit 's value to the endpoints for a given input 
is thus like driving a nail into wood: the farther it's driven, the 
harder it becomes to move it (in either direction). 

7 Notice, however,  that if Manhattan updating is used (see 
section 2.4.5) the derivative factor does not come into play (see 
section 3.2). 

This is not meant to imply that MFT cannot learn analog 
values. 

feed-back dynamics. For either algorithm, by using 
a different gain during generalization than during 
learning, the degree of approach to the endpoints 
can be tuned. 

2.5. Solving the MFT Equations 

In Peterson & Anderson (1987) and in the appli- 
cations presented in this work, asynchronous unit 
updating with one iteration per temperature is used, 
This gives convergence with a 3-digit criteria. To ob- 
tain solutions with 6-digit accuracy requires a few 
more sweeps/temperature (4-10 depending on prob- 
lem size). These extra sweeps have very little impact 
on the learning process since the induced errors are 
of both signs and are averaged out when taking the 
difference in eqn (8). 

We have also investigated how well the algorithm 
performs with synchronous updating. On the aver- 
age, the system takes a factor 1.5 longer to converge 
(see Figure 2) than with asynchronous updating. 

Thus, if one were to use synchronous updating 
and increase the number of iterations from 1 to 2 
per temperature, the resulting learning curve should 
be identical to the one in the asynchronous case? 

The slight degradation observed when going from 
asynchronous to synchronous updating in the learn~ 
ing algorithm is very encouraging. It means that the 
inherent parallelism of the method can be fully ex- 
ploited in Single Instruction Multiple Data (SIMD) 
architectures like CRAY and the Connection Ma- 
chine (Blelloch &- -  Rosenberg, t987). Also, it makes 

20 / ~  , 

15 ~ 
/ /  

/ 

i0 synchronous j O  / /'~ 

asynchronous 

20 15 i0 5 0 

Temperature 

FIGURE 2, ~ v e 0 1 1 ~ " ~ t ~  t i m  tour ~ 2-4,1 XOR ~ l e m  with 

aS~C~tl ~ ,  ~ ~ c a n w ~  time 
peaksnear ~ ~ : ~ ~  T = i ~  caus. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . . . .  2 

"This is in contrast to when the same equations were used to 
solve the graph bisection problem in Peterso n and Anderson (1988a) 
where an order  o f  magnitude difference i n convergence times was 
observed. The origin of the different behaviors is that  in the graph 
bisection problem one has T. i = 0 or 1. Hence the system is more 
frustrated which makes it more uns table  
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algorithms of this category suitable for optical im- 
plementations (Peterson & Redfield, 1988; Peterson, 
Redfield, Keeler, & Hartman, 1989), where syn- 
chronous updating is natural. It should be pointed 
out that the original Boltzmann machine with sto- 
chastic updating assumes asynchronous updating and 
is therefore not suitable for SIMD. 

3. GENERALIZATION 

The term "generalization" refers to the response 
of a network, after some amount of training, to novel 
(unlearned) inputs. "~ There are at least two different 
ways to test generalization: 

1. Continuous learning. The training set covers the 
entire input space. Each time the network is pre- 
sented with a training pattern it is first tested for 
generalization on that pattern. In this mode of 
operation, the distinction between learning and 
generalization is blurred. 

2. Fixed training set. After learning a training set 
consisting of a fixed subset of the total input space, 
the network is tested for generalization on pat- 
terns it has not seen before. 

We have investigated the generalization properties 
of MFT and BP using the two-dimensional mirror 
symmetry problem (Sejnowski, Kienker, & Hinton, 
1986) and a statistical pattern classification task con- 
sisting of two multidimensional heavily overlapping 
Gaussians (Kohonen, Barna, & Chrisley, 1988). The 
mirror symmetry problem requires detecting which 
one of three possible axes of symmetry is present in 
a N × N pixel (binary) input (see Figure 3), The 
overlapping Gaussians problem consists of correctly 
assigning input patterns to one of two overlapping 
classes (see Figure 4). The statistical nature of this 
problem makes it particularly challenging as it nec- 
essarily involves inconsistent training. 

i    iiiiif iii i!i i ¸ iii: iiiiiii!i   iJi;i :!X  i) ;i!  iiiiiii!ii iiiiii 
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FIGURE 3. The two-dimensional mirror symmetry problem. 

J" Without an assumed interpretation (" intended model")  for 
a syntax, there is no basis for judging generalization to be correct 
or incorrect (see Denker  et al. (1987) for an extended discussion). 
We are implicitly adopting the interepretations inherent in the 
problem descriptions as the basis for judging the correctness of 
generalizations. 

( ' R~ > 

G2 

FIGURE 4. A one dimensional example of two overlapping 
Gaussian distributions. The non-statistical limit of the prob- 
lem consists of two delta-functions located at the center of 
the Gaussians. Areas of misclassification are indicated. 

We feel that these problems are different and dif- 
ficult enough to represent suitable benchmarks. The 
mirror symmetry problem is characterized by a 
second-order predicate (Minsky & Papert, 1969; 
Sejnowski et al., 1986) and a very large number of 
possible input patterns. The overlapping Gaussians 
problem is an artificial abstraction of the statistical 
nature of many natural signal (e.g., speech) pro- 
cessing tasks. 

3.1. The Mirror Symmetry Problem 

For this problem we used the architecture of 
Sejnowski et al. (1986): N × Ninput units, one layer 
of 12 hidden units, and 3 output units (one for each 
axis of symmetry). Our experiments were performed 
with two problem sizes: 4 x 4 and l(t × 10. ~ In 
both continuous and fixed training set experiments, 
the weights were updated after every 5 pattern pre- 
sentations. Optimal parameters were sought for each 
algorithm for each size problem; the same parame- 
ters were used for continuous and fixed training 
set runs. The parameters used are shown in Appen- 
dix A. 

Only input patterns with exactly 1 of the 3 possible 
axes of symmetry were included. There are ~1.5 x 
103 such patterns in the 4 x 4 case, and ~3.7 x 1016 
in the 10 x 10 case. 

3.1.1. Continuous learning. We begin by comparing 
MFT with the BZ results of Sejnowski et al, (1986) 
on the 4 x 4 and 10 x 10 mirror symmetry problems. 

n In order to compare our MFF results with the Boltzmann 
machine results of Sejnowski et al. (1986), the 3 output  units in 
the MFT networks were interconnected. This is not (symmetri-  
cally) possible in a BP network. Tests indicated that these con- 
nections did not play an important  role in network performances.  
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The comparisons are shown in Figure 5. As can be 
seen, the relative performance of the algorithms is 
consistent with the results of Peterson and Anderson 
(1987): the MFT algorithm learns faster and better 
than BZ. 

Next we turn to comparing MFT with BP. Figure 
6 shows the performance of the two algorithms for 
the 4 x 4 and 10 x 10 cases using the endpoint 
criterion for generalization tests, and in Figure 7 MF] ~ 
and BP are compared for 4 x 4 using the midpoint 
criterion. 

A few observations can be made from Figures 6 
and 7: First, as discussed above, the relative per- 
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FIGURE 5. Learning curves for the 4 x 4 and 10 x 10 mirror 
symmetry problems with 12 hidden units for MFT and Boltz- 
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FIGURE 6. Learning curves using the endpo/nt critodo, for 
the 4 x 4 and 10 x 10 mirror ~ pr0~lmls W ~  12 
hidden units for MFT and liP. For MFT, [ -  1, J ] r a p r e ~ n  
was used; for BP, [0, 1]. Parameters used in ttm ~ a  
are in Appendix A. 

formance of BP improves significantly with the mid- 
point criterion, whereas MFT is virtually unaffected. 
Second. even with use of the midpoint criterion, BP 
(using [0, 1]) lags behind MFT (u~ng [ - 1.1]). Note 
finally that any difference in performance between 
the algorithms decreases as learning progresses. 

Since continuous learning blurs the distinction be- 
tween learning and generalization, we now turn to 
fixed trainmg set experiment. 

3.1.2. Fixed training set learning. In an attempt to 
thoroughly explore how the choice of representation 
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FIGURE 7. Learning curves using the midpoint criterion for 
the 4 x 4 mirror symmetry problem with 12 hidden units for 
MFT and BP. For MFT, [ - 1 ,  1] representation was used; for I. 
BP, [0, t]. Parameters used in the simulations are in Appen- 
dix A. 

affects the algorithms on this problem, MET and BP 
networks for the 4 × 4 problem were trained on six 
different sets of 100 patterns. In addition to the pat- 
tern sets varying with respect to [0, 1] vs. [ -  1, iI, 
they varied with respect to the average number of 
bits that were on (see Table 1). Each pattern set was 
generated randomly without duplicates and was used 
for both learning algorithms. Each training task was 
repeated 10 times with different initial conditions. 
For testing generalization, test sets of 100 unique 
random patterns were generated without intersecting 
the training sets, and each network was tested on the 
appropriate test set after correctly learning 100f~ of 
its training set. The midpoint criterion was used 
throughout generalization testing. The results are 
summarized in Table l. 

From Table 1 we can draw the following obser- 
vations and conclusions: 

MFT learns faster than BP. as expected from the 
discussion in section 2.4.6. The two algorithms do 
equally well on generalization on [0, 1], and MFT 
does somewhat better on [ -  1, 11. ~ 

TABLE 1 
Training and Generalization Performance of MFT and BP for the 4 x 4 Mirror Symmetry Problem 

for Six Different Training Sets, Each of Size 100 

A1 B1 C1 
epochs genlz epochs genlz epochs genlz 

MFT - 1,1 44 63 34 62 36 63 
0,1 51 68 68 67 54 70 

BP -1 ,1  80 51 113 54 55 57 
0,1 299 69 266 67 281 69 

A2 82 C2 
epochs genlz epochs genlz epochs genlz 

MFT - 1,1 30 55 27 56 36 69 
0,1 39 57 42 57 44 69 

BP -1 ,1  210 46 195 45 88 62 
0,1 234 59 216 59 289 72 

Avg A Avg B Avg C 
epochs genlz epochs genlz epochs genlz 

MFT -1 ,1  37 59 31 59 36 66 
0,1 45 63 55 62 49 70 

BP -1 ,1  145 49 154 50 72 60 
0,1 267 64 241 63 285 71 

In a given training set, the [ -  1, 1] and [ 0, 1] patterns differed only in whether 0 or 1 was used for 
bits which were "off." The six different training sets were created as follows: 
A1 and A2 were generated with each bit having a 0.4 probability of being on. 
B1 and B2 were the complements of the patterns in sets A1 and A2, respectively. 
C1 and C2 were generated with each bit having a 0.5 probability of being on. 
Generalization pattern sets were also of size 100. A single generalization set (with the same average 
number of on bits) was used to test training sets A1 and A2; these three sets were non-intersecting. 
Similarly for sets 81 and B2, and for sets C1 and C2. Numbers of epochs and generalization percentages 
shown each represent the median value of 10 different runs. 
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2. For both algorithms, learning is faster with [ - 1, 
1] than [0, 1], also as expected from the discussion 
in section 2.4.6. 

3. For both algorithms generalization is more pow- 
erful with [0, 1] than [ - 1, l], consistent with the 
same discussion. ~ 

4. MFT appears less sensitive to the representation 
choice than Bp.14 

Other experiments, not reported here in detail, 
confirm the picture that emerges from Table 1. These 
include experiments with the clumps problem (Den- 
ker et al., 1986) and mirror symmetry experiments 
with fixed training sets of size 200 and 500. 

3.2. A Statistical Pattern Recognition Problem 

Most neural network applications to date have 
been in the area of non-statistical problems. How- 
ever, many natural problems entail noisy and incon- 
sistent training. The success of the neural network 
technology will therefore be judged largely according 
to its ability to deal with statistical problems. Ko- 
honen et al. (1988) benchmarked the backpropaga- 
tion, Boltzmann machine, and Learning Vector 
Quantization algorithms for testbeds consisting of 
heavily overlapping Gaussian distributions with di- 
mensionality ranging from 2 to 8 (see Figure 4). 

The potential difficulty in this problem lies in the 
presence of inconsistent training: for inputs where 
the two Gaussians overlap, the training examples 
map the same inputs to both of two different outputs. 
This is in contrast to the mirror symmetry problem 
discussed above and the delta function limit in Figure 
4 where the same training output is consistently as- 
sociated with a given input. 

In Kohonen, Barna, and Chrisley (1988), the neural 
network algorithms generally produced good results, 
with the Boltzmann machine performing very close 
to the theoretical Bayesian limit. 

We have compared the performance of BP and 
MFT with the theoretical limit using three of the 
testbeds of Kohonen et al. (1988). The first case 
consists of two overlapping Gaussians (G~, G2) in 8 
dimensions, centered around (0, 0, 0, . . . , 0) and 
(2.32, 0, 0 , . . .  , 0) with standard deviations a equal 
to 1 and 2, respectively. At the theoretical minimum 

~2 Varying the gain for BP in the [ - l, 1] case (fixed for a given 
run) did not improve generalization. 

~3 An opposite result is reported in Ahmad and Tesauro (1988) 
for the "majori ty" problem. 

~ Varying the gain for BP in the [ - 1, 1] case (fixed for a given 
run) did not improve generalization. 

(Bayesian limit), one has (Duda & Hart, 1973: Ko- 
honen et al. 1988) 

JR [[ 

where R~ and R2 are chosen such that Pe .... is mini- 
mized. In Figure 4, the optimal choice of R~ and R: 
is illustrated in two dimensions. For the above Gaus- 
sians, P ..... = 0.062; that is, a 93.8f/~ success rate is 
the maximum achievable. In the second case; the 
difficulty of the problem is increased by using iden- 
tical means for the two classes: G: is shifted to (0, 
0, 0 . . . . .  0). The maximum success rate for this 
case is 91.0%. In the third and most difficult case, 
there are only two input dimensions instead of eight, 
and again the two classes have identical means (of 
(0, 0)). The maximum success rate for this case is 
only 73.6%. 

The details of our MFT and BP simulations can 
be found in Appendix A. Here we: list a few addi- 
tional technicalities that are important when com- 
paring our results to those of Kohonen et at. (1988) 
or when aiming for peak performance: In our ex- 
periments, both algorithms used [0, 1] units, the mid- 
point was used as the correctness criterion (see sec- 
tion 2.4.7), and in all cases there were 8 hidden units 
and 1 output unit. ~5 

• Architecture. In order to fully explore the capa- 
bilities of the neural network algorithms in this 
application, we used two different architectures: 
fully connected (full) and layer-to-layer connected 
(layer). In the fully connected architecture, all con- 
nections except input-input connections were pres- 
ent. (In BP, the hidden units cannot be symmet- 
rically interconnected, so they were connected 
asymmetrically: imagining the hidden units in a 
row, each hidden unit was connected to all hidden 
units to its right.) In the layer-to-layer architecture, 
only input-hidden and hidden-output connections 
were present. 

• Encoding of input values. As in Kohonen, Barna, 
& Chrisley (1988), we used two alternatives for 
encoding the D-dimensional input data: D contin- 
uous units (cont) and D x 2(i digitized (binary) 
units (dig). In the latter case, each continuous in- 
put was subdivided into 20 subranges and a local 
representation was used: an input pattern con- 
sisted of exactly one unit on in each of the D sets 
of 20 units. 

• Parameters. The learning rates and other param- 
eters are found in Appendix AI In Table 2, (std) 
indicates that the standard gradient following rule 

~ No change in performance was observed in trials using 2 
output units. 



Mean Field Theory Learning Algorithm 485 

TABLE 2 
Peak Performance and Number of Patterns Required for the Statistical Pattern Classification 

Problems (see text) 
Case 1: Theoretical maximum - 93.8% 

MFT BP BZ* 
Input Learning Connections % patts % pats % patts 

dig man full 93.2 140k 93.2 120k 93.3 9 
dig std full 92.9 130k 
dig man layer 92.6 80k 
dig std layer 90.5 140k 

cont man layer 92.2 320k 
cont man full 92.1 390k 

Case 2: Theoretical maximum = 91.0% 

MFT BP BZ* 
input learning connections % patts % patts % patts 

dig man full 90.0 170k 90.7 160k 90.6 ? 

Case 3: Theoretical maximum = 73.6% 

MFT BP* BZ* 
input learning connections % patts % patts % patts 

dig man full 73.3 60k 73.5 "~ 
cont std layer 73.7 "~ 

Percentages in asterisked columns are taken from Kohonen et al. (1988). Percentages from the present study 
are with respect to the preceding 10,000 patterns. 

was used in updating the weights. "Manhat tan"  
learning (man) was described in section 2.4.5. 

In Table 2 we show the peak performance and 
number of training patterns required for some of the 
options described above. Using the optimal options, 
both MFT and BP essentially reach the theoretical 
limit. 

Table 2 also illustrates another effect of Manhat- 
tan updating: in this case the derivative factor does 
not affect weight change sizes in BP, and hence learn- 
ing proceeds as rapidly as with MFT (see the dis- 
cussion in section 2.4.6). 

In Table 2, data in asterisked columns was taken 
from Kohonen et al. (1988). Not shown in Table 2 
is the performance reported in Kohonen et al. (1988) 
for BP in cases 1 and 2: 88.7% and 81.1% respec- 
tively. The origin of those low values was that only 
layer-to-layer connections were used with the con- 
tinuous input option. Also, "Manhat tan"  updating 
was not used. ~' (BP did well on case 3 (low input 
dimensionality) in Kohonen et al. (1988), as is shown 
in Table 2.) It is clear from Table 2 that both MFT 
and BP are quite successful regardless of architec- 
tural and encoding details. Performance using the 
optimal techniques is very impressive given that this 
problem is non-trivial. 

~" We acknowledge Teuvo Kohonen and Gyorgy Barna for 
kindly communicating the details of their simulations to us. 

4. A C O N T E N T  A D D R E S S A B L E  M E M O R Y  
WITH MEA N  FIELD T H E O R Y  L E A R N I N G  

4.1. Content Addressable Memory versus 
Feature Recognition 

Our applications so far have been in the area of 
feature recognition where a functional mapping from 
input to output units takes place (see Figure 8a). 
Both bidirectional (e.g., MFT) and feed-forward (e.g., 
back propagation) algorithms are suited to this par- 
adigm. A feature recognizer can be viewed as a spe- 

Input  Output 

(a) (b) 

FIGURE 8. (a) A feature recognizer (b) A content addressable 
memory. 
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cial case of content addressable memory. Here, the 
visible units are not partitioned into input units and 
output units (see Figure 8b). Hence, while bidirec- 
tional (e.g., MFT) networks are appropriate for 
CAM, backpropagation is not (see footnote 2). 

In discussing CAM, it is useful to distinguish three 
functional possibilities. Assume that a network has 
learned (stored) M N-bit patterns: 

1. Error-correct ion-CAM. The network is initial- 
ized (but not permanently clamped) to a noisy ver- 
sion of a pattern, that is, some bits are changed at 
random, unknown positions. This initial state evolves 
to the stored pattern (the network moves to the clos- 
est attractor), correcting the random errors. 

The remaining two functional possibilities corre- 
spond respectively to training and generalization pat- 
terns in feature recognition: 

2. Partial-contents-CAM. In feature recognition, 
if the network is clamped to the input portion of a 
training pattern, the output is retrieved. Partial-con- 
tents-CAM generalizes this by allowing any subset 
of visible units to be clamped as input units. In con- 
trast to error-correction-CAM, there is perhaps 
nothing to be gained by using a neural network for 
partial-contents-CAM, since conventional computer 
hardware can be constructed to perform this type of 
"table-lookup" retrieval in parallel (Kohonen, 
1987). 

3. Schemata-completion.  In feature recognition 
generalization testing, the input units are clamped to 
a novel pattern. Schemata-completion generalizes this 
by allowing any subset of visible units to be clamped 
to a novel pattern. This case is distinguished here 
from partial-contents-CAM in that the patterns 
clamped do not occur during training, so that instead 
of retrieving a stored memory, generalization occurs 
in response to novel stimuli (Rumelhart, Smolensky, 
McClelland, & Hinton, 1986). Unlike the case of 
partial-contents-CAM, neural networks make sense 
for schemata-completion. Of course, partial-con- 
tents-CAM can be viewed as the trivial or default 
case of schemata-completion. 

In this paper,  by C A M  we mean error-correction- 
C A M .  

Bidirectional models, where the notion of sepa- 
rate input and output units is not inherent, are suit- 
able for CAM (Anderson, 1970; Kohonen, 1988a). 
One such model is the Hopfield model (Hopfield, 
1982). 

4.2 The ltopfieid Model 

The architecture of the Hopfield model consists 
of N fully connected visible units. The storage is 
Hebbian (Hebb, 1949) 

M 

T, = ~ SP, S~ (29) 
P 

where M is the number of N-bit patterns (5'P) to be 
stored. The dynamics is governed by eqn (13) with 
V, = S, and T = 0 (binary threshold units). With 
the storage prescription of (29) the system has the 
stored patterns S r' as attractors. For uncorretated 
(random) patterns, the storage capacity M ..... is given 
by (Amit, Gutfreund. & Sompolinsky. 1985) 

M ...... =~- (). 14 ~ .'\ i30) 

(For correlated patterns this number is smaller.) If 
M exceeds M ... .  so-called spurious states appear in 
addition to the stored ones, causing the performance 
to deteriorate. 

4.2.1. Improvements  on the Hopfieht  Model. Various 
modifications of eqn (29) have been suggested to 
improve the storage capacity, They fall into two classes: 
local (Hopfield, Feinstein, & Palmer, 1983; Wallace, 
1986) and non-local (Kanter & Sompolinsky, 1987). 
We briefly mention two modifications which are lo- 
cal: REM sleep (Hopfield, Feinstein, & Palmer, 1983) 
and the Bidirectional Perceptron Learning Algo- 
rithm (Wallace, 1986; Bruce, Canning, Forrest,  
Gardner, & Wallace, 1986); both are related to MFT 
learning. 

It has been suggested that during REM sleep, 
mammals "dream in order to forget" as a means for 
removing spurious undesired memories (Crick & 
Mitchison, 1983). It was demonstrated in Hopfield 
et al. (1983) that if the storage rule of eqn (29) is 
supplemented by "unlearning" of the spurious states 

~t 

:L ,  - - ,~ ,  5'%: (31) 

the CAM performance improves. In eqn (31), 7' is a 
l~arameter and M~ is the number of spurious states 
S B. Subsequent work has verified the power of this 
method with storage capacities in the range 30%- 
40% as a result (Kieinfeld & Pendergraft. 1987). This 
"'unlearning" procedure is closely related to the 
Bottzmann machine learning prescription of eqn (8): 
positive learning (29) corresponds to the clamped 
phase whereas "unlearning" corresponds to the free 
phase (Sejnowski et al., 1986). Since MFT relies on 
the same learning rule (8) it effects the same "prun- 
ing" of state space or "sculpting" of the energy 
landscape. 

The Bidirectional Perception Learning Algorithm 
(Wallace, 1986; Bruce et al, 1986) uses the same umt 
updating rule as the Hopfield model, allows visible 
units only, and is a direct extension of  the perceptron 
algorithm (Minsky & Papert, 1969) to bidirectional 
networks. The learning process goes as follows. For 
each pattern p and unit i. the error r f is recorded 
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The weights are then updated according to 

1 \ , t , , ,  + ~ )S,S,. (33) 
t 

This process is repeated until all errors are corrected. 
Storage of up to N random patterns (with negligible 
basins of attraction, however,  Forrest, 1988) has been 
achieved with this method. A variant of this algo- 
rithm (Diederich & Opper ,  1987; Gardner ,  1987: 
Krauth & Mezard, 1987) produces non-negligible 
basins of attraction. In Appendix C, we show that 
these algorithms are specials cases of MFT with 
T = l) and no hidden units. 

4.3 A Content Addressable Memory with Mean 
Field Theory Learning 

We now depart from the Hopfield content address- 
able memory  in the sense that hidden units will be 
used to build up internal representations of the stored 
states. (The Hopfield model has only visible units.) 
For an N-bit memory ,  the architecture consists of N 
visible units and N hidden units and is completely 
connected. (The number  of hidden units was chosen 
arbitrarily for this preliminary study.) Because of the 
presence of hidden units as well as very different 
learning and retrieval procedures (see below), ana- 
lytical results such as eqn (30) and similar calcula- 
tions for the bidirectional perceptron algorithm 
(Gardner ,  1987) cannot be expected to apply. 

Learning takes place by presenting M N-bit pat- 
terns to the network using the MFT learning algo- 
rithm. In the algorithm as described in previous sec- 
tions, the input units were always clamped, as they 
were when those networks were subsequently op- 
erated. In CAM operation this is not the case, and 
all visible units must be trained to respond correctly 
when unclamped; hence a different procedure is called 
for. We now describe one such procedure. 

4.3.1. A MFT learning procedure for CAM. In this 
procedure,  the clamped phase operates as in the fu- 
ture recognition case--a l l  visible units are clamped 
to the training pattern.  In each free phase, however,  
instead of clamping a fixed set of visible units (the 
input units), one-half of the visible units are chosen 
at random and are clamped. In this way, no visible 
unit is always clamped during training, and the prob- 
lems associated with clamping to units at all during 
the free phase are avoided as well. ~7 

~ The Boltzmann machine learning algorithm as originally pro- 
posed prescribes clamping no units at all during the free phase. 
This procedure yields very poor CAM performance in MFT net- 
works. We suspect that the random clamping procedure would 
improve CAM learning for error-correction in the Boltzmann ma- 
chine as well. 

A natural convergence criterion for this learning 
process would be: 

G < ~:. (34) 

However,  as discussed in section 2, computing G 
in the MFT approximation does not give very ac- 
curate results for the small systems considered here. 
Therefore we have instead used as a criterion 

.XT,, I ...... < ,': (35) 

but in practice learning was continued until retrieval 
performance effectively ceased to improve (see 
Table 3). 

There are different ways to study the capacity and 
performance of a CAM. One is to initialize the net- 
work with a stored pattern,  turn on the dynamics of 
the network, and study the distance in terms of bit 
errors between the stored pattern and the final state. 
For a perfect CAM, the final state should of course 
be identical to the stored pattern. However,  this kind 
of test does not describe the efficiency of the CAM 
in terms of attraction radii (error-correction) fl)r the 
different stored patterns. To probe this question of 
content-addressability, one can initialize the network 
B bits in distance from a stored pattern and again 
measure the number  of bit errors in the final state. 

These schemes fbr investigating the CAM are typ- 
ical for Hopfield models (Hopfield, 1982: Kleinfeld 
& Pendergraft,  1987) where all units arc visible. To 
deal with the existence of hidden units, these pro- 
cedures require modification. 
Our CAM was examined as follows. '~ 

1. The N visible units are clamped to the initial state, 
being either a stored memory or B bits in distance 
from a stored memory.  

2. Annealing begins but is not completed. The state 
of the hidden units begins to approximate the 
learned internal representation of the stored 
state. 

3. The visible units are released. 
4. Annealing is completed. With all units now free, 

the network settles as a whole with the evoked 
representation in the hidden units helping the vis- 
ible units settle into the stored state. 

TABLE 3 
Number of MFT epochs executed in storing M 
32-bit patterns in a CAM network of size 2 × 32 

M Epochs 

32 600 
64 1100 

128 1800 

~ This procedure was used by Touretzky and Geva (1987) in 
a different context and without hidden units. 
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Learning parameters can be found in Appendix 
A. In Figure 9 we show the distribution of errors in 
the final state for M = 32, 64, and 128 for N = 32 
when the visible units are initially clamped to one of 
the stored states. In Figures 10 and 11 the corre- 
sponding graphs are shown for the case when the 
network is initially clamped B = 2 and B = 4 bits 
away from a stored pattern. 

A precise evaluation of the loading capacity of 
this network (which has an arbitrarily chosen number 
of N hidden units) would require the gathering of 
extensive additional statistics. However, as a rough 
characterization, Figure 9 indicates that this net- 
work's loading capacity is very approximately given 
by 

M~2~--~ 4 × N (36) 

where N is the number of visible units, which greatly 
exceeds the corresponding number for the Hopfield 
network of eqn (30). 

Some comments: 

• Storage capacity. We have not yet explored the 
upper limits of storage capacity. What are the fun- 
damental limits? Except for the bound set by the 
semantics of the task, there are no clear absolute 
theoretical constraints since the hidden units and 
weights are analog. In practice, the limits will be 
set by the technologies used in the hardware im- 
plementations, for example, the precision level of 
the operations on the resistors representing the Tii- 
elements. 

• Learning rates. It is clear from Table 3 that while 
this algorithm is optimizing the number of stored 
patterns and their content-addressability, in its cur- 

rent form it is paying the price in the required 
number of learning cycles. 

The results of this initial exploration of a CAM 
using MFT are very encouraging. It is clear, how- 
ever, that many issues must be dealt with in future 
work: How does the performance scale with N? With 
the number of hidden units? What is the optimal 
architecture (number of layers, degree of connectiv- 
ity, etc.)? What free phase clamping process is op- 
timal? Can the learning rates of Table 3 be improved? 
How does the algorithm behave when no hidden units 
are used? What are the storage and retrieval prop- 
erties for correlated patterns? These and other issues 
are currently being investigated (Hartman, 1988). 

5. S U M M A R Y  

5.1 MFT versus BP on Feature Recognition 

We have benchmarked MFT against BP on two dif- 
ferent testbeds: the two-dimensional mirror sym- 
metry problem and a statistical pattern classification 
problem consisting of two multidimensional overlap- 
ping Gaussians. Our main results can be summarized 
as follows: 

• The generalization capabilities of the two algo- 
rithms are similar. When the algorithms are used 
in their standard forms, MFT learns in a substan- 
tially smaller number of training epochs than BP: 
when "Manhattan" learning is used the learning 
speeds are similar. 

• The performance of both algorithms on the prob- 
lem of two overlapping Gaussians is particularly 
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impressive since it involves inconsistent training; 
the Bayesian theoretical limit is essentially 
reached! 

In this context we also made the following obser- 
vations: 

• When it is advisable for learning to occur over 
many averaged training patterns, as in the over- 
lapping Gaussians problem, it is crucial to use 
"Manhattan" updating, that is fixed step size weight 
updates, in order to prevent some weight changes 
from growing inappropriately large, thus prevent- 
ing the optimal region of weight space from being 
located. 

• The question of using [0, 1] or [ - 1, 1] represen- 
tation is more than a syntactic one. For both al- 
gorithms, [0, l] representation yields slower learn- 
ing but better generalization than [ -  1, 1]. 

We have limited ourselves to comparing MFT with 
BP. The reason for this limitation is the popularity 
of BP in the research community. There also exist 
alternative approaches such as Learning Vector 
Quantization (LVQ) (Kohonen, 1988a, 1988b). For 
a comparison of BP, BZ, and LVQ on the overlap- 
ping Gaussians problem we refer the reader to Ko- 
honen et al. (1988). 

Our results for BP on this problem differ sub- 
stantially from those of Kohonen et ah (1988). Three 
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factors are responsible: (a) We use "Manhattan" 
learning, which seems to be necessary in this case; 
(b) we use full (feed-forward) connections; and (c) 
we represent each continuous input value with mul- 
tiple binary units. These factors differ from Kohonen 
et al. (1988) which (c. Barna, personal communi- 
cation, 1988)(a) used the usual gradient-follow- 
ing descent, (b) used strictly layered connectivity, 
and (c) represented each continuous input value in 
a single continuous unit. 

One might wonder why MFT and BP behave so 
similarly despite their different foundations. As dis- 
cussed in Hopfield (1987), they are related in the 
limit of high temperature (linear gain functions). 
Consider the BP updating rule for an output unit 
v?" 

AT, = q ( V l  "~ . . . . . .  VT')V;g'(I,) (37) 

where g(x) is the gain function (cf. tanh(x)) and 1; 
is the input to unit i. With g' = constant eqn (13) 
reads 

aT,, = q ( v : . . . . , v ,  - v , , , . , v , )  (3~) 

which is closely related to eqn (8), given that "target'" 
and "out" here roughly correspond to "clamped" 
and "free" phase, respectively. 

To summarize our results we find MFT and BP 
almost comparable in performance with an edge for 
MFF. The MFT learning algorithm also appears more 
attractive to us for the following reasons: 

• Future studies should focus on the issue of scaling. 
Intuitively, one might expect MFT learning to have 
better scaling properties than BP, since in MFT the 
effective "errors" are calculated locally after prop- 
agating activations (cf. eqns (18, 19)), whereas in 
BP errors are registered in the output layer and 
are explicitly propagated to the various links. It 
would not be surprising if in very large BP net- 
works it is difficult for the error to propagate down 
without diffusion to change the appropriate links. 
It is difficult to find a good testbed for systematic 
scaling studies; it is important to have a "minimal" 
architecture for a given problem. ~9 This question 
of minimal architecture is not decoupled from the 
properties of the learning algorithm. With a pow- 
erful algorithm we would expect unnecessary links 
to be efficiently put to zero in the learning process. 
Neither BP nor MFT is very powerful in this re- 

'~ A widely cited scaling failure in neural network models is a 
study of the 4-4-4-4-4 encoder problem (Ballard, 1987) with the 
BP algorithm, where poor performance was observed as compared 
with the 4-4-4 problem. (We observe similar results using the MFT 
algorithm. We attribute this failure to the abundance of degrees 
of freedom compared to the minimal requirements of the prob- 
lem.) 

spect. A cure for the BP algorithm by adding terms 
to the error function has recently been suggested 
(D. E. Rumelhart, personal communication, 1988) 
and similar refinements can be made to the MVT 
algorithm. 
Present learning algorithms are tar too crude to 
claim substantial similarities with biological sys- 
tems. However, we feel that MFT is somewhat 
more biologically plausible than BP, since changes 
to connection strengths in MFT depend directly 
only on the states of the neighboring ~'neurons," 
while such changes in BP depend on explicitly 
propagated error values. 
MFT lends itself naturally to hardware implemen- 
tations. The real promise for thc neural network 
paradigm lies in its potential for custom-made 
hardware. It would facilitate the design and pro- 
totyping of such hardware if a strong common in- 
gredient existed for different application areas: 
feature recognition, content-addressable memory, 
and optimization. The MFT algorithm has an ad- 
vantage in this respect. For an MFT network, 
learning either content addressable memories or 
feature recognition problems is equally natural. 
And, with the learning turned off, the dynamics 
of MFT is identical to that of optimization prob- 
lems (Hopfield & Tank, 1985; Peterson & Ander- 
son, 1988). 

VLSI implementation. In Figure 12 we show a 
VLSI implementation of a fully connected network 
(Hopfield & Tank, 1985). The RC-equations gow 
erning its dynamics for Ci and R, = l are given by 
(13). Hence the circuit of Figure 12 will converge to 
the MFT solutions. That is, the circuit equations are 
isomorphic to the MFT equations. There is no need 
for additional circuitry to carry out the arithmetic 
calculations. For learning purposes, local products 
of the amplifier values must be formed. It has been 
demonstrated that this is feasible for the original 
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Boltzmann machine (Alspector & Allen, 1987; AI- 
spector, Allen, Hu, & Satyanarayana, 1988). No cor- 
respondingly natural implementation exists for the 
BP algorithm. 

Optical  Imp lemen ta t ion .  Matrix mult ipl icat ion,  
which plays a central  role in neural  ne twork  com- 
puta t ions ,  is natura l  for optics. Both spatial light 

modula to r  and photorefract ive crystals have been 
suggested as T,/-masks (Ande r son ,  1986; Psaltis & 
Farhat ,  1985: Softer, D u n n i n g ,  Owechko,  & Marom,  
1986). The lat ter  technology is part icularly appeal ing 

for imp lemen t ing  neural  networks  with local learning 
schemes: the T,] e lements  are modified with holo- 
graphic two-wave mixing AT~] ~ V~V] (cf. eqns (18, 

19)). In Peterson and Redfield (1988), M F T  is im- 
p l emen ted  using a single crystal architecture.  This is 
in contrast  to work with BP where one crystal for 
each hidden layer has been  used (Psaltis, Yu, Gu,  & 

Lee, 1987). Both M F T  and BP are implemented  in 
a single crystal archi tecture in Peterson et al. (1989); 

the BP imp lemen ta t i on  is necessarily somewhat  less 
natural  and less s traightforward than the MF T 
implementa t ion .  

5.2 A Content Addressable Memory with 
MFT Learning 

Since there is no inherent  dist inction be tween input  

and output  units in MFT,  its applications are not 

l imited to feature recogni t ion problems.  In section 4 
it was convincingly demons t ra t ed  how to construct  a 

C A M  by bui lding up internal  representa t ions  of the 
pat terns  to be stored using MFT. With analog neu- 

rons and weights, no clear theoretical  limit on the 
storage capacity exists (except that set by the se- 
mantics of the task), and indeed we were able to 

store N pat terns  with N visible and N hidden units 

with very good retrieval properties.  At  4N pat terns 
the ne twork ' s  storage capacity was saturated.  So far, 
our  per formance  tests have been l imited to uncor-  

related ( random)  pat terns.  It will be interest ing to 
see how this novel architecture and algori thm for 
C A M  performs for correlated pat terns  (Har tman ,  
tgs~). 
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APPENDIX A 

In this appendix we give details of the experiments performed in 
this work in terms of parameter tables~ A momentum term coef- 
ficient of 0.9 was used throughout for BE 
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TABLE A1 
Parameters Used for the Mirror Symmetry Problem (see Figures 5-7 and Table 1) Values for the 

Boltzmann Machine are from Sejnowski et ai. (1986) 

4 ~  

4 × 4  

Learning Update Annealing Initial 
Model Repr. Rate Freq. Schedule Wgt. Range 

Boltzmann Machine 0,1 5 2(,(40, 30, 25, 20, 
16, 14, 12), 14(c/10 

Mean Field Theory -1 ,1  q = 0.05 5 l(~t 40(0.7n), n = 0 . . .  10 ~-1.0 
0,1 q -- 0.10 5 1(c~40(0.7n), n = 0 . . .  10 -+1.0 

Back Propagation -1 ,1  ~I = 0.005 5 +0.5 
0,1 q -- 0.05 5 41.0 

10 × 10 

Learning Update Annealing Initial 
Model Repr. Rate Freq. Schedule Wgt. Range 

Boltzmann Machine 0,1 5 2C~ (40, 30, 25, 20, 
16, 14, 12), 14(, 10 

Mean Field Theory -1 ,1  ~1 = 0.02 5 1(, 40(0.5"), n - 0 . . .  4 _~0.5 
Back Propagation 0,1 q = 0.08 5 _+0.5 

TABLE A2 
Parameters Used for the Statistical Pattern Classification Problem (see Table 2) 

Mean Field Theory 

Input Learning Learning Update Initial 
Repr. Connectivity Type Step/Rate Freq. Wgt. Range 

full man ,.-= 1In 1000 -+1.0 
dig full std q = 0.005 1000 ±0.5 
dig layer man /< = 1/n 1000 ± 1.0 
dig layer std r/ -- 0.001 100 -+0.5 

Back Propagation 

Input Learning Learning Update Initial 
Repr. Connectivity Type Step/Rate Freq. Wgt. Range 

dig full man ~,- - 1/n 1000 +_ 1,0 
cont layer man /< = 1/n 1000 ± 1.0 
cont full man /< = 1In 1000 ± 1.0 

All experiments used [0, 1] representation; all MFT experiments used an annealing schedule 
of 1(, 40(0.7n); n = 0 . . .  10. Full: full connectivity, Layer: layered connectivity, Man: Man- 
hattan updating, Std: standard gradient descent updating, Dig: digital input encoding, Cont: 
continuous input encoding. In the 8-dimensional cases using Manhattan updating, t,- 1/n 
was initialized to n = 8, and n was incremented by 1 every 10,000 patterns; in the 2- 
dimensional case n was decreased much more rapidly. In cases using standard updating, 
no corresponding benefit was observed from slowly decreasing q. 

TABLE A3 
Parameters Used for the CAM Learning Experiments (see Figures 9-11) 

Learning Update Annealing Initial 
Model Repr. Rate Freq. Schedule Wgt. Range 

Mean Field Theory - 1 ,  1 r/ = 0.005 epoch l(c~40(0.7n),n = 0 . . .  10 -+1.0 
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A P P E N D I X  B 

For completeness we here briefly derive the mean field theory 
approximation of the partition function (10). ~ The partition func- 
tion of eqn (10) can be rewritten as 

Z = ( ' n J  dl/,e ' l ' ° l~l  IBI) 

in terms of the free energy per neuron: 

f (V, T) - F f(/' T )  (B2) 
N 

Expanding f (V, T) around a saddle point  i)' = ~'0 (solut ion to 
eqn (13)) gives 

J ( ~  + 6rV, T) ~./'(V,~, T) -~- 2 ~ 6V,,6V, D,,(V,,. T) (B3) 

where 

# . , 
O,,,(~',,, T) = 8 v ~ J ( V , ,  T). (B4) 

For the free energy of our neural network model (12), (B4) takes 
the form 

D,,(V,,, T) = - T , .  2N " (B5) 

The partition function then becomes 

Z = ( 'e .~;li',,. ;~ H ,(" d(6V,)e ,,.~, ,~v,;,,,,. (B6) 

The integral yields terms that are linear in N such that in the 
limit N ~ ~,  the first exponent dominates and we have 

Z = Ce ~'~G. ~b~ = Ce ~*~ '  ~'~ (B7) 

Thus, the partition functiqn is dominated by the value of F'(1). 
T) at a saddle point V = V,. 

Fortunately, the functional integral of the correction factor in 
(B6) is Gaussian and can hence be evaluated 

I-I f '  d(6V,)e ......... .,,,,v,.¢u, = 
1 

; _ • ~ / d e t l /  × D;,J2nT] 
l 

(B8) 
= X / d e t [ -  T.J2nT]" 

A P P E N D I X  C 

in this appendix we show that the bidirectional perceptron learn- 
ing algorithm (Bruce et al., 1986; Wallace, 1986) (see section 
4.2.1) is a special case of the MFT CAM algorithm (see section 
4.3). We also discuss the relation of a modified, more successful, 
version of this algorithm (Diederich & Opper ,  1987: Gardner ,  
1987; Krauth & Mezard, 1987) to MFT. 

To do this we define the quantity S~ p 

S,!;' = s g n ( ~  T,S, ') .  (C1) 

The error of eqn (32) can then be rewritten as 

~(' = ~ (1 Sr,,S;', ,) (C2J 

indicat ing that the error  for a uni t  i can be measured by f inding 
its state dur ing a " f ree phase" in which all units except unit  i are 

clamped. One such free phase is required lot each unit. Substi- 
tuting (C2) into the weight update rule of (33) yields 

,~T,,-:: ~ Z(2S'S~' -- S:~',S, s",s;,'t. ~C3) 

Now consider the MVF CAM algorithm restricted to the con- 
dition of visible units only, all but one of which are clamped during 
each free phase. In this case, the change to a weight T,, due to a 
free phase with unit i free can be written 

since unit j is clamped in the free phase just as it is in the clamped 
phase. Similarly, the change to the same weight T v due to a free 
phase with unit j free can be written 

~TJ', = p l (V"W - 1~ .  ~j (( '5) 

The total change to T,~ is then 

A I(' q(2V'V"' V':V': . . . . . . . .  ). 

When summed over all memories and restricted to T = 0, ( (6 t  
yields (C3). 

This establishes the result that the bidirectional perceptron 
algorithm is the MFI" CAM algorithm restricted to (a) 7" = 0. (b) 
no hidden units, and (c) all units but one are clamped during each 
free phase. 

In the above algorithm, the error is zero if the summed input 
has the correct sign, regardless of its magnitude. This weak learn- 
ing criterion results in negligible basins of attraction (Forrest. 
1988). There exists a modified algorithm (Diederich & OppeL 
1987; Gardner,  1987; Krauth & Mezard, t987) which greatly en- 
larges the basins of attraction (Forrest, 1988), The definition of 
the error is slightly modified to ensure that the summed input is 
at least a certain size in addition to having the correct sign: 

l • i 

- , t  , I 

where B, is some positive number. (Forrest. t988 uses B = K 
(IT,,[) N ~ where K is an adjustable parameter and d T,,]) is the 
average magnitude of the wenghts attached to unit i.} Note that 
B, is involved only in the error function, not the dynamics, and 
does not correspond to a threshold. 

How this modification relates to the MFI" CAM algorithm can 
be understood qualitatively by observing the following. The mod- 
ification ensures the developmem of weights such that if. afte~ 
the algorithm had completed execution, the binary ¢ T ~ 0) units 
were replaced by continuous valued (T  '~ tL say T = l) umts. 
those umts would remain of the same sign as the units they re- 
placed and would take on values near the endpoints (close to 
or -- l). The modification thus corresponds to replacing the mid- 
point learning criterion of the unmodified algorithm with an end- 
point learning criterion (see discussion in section 3.11. In our MFT 
CAM learning simulations, we in effect used an endpoint criterion 
with a zero margin (corresponding to infinite B I. thus continuing 
to change weights until content-addressability testing ceased to 
improve. Beyond this point the basins continued to become deeper 
without becoming any broader. 

It is shown analytically in Gardner  (1987) that an upper bound 
on storage capacity of 2N exists for the modified bidirectional 
perceptron algorithm. As mentioned in section 4.3. such calcu- 
lations are not directly applicable to MFT CAM networks due to 
the very different training and retrieval procedures and the pres- 
ence of hidden units. It will be interesting, however, to discover 
the extent to which such bounds are relatively independent  of the 
training and retrieval procedures (Hartman, 1988). 

'~ This Appendix is to a large extent identical to Appendix A 
in Peterson and Anderson (1988). It differs by a more consistent 
notation and with an explicit evaluation of the correction factor 
to the MFT approximation to Z. 


