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Mean Field Theory Neural Networks for
Feature Recognition, Content Addressable
Memory and Optimization

CARSTEN PETERSON

Various applications of the mean field theory (MFT) technique for obtaining solutions
close to optimal minima in feedback nerworks are reviewed. Using this method in the
context of the Boltzmann machine gives rise to a fast deterministic learning algorithm
with a performance comparable with that of the backpropagation algorithm (BP) in
Sfeature recognition applications. Since MFT learning is bidirectional its use can be
extended from purely functional mappings to a content addressable memory. The storage
capacity of such a network grows like O (10-20)ny with the number of hidden units. The
MPFT learning algorithm is local and thus it has an advantage over BP with respect to
VLSI implementations. It is also demonstrated how MFT and BP are related in
situations where the number of input units is much larger than the number of output units.
In the context of.finding good solutions to difficult optimization problems the MFT
technigue again turns out to be extremely powerful. The quality of the solutions for large
travelling salesman and graph partition problems are in parity with those obtained by
optimally tuned simulated annealing methods. The algorithm employed here is based on
mulristate K-valued (K > 2)neurons rather than binary (K = 2) neurons. This method is
also advantageous for more nested decision problems like scheduling. The MFT equations
are isomorfic to resistance—capacitance equations and hence naturally map onto custom-
made hardware. With the diversity of successful application areas the MFT approach
thus constitutes a convenient platform for hardware development.

1. Introduction

Present neural network model architectures for feature recognition applications fall
into two broad categories, feed-forward and feedback. The notion of final state is
very different for the two approaches. In feed-forward or perceptron-like models
information is processed from the input layer through the hidden units to the output
layer where the information is compared with some target value. This stage
represents the final state. Backpropagation (BP) [1] is the most widely used learning
algorithm for this kind of architecture. In contrast, a feedback algorithm is
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characterized by a dynamics where all units settle to a fixed point! in a relaxation
process common to that of physical processes with many degrees of freedom. The
Boltzmann machine (BZ) [2] and mean field theory (MFT) learning [3, 4] are the
most promising learning algorithms for this kind of architecture. Being a stochastic
algorithm BZ is very time consuming on the simulation level and has therefore not
been fully explored for larger problem sizes. The stochastic process in the BZ can be
emulated by a set of deterministic equations of motions in the so-called MFT
approximation, which give rise to a fast learning algorithm for feedback networks. In
this paper we review this promising alternative to BP both with respect to derivations
and to numerical explorations of two feature recognition benchmarks [4]. The
performance of MFT is in parity with or slightly better than BP.

Being a feedback supervised learning algorithm, MFT turns out to be very
powerful in content addressable memory applications. In ref. [4] it was demon-
strated that a fully connected network of ny visible and #,; hidden units could store
around 67y random patterns. Very recently, O(10-20)n, or possibly a superlinear
capacity in terms of the number of hidden nodes was reached with MFT learning
using amore restricted architecture [5, 6]. These capacities should be compared with
0.14 N for the Hopfield model [7].

MFT has the advantage that a VLSI implementation is natural; not only are the
MFT equations isomorphic to resistance~capacitance (RC) equations for a circuitry
of analog amplifiers but also the learning (or updating of weights) is local. This is in
contrast to BP where the learning is non-local since the error has to be propagated.
However, for architectures where the number of input nodes is much larger than the
number of output nodes, BP with the entropy error is more or less equal to MFT and
can thus in those situations easily be mapped onto VLSI. Also, the equations of
motions used in MFT are identical to those obtained when mapping optimization
problems onto neural networks (see below). Efforts in building hardware might
therefore yield multiple payoffs.

The neural network paradigm has also shown great promise for finding
approximate solutions to difficult optimization problems [8]. The approach here is
based on feedback network architecture together with the MFT approximation.
Since the appearance of the pioneering work by Tank and Hopfield [8], which
contained only small-sized testbeds, it has been questioned whether the promise of
this approach will survive more realistic problem sizes. In a recent work [9] it was
demonstrated that large problem sizes can be successfully handled with no
parameter fine tuning provided an alternative encoding scheme is employed, which
is based on extending the neurons from being binary (K=2) to K-valued (K> 2).
Correspondingly the non-linear gain functions are generalized from being logistic
functions to probabilistic functions. A recipe for estimating the crucial phase
transition temperature parameter in advance also turns out to be important for a
reliable performance of the algorithm. The K-valued approach turns out to be
extremely convenient and efficient for solving scheduling problems [10].

This paper is organized as follows. In Section 2 we give a brief and simple
description of the MFT approximation in general terms. Section 3 contains a
derivation of the MFT learning algorithm and in Section 4 two benchmarks against
BP are presented. In Section 4 we also discuss the relation between BP and MFT.
The MFT approach to content addressable memories (CAMs) can be found in
Section 5. In Section 6 we briefly review the recent progress with using the novel
encoding for optimization and decision problems. Finally, in Section 7, we give a
brief summary.
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2. The MFT Approximation

Here we give a simple description of the MFT approximation. For a more detailed
treatment, refer to refs {4] and [11] and to the original work in the context of magnetic
materials [12].

Consider the Hopfield model [7] as defined by the energy function

1
E(S)= _EZ ; T;;S:S; (n
where the neurons are binary, S;= +1. With the ‘local fields’ U; given by
JE
Ui=_a_Si=Z T;S; (2)

J

the corresponding updating equations read
S;=sgn(U) : (3

Equation (3) is based upon gradient descent on the energy of equation (1) and is
hence suitable for content addressable memory applications; given an initial
configuration it takes us to the closest local minimum. Other neural network
applications like optimization problems and feature recognition tasks in the BZ
framework require that the global minimum of equation (1) is reached. In those
instances one wants to avoid local minima. There exist different stochastic
procedures for performing the hill-climbing necessary for avoiding getting stuck in
such local minima. A frequently used scheme is simulated annealing [13], where
fluctuations of the energy of equation (1) are allowed according to the Boltzmann
distribution

P(S)=%e“3‘s” @)
Z=ye s )

In equations (4) and (5) the ‘temperature’ T has been introduced, which sets the
magnitude of the fluctuations. Thus the probability for a particular neuron 7 to be
‘on’ and ‘off’ is given by

P(Si= 1 1= o v (©6)
Several algorithms exist (Heat bath, Metropolis, Langevin, etc.) for generating
configurations obeying equation (4). Needless to say these are all very time
consuming. The MFT approximation aims at replacing this stochastic process by a
set of deterministic equations that capture the notion of noise. The key idea in this
approximation is to approximate the local field U, by its thermal average

UIiWFT=Z Tl'jVj (7)
where
Vi = <S j> T (8)

is the average of §; at temperature 7. In this approximation one then obtains

V,=P(S,= +1)— P(S,= —1)=tanh (UMF"/T) )
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Figure 1. Sigmoid gain functions of equation (10) for different temperatures 7. The
step function updating rule of equation (3) corresponds to T=0.

or
V;=tanh (Z TV, T> (10)

In other words the stochastic process is being emulated by a set of deterministic
equations with sigmoid gain functions (see Figure 1). At T=0 the Hopfield step
function updating rule of equation (3) is restored (see Figure 1). The validity of this
approximation depends on the degree of connectivity. In magnetic systems it works
quite well for infinite-range systems whereas for locally connected systems it is quite
poor [14]. In neural network applications the approximation works amazingly well
even in situations where the connectivity is limited [3].

The MFT equations (equation (10)) have a very important property froma VLSI
implementation point of view. They are identical to the static limit of the RC
charging equations of a circuit of analogue amplifiers (15, 8]. Consider a circuit of
non-linear amplifiers, which convert an input voltage U; to an output voltage
V;=tanh (U;/T) and which are connected with resistors T;;' between amplifiers 7
and j (see Figure 2).2 The steady state circuit equations are then given by

%: 3 T, (V,—U)=0 (11
where R, are input resistors for the amplifiers leading to reference ground. With the
replacement

1 -1
Tij_’(R?i*; Tik) T; (12)

and substituting Ttanh™'(V;) for U, equation (11) is identical to equation (10).
This close mapping between feedback neural models and VLSI circuitry is indeed
very appealing.

Equation (10) is solved by iteration on the simulation level. It is well known that
such a procedure might give rise to oscillatory behaviour, in particular for
synchronous updating. In Section 6 we briefly discuss how to consistently avoid
oscillatory behaviour by employing a systematic scheme for choosing parameters.
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Figure 2. A VLSI implementation of a fully connected network.

3. MFT Learning
3.1. The Boltzmann Machine

The Boltzmann machine [2] is a learning algorithm originally designed for
architectures containing hidden units.> The dynamics is based on the Hopfield
energy function (equation (1)). The model learns by making an internal represent-
ation of its environment. The learning procedure changes weights so as to minimize
the distance between two probability distributions, as measured by the G function or
the so-called Kullback measure [16]

G=ZPalog<%> 13)

a

where P, is the probability that the visible units are collectively in state ¢ when their
states are determined by the environment. P, represents the desired probabilities for
these states. The corresponding probabilities when the network runs freely are
denoted P,. G is zero if and only if the distributions are identical; otherwise it is
positive. The word ‘free’ either means that all visible (input and output) units are free
or that only the output units are free. The formalism is the same. In our feature
recognition applications to be discussed below we use the latter alternative. In
content addressable memory applications more elaborate definitions of ‘free’ are
needed (see Section 5.2).

The Boltzmann machine prescription for changing T;; such that G is minimized
is as follows:

(1) Clamping phase. The values of the input and output units of the network are
clamped to a training pattern, and for a sequence of decreasing temperatures
T,T,_ ..., Ty the network of equation (1) is allowed to relax according to
the Boltzmann distribution (equation 4). At T = T, statistics are collected for
the correlations

pl’j=<SiSj> (14)
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Relaxing at each temperature is performed by updating unclamped units
according to the heatbath algorithm [18]

-1
P(Si—>1)=|:1+exp(z T,-jSJ-/T>:| (15)
j

(2) Free running phase. The same procedure as in Step 1, but this time the
network runs freely or with only the input units clamped. Correlations

pii=<8:Sp (16)
are again measured at =T,

(3) Updating. After each pattern has been processed through Steps 1 and 2, the
weights are updated according to

AT ;=n(p;;—piy) a7

where 7 is the learning rate parameter. Equation (17) corresponds to gradient
descent in G [2]. Steps 1, 2 and 3 are repeated until no more changes in T};
take place.

3.2, MFT Learning

With the mean field theory approximation in our hands, the Boltzmann machine
procedure takes the following form [3, 4] (see also ref. [17]).

(1) Clamping phase. The stochastic unit updating of equation (15) is replaced
by solving equation (10) for a sequence of decreasing temperdtures
T, T,y ..., Ty, and the correlations p;; are now given by

Pij= ViVj (18)

The factorization of the MFT variables in equation (18) follows from the
MFT approximation [12].*

(2) Free running phase. Similarly, in the free phase the correlations p] ; are given
by

(3) Updating. As in the Boltzmann machine (equation (17)) above.

"To use the MFT algorithm it is necessary to specify a few parameters: initital T}
values, annealing schedule, learning rate and weight updating frequency. Also the
option of discrete updating is sometimes useful. A detailed discussion of these issues
can be found in ref. (4].

4. MFT versus BP on Feature Recognition: Two Benchmarks

Let us now compare the performance of MFT and BP with respect to learning and
generalization for two pattern recognition problems. The term ‘generalization’
refers to the response of a network, after some amount of training, to novel
(unlearned) inputs. There are at least two different ways to test generalization.

(1) Continuous learning. The training set covers the entire input space. Each time
the network is presented with a training pattern it is first tested for
generalization on that pattern. In this mode of operation, the distinction
between learning and generalization is blurred.
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Figure 3. The two-dimensional mirror symmetry problem.

(2) Fixed training set. After learning a training set consisting of a fixed subset of
the total input space, the network is tested for generalization on patterns it
has not seen before.

We have investigated the generalization properties of MFT and BP using the
two-dimensional mirror symmetry problem [19] and a statistical pattern classifi-
cation task consisting of two multi-dimensional heavily overlapping Gaussians {20].
The mirror symmetry problem requires detecting which one of three possible axes of
symmetry is present in a N X N pixel (binary) input (see Figure 3). The overlapping
Gaussians problem consists of correctly assigning input patterns to one of two
overlapping classes (see Figure 4). The statistical nature of this problem makes it
particularly challenging as it necessarily involves inconsistent training. These
synthetic problems are different and difficult enough to represent suitable bench-
marks. The mirror symmetry problem is characterized by a second-order predicate
[21] and a very large number of possible input patterns. The overlapping Gaussians
problem is an artificial abstraction of the statistical nature of many natural signal (e.g.
speech) processing tasks.

4.1. The Mirror Symmetry Problem

For this problem we used an architecture consisting of N x N input units, one layer
of 12 hidden units and three output units (one for each axis of symmetry). Our
experiments were performed with two problem sizes: 4 x 4 and 10 x 10. Only input
patterns with exactly one of the three possible axes of symmetry were included.
There are about 1.5 x 10° such patterns in the 4 x 4 case and about 3.7 x 10'® in the
10 x 10 case.

When using MFT and BP in this kind of application, two subtle but important
issues arise: [—1,1] versus [0, 1] representation and endpoint versus midpoint
success criterion for the testing phase [4].

(1) [—1, 1] versus [0, 1]. In Section 2 we used [—1, 1] representation for the
neurons. With a linear transformation, the whole formalism could trivially be
redone for [0, 1] representation with one important difference: in the [— 1, 1]
case, both ‘on—on’ and ‘off-off’ correlations are counted as positive correl-
ations in the learning rule of equation (17), but in the [0, 1] case, only ‘on-on’
correlations are counted. For this reason we expect faster learning for both
BZ and MFT when using the [ — 1, 1] alternative. For BP, one also expects
the [ —1, 1] representation to allow faster learning since, like BZ and MFT,
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Figure 4. A one-dimensional example of two overlapping Gaussian distribution.
The non-statistical limit of the problem consists of two delta-functions located at the

(2)

centre of the Gaussians. Areas of misclassification are indicated.

this algorithm is unable to modify weights on connections from input units
that are set to zero. With respect to generalization power, the situation could
very well be the opposite. In cases where two neurons are undecided, i.e.
have values near 0.0 and 0.5, respectively, no learning takes place in the
[—1,1] case, whereas this ‘uncertainty’ is emphasized with a positive
correlation in the [0, 1] case. In other words, one expects less ‘stiff’ learning in
the latter case and hence better generalization. The issue of representation
choice is also important in CAM Hopfield-type networks, but for somewhat
different reasons (see ref. {22]).

Endpoint versus midpoint success criterion. As a success criterion in the
learning process, a value fairly close to the target is typically demanded of
both BP and MFT (e.g. |V]>0.8 in [ — 1, 1] representation); we call this an
endpoint criterion. When testing for generalization, the question arises
whether this same endpoint criterion should be used or just a midpoint
criterion: V; on the correct side of 0. It turns out that the performance of BP
is sensitive to this choice while MFT is insensitive to it. When trained with
endpoints as targets, MFT output units tend to take on values near the
endpoints during generalization testing,” while BP outputs often take on
intermediate values. This difference between the algorithms is very likely
due to the feed-forward versus feedback dynamics.

4.1.1. Continuous Learning. The results are shown in Figures 5 and 6, from which we
make the following observations. First, as discussed above, the relative performance
of BP improves significantly with the midpoint criterion, whereas MFT is virtually
unaffected. Secondly, even with use of the midpoint criterion, BP (using [0, 1]) lags
behind MFT (using [— 1, 1]). Also note that any difference in performance between
the algorithms decreases as learning progresses.
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Figure 5. Learning curves using the endpoint criterion for the 4 x 4 and 10 x 10
mirror symmetry problems. For MFT, [ —1,1] representation was used and for BP,
[0, 1] representation.
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Figure 6. Learning curve using the midpoint criterion for the 4 x 4 mirror symmetry
problem. For MFT, [—1,1] representation was used and for BP, {[0,1]
representation.

4.1.2. Fixed training set learning. Next MFT and BP networks for the 4 x 4 problem
were trained on different fixed sets of 100 patterns. For details on how these sets were
chosen we refer the reader to ref. [4]. From these experiments the following
observations and conclusions were drawn.

(1) MFT learns faster than BP, as expected from the discussion above. The two
algorithms do equally well on generalization on [0,1], and MFT does
somewhat better on [—1,1].6

(2) For both algorithms, learning is faster with [—1,1] than [0,1], also as
expected from the discussion above.

(3) For both algorithms generalization is more powerful with [0, 1] than [ —1, 1],
consistent with the same discussion. An opposite result is reported in [24] for
the ‘majority’ problem.

(4) MFT appears less sensitive to the representation choice than BP.

4.2. A Statistical Pattern Recognition Problem

Most natural problems entail noisy and inconsistent training. The success of the
neural network technology will therefore be judged largely according to its ability to
deal with statistical problems. The potential difficulty in this problem lies in the
presence of inconsistent training: for inputs where the two Gaussians overlap, the
training examples map the same inputs to both of two different outputs. This is in
contrast to the mirror symmetry problem discussed above and the delta function
limit in Figure 4 where the same training output is consistently associated with a
given input. Reference [20] benchmarked the BP, BZ and learning vector quanti-
zation algorithms for testbeds consisting of heavily overlapping Gaussian distri-
butions with dimensionality ranging from two to eight.
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In ref. [20], the neural network algorithms generally produced good results, with
the BZ performing very close to the theoretical Bayesian limit. BP and MFT were
compared with the theoretical limit in ref. [4] using three of the testbeds of ref. [20].
The first case (A) consists of two overlapping Gaussians (G, G,) in eight
dimensions, centered around (0,0,0,...,0) and (2.32,0,0,...,0) with standard
deviations ¢ equal to 1 and 2 respectively. At the theoretical minimum (Bayesian
limit), one has [23]

Perror = j GZ + j Gl (20)
Ry R

where R, and R, are chosen such that P, is minimized. In Figure 4, the optimal
choice of R, and R, is illustrated in two dimensions. For the above Gaussians,
P, ..=0.062,i.e.293.8% success rate is the maximum achievable. In the second case
(B), the difficulty of the problem is increased by using identical means for the two
classes: G, is shifted to (0,0,0,...,0). The maximum success rate for this case is
91.0%. In the third (C) and most difficult case, there are only two input dimensions
instead of eight, and again the two classes have identical means of (0,0)). The
maximum success rate for this case is only 73.6%.

The details of our MFT and BP simulations can be found in ref. [4]. In the
experiments, both algorithms used [0,1] units, the midpoint was used as the
correctness criterion, and in all cases there were eight hidden units and one output
unit.” A few technicalities are important when aiming for peak performance and
when comparing the results of ref. {4] with those of ref. [20].

(1) Architecture. A fully connected architecture was used, where all connections
except input-input connections were present.®

(2) Encoding of imput values. The continuous input was subdivided into 20
subranges and a local representation was used: an input pattern consisted of
exactly one unit ‘on’ in each of the D sets of 20 units.

(3) ‘Manhattan’ updating. In equation (17) the weights are changed according to
gradient descent, i.e. steps in weight space are taken along the gradient
vector—each gradient component (weight change) will be of different size. If
one instead updates with a fixed step size, the step is taken in a slightly
different direction along a vector whose components are all of equal size.
Everything about the gradient is thrown away except the knowledge of which
‘quadrant’ it lies in; learning proceeds on a lattice. In situations where it is
advisable to present many examples before taking a step in weight space, we
have found this ‘Manhattan’ updating procedure to be beneficial.

In Table I we show the peak performance and number of training patterns
required. Both MFT and BP essentially reach the theoretical limit, which is very
impressive given that this problem is so non-trivial.

4.3. MFT and BP—Different Algorithms?

One may wonder why MFT and BP behave so similarly despite their different
foundations. The answer lies in the choice of architectures used in the two examples;
one hidden layer and #,>»#n,. In this limit one can show that MFT and BP are
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Table I. Peak performance and number of patterns required for the
statistical pattern classification problems (see text). The results for
BZ and testbed C for BP were taken from ref. [20]. Percentages
from the present study are with respect to the preceeding 10000

patterns.
MFT BP BZ
Testbed % patts % patts % patts
A 93.2 140k 93.2 120k 93.3 400k
B 90.0 170k 90.7 160k 90.6 400k
C 733 60k 73.7 ? 73.5 400k

V2 T

Figure 7. A one hidden layer architecture with ;> n,.

approximately equal. To this end consider the updating of the hidden neurons V;in
Figure 7. (Our way of reasoning is closely related to the one of ref. [26].)

V,-=g[<; T,-,(V,°,+Zi: TUV,-) / T] 1)

where the notation is defined in Figure 7 and g(x)=tanh (x). With n,>»n, and
bounded values on T;; and T,; the output units will have minor influence on V;
and we can expand the latter around the part of the input sum equation (21)
containing clamped input units V7§ to obtain

ijg(; T, Vi T)+g’<; TVl T)Z vyt (22)

For the weight changes between the hidden and output layers one then obtains
for MFT (keeping the first term in equation (22) only)
AT,;=ViVi-V,V,=(Vi-V)V3 (23)

This is identical to what one gets from BP using the entropy error measure [26,27],
which for each pattern reads

E =} [Vilog(1£V)—V,log(1-V7)] (24)
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where we have identified the clamped value Vi with the target value ¢; and the
unclamped value V; with the output value o; using standard BP notation. The
corresponding updating rule for the weights is

ATij:(V‘i:_Vi)V'; (25)

Updating the input-hidden layer in MFT using the approximation of equation (22)
gives

ATjk = V;Vli_ Vlec(= Vf,g’(Zk: T_ik Vil T)Z Tij(V?_ VaIT (26)

which is identical to the propagated error in BP.

So the fact that MFT and BP came out so close in the comparisons is not
surprising. The question now is under what circumstances do we expect the
algorithm to really differ. Two such situations immediately emerge:

(1) Architectures with more than one hidden layer.

(2) O(n)~0O(ng). Such a situation is natural in time-prediction applications
where a number of variables at t=1 are the inputs and the corresponding
variables for t=1+ A are the outputs. Also, content addressable memories
belong to a domain of applications where the output nodes are not limited to a
few features (see below).

4.3.1. Time consumption. We end this section by comparing the time consumption
of the two algorithms. As stated above the real power of MFT is its straightforward
mapping onto analogue VL SI circuitry. For pattern recognition applications that are
intended to be implemented in MFT analogue hardware it is of course important to
test the algorithm on the simulation level in advance. It has been stated now and then
that MFT is ‘far too slow’. Let us pin down what ‘far too slow’ means in terms of
CPU cycles in layered architectures with n, inputs, 7, output and »y; hidden units.
For both MFT and BP the number of operations per pass is approximately given by
the number of connections n¢.

MFT
nc=ny(ng+mn) clamped phase
ne=ny(2ng+m) free phase

BP
ne=ny(ng+n) both forward and backward pass

In the case of MFT one also has to take into account the number of temperatures ny
used in the free phase for the annealing. For each epoch one thus has the ratio
between time consumptions

TMFT _ nr(2ng+m) + (no+m)
Tpp 2(no+m)

(27)

Equations 27 holds for one hidden layer architectures with no hidden-hidden
connections where no feedback in the MFT clamped phase is present. The annealing
in the clamped phase is therefore unnecessary. For the entire learning process one
obtains the ratio

MET

R= Impr Ng TMFT
=t~ NF 1y
BP E  Tep

(28)
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Table II. Comparison of serial CPU time consumption for BP and MFT (for
notations see text)

Problem NYFT NP ne n ng R

Mirror symmetry (—1,1) 38k 123k 11 16 3 2.0
Mirror symmetry (0, 1) 49k 264k 11 16 3 1.2
Gaussian overlap 140k 120k 11 160 1 7.0

where N¥¥T and NEF are the number of epochs. Based on empirical information we
have computed R for the 4 x4 mirror symmetry and the Gaussian overlap
applications. The results are shown in Table II. R in the 2-5 range seems to be
typical. (The Gaussian overlap problem is particularly favourable for BP since
‘Manhattan’ updating was used and hence learning is not slowed down by the BP
g'( )-factor.

5. A Content Addressable Memory with MFT Learning

In feature recognition applications a functional mapping from input to output units
takes place. Both feedback (e.g. MFT) and feed-forward (e.g. BP) algorithms are
well suited for this. A feature recognizer can be viewed as a special case of content
addressable memory (CAM). Here, the visible units are not partitioned into input
units and output units. Hence, while bidirectional (e.g. MFT) networks are
appropriate for CAM, BP is not.’

We define CAM as follows. The network is initialized (but not permanently
clamped) to a noisy version of a pattern, i.e. some bits are changed at random,
unknown positions. This initial state evolves to the stored pattern (the network
moves to the closest attractor), correcting the random errors. This is formally an
error-correction CAM.'? The computational task of a CAM can be recognized as a
restatement of the task of decoding codewords received from a noisy communication
channel. The set of legal codewords corresponds to memory items and decoding a
noisy codeword means error correction—correcting the errors in the pattern by
identifying the closest legal codeword. Conventional algorithms for error correction
take time that increases with the size and number of the legal codes [29].

5.1. The Hopfield Model

The architecture of the Hopfield model consists of N fully connected visible units.
The storage is Hebbian [30]

M
I 9)

where M is the number of N-bit patterns ($”) to be stored. The dynamics is governed
by equation (3). With the storage prescription of equation (29) the system has the
stored patterns 8” as attractors. For uncorrelated (random) patterns, the storage
capacity is given by M, ,,~0.14N [31] (For correlated patterns this number is even
smaller.) Subsequent work has demonstrated that 0.64 patterns per synapse can be
stored in partially connected networks [32].
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Various modifications of equation (29) have been suggested to improve the
storage capacity. They fall into two classes: local [33,34] and non-local [35]. We
briefly mention two modifications which are local: REM sleep [33] and the
bidirectional perceptron learning algorithm [34, 36]; both are related to MFT learning.

It has been suggested that during REM sleep, mammals ‘dream in order to
forget’ as a means for removing spurious undesired memories [37]. It was
demonstrated in ref. [33] that if the rule of equation (29) is supplemented by
‘unlearning’ of the spurious states the CAM performance improves. Subsequent
work has verified the power of this method with storage capacities in the range
30-40% as a result [38]. This ‘unlearning’ procedure is closely related to the
Boltzmann machine learning prescription of equation (17); positive learning
(equation (29)) corresponds to the clamped phase whereas ‘unlearning’ corresponds
to the free phase [19]. Since MFT relies on the same learning rule (equation (17)) it
effects the same ‘pruning’ of state space or ‘sculpting’ of the energy landscape.

The bidirectional perceptron learming algorithm [34,36] uses the same unit
updating rule as the Hopfield model, allows visible units only and is a direct
extension of the perceptron algorithm {21] to bidirectional networks. The learning
process goes as follows. For each pattern p and unit 7, the error ¢? is recorded such
that

1
&? =2|:1 - sgn(S,?z T,.J-Sj-’)] (30)
j
The weights are then updated according to

1
ATij=ﬁ§(85’+£f)S{’S§’ (31
This process is repeated until all errors are corrected. This algorithm is a special case
of MFT with T=0 and no hidden units [4].

5.2. A Content Addressable Memory with MFT Learning

5.2.1. The algorithm. We now depart from the Hopfield CAM in the sense that
hidden units will be used to build up internal representations of the stored states.
(The Hopfield model has only visible units.) For an N-bit memory, we choose an
architecture consisting of N visible units and N hidden units. We return to the
question of degree of connectivity below.

Since no distinction between input and output units exists in a CAM modified
retrieval and clamping procedures are called for.

Retrieval. In an error-correction CAM the goal is to correct any errors in the state
of the visible units. Thus each visible unit functions both as an input and as an output
unit: the input to the network is the initial state of the visible units, and the output is
their final state. With no hidden units, error-correcting retrieval or course proceeds
as with the Hopfield model: initialize (not clamp) the network to a noisy version of a
stored pattern, turn on the dynamics, and let the network evolve to a stable final state.
If hidden units are present one wants to evoke the internal representation of the
stored pattern learned by the hidden units, enlisting their influence to help correct
the errors in the visible units. To accomplish this effectively in a fully connected
network requires annealing the hidden units while clamping the visible units. But if
the visible units are clamped, their errors cannot be corrected. Several retrieval
methods can solve this dilemma. In refs [4-6] the following procedure was used.
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(1) Clamp the visible units to the initial state.

(2) Anneal down to an intermediate temperature; the state of the hidden units
begins to approximate the learned internal representation of the stored
pattern.

(3) Release the visible units. Visible units representing input bits known in
advance to be correct should remain clamped.

(4) Complete annealing. The network now settles as a whole, with the evoked
representation in the hidden units helping the visible units settle into the
stored pattern, correcting any errors.

Clamping. In this phase clamping of course proceeds as in the feature recognition
case. For the free phase the situation is different again due to the fact that there are no
input-output distinctions. In refs [4-6] one-half of the visible units were chosen at
random and then clamped for each pattern presentation.

Convergence criterion. In feature recognition applications of MFT a natural
stopping criteria can be defined with the error of the output units as in BP. Again,
since no output units are distinguished in CAM applications an alternative is needed.
A possibility would be to monitor G in equation (13) as learning progresses. To
compute G in the BZ is of course intractable given the vast summations underlying
P, and P,. However, with the MFT approximation at our hands, GG should be easily
computable in the saddlepoint approximation for P, and P,. However, it turns out
that G does not progress smoothly. The reason is that different units are clamped in
each free phase (or each pattern). It is therefore necessary to rely on a more pragmatic
criteria [5], which turns out to be very effective. After every 100 epochs, learning is
interrupted and retrieval is performed on all training patterns (without noise). In this
way, the number of successfully stored patterns can be determined. When this
number does not improve within 400 epochs, learning is terminated.

Connectivity. Two different architectures have been subject to experimentation,
Sfully connected [4, 5] and no hidden—hidden connectivity [5] (see Figure 8). It turned
out in refs [5, 6] that with the fully connected architecture variant the
performance in terms of number of stored patterns as a function of ny deteriorates
with M. This phenomenon is not too surprising. With the hidden-hidden connections
present, if the number of hidden units is large, the majority of connections to a
hidden unit are from other hidden units, while very few are from the visible units. In
this case, during training or retrieval, when the visibles are clamped and the hiddens
are settling, the ‘noise’ from the other hidden units swamps the ‘signal’ from the
visible units. In what follows we will therefore stick to architectures with no hidden—
hidden connections (Figure 8 (b)).

(a) (b)

Figure 8. (a) A fully connected MFT CAM. (b) An MFT CAM with no hidden-
hidden connections.
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5.2.2. Numerical performance. Throughout this section, the number of visible and
hidden units in a network will be denoted as ny and ny. All patterns that are being
learned are random. For details on parameter values, etc., we refer the reader to refs
[5, 6]. Figures 9 and 10 show plots for networks of size ny=24 and n,=32,
without hidden-hidden connections, of the maximum number of storable patterns as
a function of the number of hidden units.

The data points of Figures 9 and 10 were determined as follows. Networks of each
size (ny,ny) were trained with training sets of increasing size. For a given size, the
number of patterns stored consistently reached a maximum and eventually
decreased. With capacity of a network we then mean the largest number of patterns
stored before the decline starts (this always occurred such that the maximum number
stored was at least 90% of the size of its training set). Fitting the data of Figures 9
and 10 to a linear behaviour gives M ~ O(10-20)ny, which is very impressive. There
are even indications of superlinear behaviour [5, 6]. If these latter results survive the
MFT learning method might be a candidate for tapping the exponential storage
capability of recurrent networks [39].

5.3. Comments
We close the CAM section with a few comments.

(1) Precision. How many bits of precision are necessary for each weight and how
does the required number of bits for the weights compare with the number of
pattern bits stored? Remarkably, in the larger networks, provided the
network is allowed to make just a few errors in retrieval, many more pattern
bits can be stored and retrieved than are needed to represent the weights in
the network [5,6]. Since a stored pattern explicitly exists only when the
network adopts that stable state, one can regard the pattern bits as implicitly
stored, as compared to the bits in the weight registers, which are explicitly
stored. In this view, the number of implicitly stored bits can greatly exceed
the number of explicitly stored bits.

(2) Basins of attraction. Number of stored patterns is not the only measure of the
performance of a CAM. The basin size is also very important. Encouraging
results for this quantity were reported in refs [5, 6]. The average basin size
for any network is a decreasing function of the number of patterns stored
(loading). For representative architectures these functions were measured
and plotted in ref. [6]. The general quality of the plots improves with
increasing n,; =n, networks, but worsens (in normalized terms) with
increasing ny >ny. For instance, the ‘critical point’ at which the average
basin size decreases to zero is approximately, in fractions of capacity, 0.75 for
an ny=ny, =24 network, 0.90 for an n,=n, =32 network and 0.40 for an
ny=24, ny=ny=36 network. This relative worsening with increasing
ny > ny results from a growing number of spurious states brought about by
an interesting identity map effect (see ref. [6]).

(3) No hidden units. In this case the MFT CAM in the T—0 reduces [3] to the
bidirectional perceptron [34,36] and the storage performance is indeed
similar [5]. The basins of attraction are, however, distinctly better for the
MFT approach [5, 6]. One should mention, though, that subsequent work on
the bidirectional perceptron gives good evidence that the basins of attraction
may widen when trained on noisy patterns [40,41]. This could give a
consistent picture since the MFT CAM learning procedure also includes
noisy versions of the patterns.!!
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Figure 9. Maximum number of storable patterns as a function of the number of
hidden units for ny, =24 using the architecture of Figure 8 (b).
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Figure 10. Maximum number of storable patterns as a function of the number of
hidden units for n, =32 using the architecture of Figure 8 (b).
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6. Solving Optimization Problems with MFT Networks

Neural networks have shown great promise for finding approximate solutions to
difficult optimization problems [8,42-44]. In their pioneering work Hopfield &
Tank [8] formulated the travelling salesman problem (TSP) on a highly inter-
connected neural network and made exploratory numerical studies on modest-sized
samples. The main ingredient of the approach is to map the problem onto a neural
network such that a neuron being ‘on’ corresponds to a certain decision and then to
relax the system with mean field techniques in order to avoid local minima.

In the original paper [8], 10- and 30-city problems were studied with good results
for the N =10 case. For N =30 the authors report on difficulties in finding optimal
parameters. In ref. [45] further studies of the Tank-Hopfield approach were made
with respect to refinements and extension to larger problem sizes. The authors of ref.
[45] find the results discouraging. The origin of the observed problems is twofold.
Many of the solutions are not ‘legal’ in the sense that a city is visited not exactly once,
which can easily be remedied with a greedy heuristics [3]. Once this greedy heuristics
has been applied the core problem stands out; that of redundancy in the imbedding of
the problem. In ref. [9] a more compact encoding was suggested by using multi-state
neurons rather than the neuron multiplexing of ref. [8]. Technically, this corre-
sponds to a Potts glass [46] rather than an Ising spin glass model.

In order to lay out the general principles and potential problems when mapping
optimization problems onto neural networks we start with a fairly detailed
description of the graph bisection problem.

6.1. Graph bisection

This problem is defined as follows (see Figure 11 (a)): partition a set of N nodes with
given connectivity into two halves such that the net connectivity (cutsize) between
the two halves is minimized. The problem is mapped onto the Hopfield energy
function (¢f. equation 1) by the following representation. For each node, assign a
neuron S;=1 and for each pair of vertices S;S;, i=j, we assign a value T;;=1 if they
are connected and T;=0 if they are not connected. In terms of Figure 11 (a), we let
S;= + 1 represent whether node i is in the left or in the right position. With this
notation, the product T;;S;S; is zero whenever nodes 7 and j are not connected at all,
positive whenever connected nodes ¢ and j are in the same partition, and negative
when they are in separate partitions. With this representation, minimization of
equation (1) energy function will maximize the connections within a partition while
minimizing the connections between partitions. However, the net result will be that
all nodes are forced into one partition. Hence we must add a ‘constraint term’ to the
right-hand side of equation (1) that penalizes situations where the nodes are not
equally partitioned. We note that £S;=0 when the partitions are balanced. A term
proportional to (X.5,)? will increase the energy whenever the partition is unbalanced.
Our neural network energy function for graph bisection then takes the form

1 2
E=—2Y Ti,.s,.s,.+;<z S,.> (32)
ij i

where the imbalance parameter « sets the relative strength between the cutsize and
the balancing term. This balancing term represents a global constraint. The generic
form of equation (32) is

E=‘cost’ + ‘global constraints’ (33)
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Figure 11. (a) A graph bisection problem. (b) A K=4 graph partition problem.
(c) An N=4 TSP problem.

which is typical when casting ‘difficult’ optimization problems onto neural networks.
The origin of the ‘difficulty’ is very transparent here; the problem is frustrated in the
sense that the two constraints (‘cost’ and ‘global constraint’) are competing with each
other with the appearance of many local minima. These local minima can to a large
extent be avoided by applying the MFT technique to equation (32) yielding

V,=tanh [Z (T; i~V T] (34

where V;={S;>r (equation (8)). The generic form of the energy function in equation
(32) 1s very different from a more standard heuristic treatment of the optimization
problem. For example, in the case of graph bisection one typically starts in a
configuration where the nodes are equally partitioned and then proceeds by
swapping pairs subject to some acceptance criteria. In other words the constraint of
equal partition is respected throughout the updating process. This is in sharp
contrast to neural network techniques (equation (32)), where the constraints are
implemented in a ‘soft’ manner by a Lagrange multiplier. The final MFT solutions
are therefore sometimes plagued with a minor imbalance, which is easily remedied
by applying a greedy heuristic to the solutions [11].

In addition to the Lagrange parameter o, the MFT equation (34) contains the
temperature 7 as a free parameter. It is desirable to be able to estimate the values for
T in advance so that a ‘trial-and-error’ process can be avoided when applying the
algorithm to different problems; the algorithm should be a ‘black box’ from a users
perspective. The spin systems onto which we are mapping the optimization
problems typically have two phases; at large enough temperatures the system relaxes
into the trivial fixed point V{¥ = 0. As the temperature is lowered a phase transition is
passed at T= T and as T—0 fixed points V{) emerge representing a specific decision




MFET Neural Networks 23

<

vi®)
1

(o)
1

o™
0

Figure 12, Fixed points in tanh (U)).

made as to the solution to the optimization problems in question. The position of T,
which depends on T; and &, can be estimated by expanding the sigmoid function
(tanh) around V{® =0 (see Figure 12). The fluctuations around V'{®

Vi=V9+g (35)
satisfy
1
where

For synchronous updating it is clear that if one of the eigenvalues to M;;/T in
equation (36) is greater than unity in absolute value the solutions will wander away
into the non-linear region. Hence T, will be determined by the eigenvalue
distribution of M;;. In the case of serial updating the philosophy is the same but the
analysis slightly more complicated. We refer the reader to ref. [9] for a more detailed
discussion. The position of T, is in general not the same for synchronous and serial
updating. From equation (37) it is clear that the strengths of diagonal or ‘feedback’
terms () are important for determining T,. Finding the largest eigenvalue to M;;
could be computationally explosive by itself. I's there an approximate way of doing it?
Yes, given t={T;;> and the corresponding standard deviation ¢, turns out to be
sufficient for obtaining estimates within 10% of T'. Also, this analysis is important
for avoiding oscillatory behaviour [49], which appears for eigenvalues less than — 1.

6.2. Graph Partition

When generalizing to graph partition (GP), the N nodes are to be partitioned into K
sets, each with N/K nodes, again with minimal cutsize (see Figure 11 (b)). Letus first
review the formalism for the 1-of-K or neuron multiplexing method for this problem
[9], which was also used in the context of the TSP in ref. [8]. Then we reduce this
1-of-K encoding to the corresponding multistate neuron encoding approach
which has turned out to be the winner [9].
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6.2.1. 1-of-K encoding: neuron multiplexing. In order to map the GP problem onto a
neural network we first introduce a second index for the neurons (neuron
multiplexing)

Si.=0,1 (38)

where the index ¢ denotes the node (i=1,...,N) and a the set (a=1,...,K). S,
takes the vatue 1 or 0 depending on whether node 7 belongs to set a or not. We use
[0, 1] notation (rather than [ — 1, + 1]) in order to get a more convenient form of the
energy function, which reads

1 N\2
E=§Z Y TijSiaSjb"‘gZ: Y SiaSib"'%Za:(Zi: Sia_‘IZ) (39)

ij a®b aZb

The first term corresponds to the cutsize to be minimized. The third term in
equation (39) represents the global constraint of equipartition; it is zero only, if each
of the K sets contains N/K nodes. The second term, which has the form ‘winner-
takes-all’, is new; it ensures that the 1-of-K encoding is satisfied. In its structure this
equation differs from that of equations (32) and (33) by the presence of his second
term enforcing the ‘syntax’ constraint.

Again we define mean field variables, V;,={S,;,)r and the corresponding MFT
equations are given by!?2

Vs I[l +tanh {[ ~3 3 TyVu=8 3 Vo- a(Z Vi ‘11\'9] / T}]] (40)

The solution space of these MFT equations consists of the interior of the direct
product of N K-dimensional hypercubes. In Figure 13 we show the cube
corresponding to K = 3. Using equation (40) to solve graph partition problems gives
poor and very parameter sensitive results [9]. Let us next turn to an alternative
encoding which compact the solution space by one dimension.

v

il
Figure 13, The volume of solutions corresponding to the 1-of-K encoding for K=3.

The shaded plane corresponds to the solution space of the reduced 1-of-K encoding
for K=3.
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6.3. Reduced 1-of-K Encoding: Multi-state Neurons

In this section we restrict the allowed states for the neurons, such that exactly one
neuron at every site is on, and derive the corresponding K-state Potts glass MFT
equations.!3

The restriction corresponding to the second term in equation (39) can be
compactly written as

Y S.=1 (41)

Thus for every i, S, is one for only one value of a, and zero for the remaining values
of a. So, the allowed values of the vector 8;=(S;;, i3, - .., Six) are the principal unit
vectors e, €,, . . . , € in an obvious vector notation. The number of states available at
every node is thereby reduced from 2X to K, and technically we have a K-state Potts
model at our hands. In Figure 13 we show the space of states at one node for the case
K=3,

The energy function of equation (39) can now be rewritten, using the constraint
of equation (41), as

1
E=§Z Z TijSiaSja+;Z Z SieSia (42)
T G i @

or, in vector notation,

1 a 2
E=—_%T;S:S;+, (Z S-‘) (43)
2 ij 2 i

This expression has exactly the same structure as the energy (equation (32)) for the
graph bisection problem. Indeed, for K=2, they are completely equivalent (apart
from a trivial factor 2).

6.3.1. MFT equations for multi-state neurons. For the multi-state neurons §; it is
straightforward to work out the corresponding MFT equations [9]. They read

JE 1 '
Vi= Fx( IV 7) (44)

where we have again introduced the MFT variables V,={S;) and the K generalized
sigmoid functions are given by

Ua

=5 (45)

which for K=2 reduces to a tanh function as expected. Note that this expression
automatically satisfies the constraint

Y Fe()=1 (46)

Thus, when iterating equation (44), the mean field variables V; will be forced to exist
in this (K — 1)-dimensional subspace of the original K-dimensional unit hypercube,
as shown in Figure 13 for the case K=3.

For the GP problem we now have the MFT equations

Vi=F(U) ‘ (47)
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U= —El=[z<ri,.—a>v,.+m)]% (48)
J

We note that with equation (44) V;is guaranteed to lie in the subspace Zz,Vi.=1.The
interpretation of V', as probabilities is obvious. In equation (48) we have kept the f§
term of equation (39), which is redundant in terms of encoding the problem, but
potentially important for the MFT dynamics (cf. the discussion on diagonal terms in

Section 6.1).

6.4. The Travelling Salesman Problem

The travelling salesman problem (TSP) s related to GP in the case of K= N with the
modification that the set connections constitute a closed loop (see Figure 11 (c)) and
an extension in the sense that analogue values (city distance) are used for the node

connection matrix.
Now we apply the reduction trick to above coding of the TSP.'* Again we

consider only states of the neurons satisfying the constraint of equation (41), which
reduces the number of states from 2" ¥ to N". The energy can then be written (up

to an uninteresting constant) as
B . i
E=ZDIJZ SiaSj(a+l)—EZ Zsia+52 Zsin (49)
ij a i a a i
where D;; is the distance between cities i and j, and a+1 is defined modulo N.'°.
The corresponding MFT equations for V,, read

V,= Fy(U) >
with
dE 1
e _a_[]_i 7:{—;[Dij(Vj(a+l)+ Vj(a_l))]—a; Vja+ﬂV|'a}/T (51)

6.5 Scheduling

Consider the following scheduling problem: N, teachers are supposed to have N,
classes in N, class rooms at N, time slots. The problem is to find a solution where all
N, teachers give a lecture to each of the N, classes, using the available space-time
slots with no conflicts in space (classrooms) or time. These are the hard constraints
that have to be satisfied. In addition, one could imagine having a set of soft constraints
like preferences in time slots, continuity in classrooms, €tc. This is of course just one
example of a scheduling problem but we fell it is general and difficult enough to
illustrate the neural network approach.

The basic entities of this problem can be represented by four sets consisting of
N,, N, N, and N, elements, respectively. One could imagine formulating the
problem in terms of neurons connecting two or more elements in different sets.
However, there is a more transparent way 1o describe the problem that naturally
lends itself to the Potts neural encoding [10]. Consider events, defined by teacher—
class pairs (p, ), to be mapped onto space-time slots (x, t).

(1) An event (p,q) should occupy precisely one space-time slot (x, £).
(2) Different events (py, 4y yand (p,, ¢,) should not occupy the same space-time

slot (x, £).
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(3) A teacher p should have at most one class at a time.
(4) A class g should have at most one teacher at a time.

The first constraint can be imbedded in a neural network in terms of multi-state
neurons §,, with components

S0 =0,1 (52)

pPg;xt

by demanding
Z Spgx=1 (53)
x, ¢

for each event (p, ¢). In other words we have N, N, neurons, each of which has N, N,
possible states. The other three constraints are implemented using energy penalty
terms as follows

T2

xt _Z 2 Z Spm xr P242;xt E Z Spq;xt 59
xi‘mqlpzqz x,t| pq _

1 T?

_Z Z Z Spqn xqt pqz xt = ; ;Sm;x: (55)

P!qlxl q2, %2

;—4

1 1 7
E =7 Z Z Z qu:xnlszq;xzr=_Z Z Spgixt (56)
2 27 i

q,t p1,X1 p2.%2

From equations (52) and (53) it is obvious that any linear combination X of different
components of a neuron also must be zero or unity, so that

X=X ' (57)

For the particular combinations S, > Z, Sy, and Z, S, ,,» this property can be
used to add trivial-valued auxiliary terms to the energy

E,x= _Z ZSW xt™ Z Z Spq:xllqu;xtz Z Z Spq xxt pq; x2t (58)

l“lx' qu.l‘l-lz qulle

These are the only non-trivial terms of this kind, which also respect the obvious
permutation symmetries of the problem. The effect of these extra terms on the
energy value is merely that of adding a fixed constant, but they turn out important for
the mean field dynamics [10].

The problem is now that of finding a configuration that minimizes the total
energy

1
E=Exl+Ept+qu+Eaux+ENqu(_3+ﬂ+ﬂx+ﬂl) (59)

where we have added a constant in order for the minimal energy value to be zero.

Most problems also have additional soft constraints. An example of a soft
constraint that is easy to implement, yet not trivial, is to require that a class should
remain in the same room from one time-slot to the next. This constraint might be
encoded by including an additional energy term

o
E,=—3 Z Z Z Spq;xt(Sp’q:x(l+ yt Sp‘q:x(l— l)) (60)

2 p'#Fp q xt

where ¢+ 1 is defined modulo N,.
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Again mean field variables V., = {S,,. > r are introduced and the correspond-
ing MFT equations read

1 OE
qu;xr—"fgm (61)
and
Upgixt
4 £ (62)

Pa; Xt _Zx'cv,,,,_,,,

As before the eigenvalue analysis described in Section 6.1 is used to estimate T,

6.6. Numerical Explorations

In ref. [9] exhaustive simulation studies were performed for GP and TSP with the
multi-state encoding with impressive results. Not only were the solutions consistently
of high quality but the algorithm was implemented in a ‘black-box’ manner with no
free parameters. We refer the reader to ref. [9] for details.

In Figures 14 and 15 results for 10 x 100GP and N=200TSP are shown.
The results are impressive! Our neural network algorithm performs as well (in some
cases even better) as the simulated annealing method with excessive annealing and
sweep schedule. This is accomplished with a very modest number of sweeps,
O(50-100). The imbalance prior to applying the greedy heuristics is negligible; on
average 0.1% of K x N and N? for GP and TSP respectively.

Numerical studies of the neural network approach to the scheduling problem also
give very good results (see ref. [10]).

7. Summarizing Remarks

The purpose of this review has been to discuss three very different application areas
of MFT network models. The common denominator is feedback architecture with
‘tanh’ gain functions. In learning applications a substantial advantage in terms of
hardware implementations exists; learning is local. Also the MFT equations are
1somorphic to the corresponding circuit equations. Furthermore, given that all three
applications are mapped onto the same class of network investments in hardware
implementations could have a tremendous payoff. Highest performance quality of
MFT models is of course a necessary condition for taking advantage of the above-
mentioned benefits. We will next summarize the quality situation with respect to the
different application areas.

7.1. Feature Recognition

We have benchmarked MFT against BP on two different testbeds: the two-
dimensional mirror symmetry problem and a statistical pattern classification
problem consisting of two multi-dimensional overlapping Gaussians. Qur main
results can be summarized as follows.

(1) The generalization capabilities of the two algorithms are similar. When the
algorithms are used in their standard forms, MFT learns in a substantially
smaller number of training epochs than BP; when ‘Manhattan’ learning is
used the learning speeds dre similar.
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Figure 14. Comparison of neural network solutions versus simulated annealing and

random distributions for a 10 x 100 GP problem. The histograms are based on 50

experiments for the neural network and simulated annealing algorithms and 1000 for
the random distributions.

(2) The performance of both algorithms on the problem of two overlapping
Gaussians is particularly impressive since it involves inconsistent training;
the Bayesian theoretical limit is essentially reached!

One might wonder why MFT and BP behave so similarly despite their different
foundations. It is related to the fact that for feature recognition the number of output
(feature) units is much smaller than the number of input and hidden units. Since
feedback is effectively only present between the hidden and output layers, the
difference should be minor for these cases.

In situations with O(ng=~O(n,), e.g. time-prediction of many variables of a
dynamical system, x;(t+ At)=f(x(2)), the algorithms should become significantly
different.

For serial simulations MFT takes a factor 2-5 longer time that BP to learn. The
real gain is in real-time applications when custom-made hardware is required.

Although BZ and MFT learning are formally derived for T;;=T; they can be
extended to asymmetrical situations {50, 51]. This fact makes these approaches more
plausible from a biological point of view. It also facilitates applications of processing
time-sequenced data, e.g. speech, in a natural way.
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Figure 15. Comparison of neural network solutions versus simulated annealing and

random distributions for a N=200 TSP. The historgrams are based on five

experiments for the neural network and simulated annealing algorithms and 1000 for
the random distributions.

7.2. A Content Addressable Memory

Since there is no inherent distinction between input and output units in MFT, its
applications are not limited to feature recognition problems. In Section 5 it was
convincingly demonstrated how to construct a CAM by building up internal
representations of the patterns to be stored using MFT.With analogue neurons and
weights, no clear theoretical limit on the storage capacity exists (except that set by the
semantics of the task), and indeed it is possible to store at least O(10-20)ny patterns
with good retrieval properties. This is a conservative estimate. It could very well be
that the storage capacity is superlinear.

7.3. Optimization

Difficult optimization problems like graph partition and travelling salesman
problems are easily mapped onto neural networks with multi-state spins (Potts spin)
rather than the more commonly used spin multiplexed encodings (Ising spin). In this
alternative formulation two major advantages have emerged.

(1) Solution quality and parameter sensitivity. The Potts glass formulation is
superior to the Ising glass. The reason is that part of the contraints can be
strictly embedded in the energy function, which reduces the solution space
accordingly. The method is therefore far less sensitive to the choice of
parameters.
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(2) Estimating T,. This quantity can be estimated for a given problem in advance
within about 10% accuracy by finding the distribution of eigenvalues of the
linearized updating equation. This makes the method even more parameter
insensitive.

As a by-product of the eigenvalue analysis mentioned above we are able to
consistently avoid bifurcating behavior in the case of synchronous updating (see, ref.
[49D.

The neural network algorithm is benchmarked against simulated annealing for
the graph partition and travelling salesman problems with respect to the quality of
the solutions. Graph partition problems of sizes 4x 100 and 10x 100 were
investigated and for TSP the corresponding problem sizes were N =50, 100 and 200.
Very good quality solutions were consistently found. The results compare favour-
ably with other distributed parallel approaches (for a recent benchmark see ref. [52]).

This K-valued neuron formalism is also powerful for feature recognition
problems, where exclusive classes are to be identified. Such an extension is not
limited to the MFT framework but could also be used for the output layer in BP
[53,54].

Note Added in Proof

The comparisons made in refs [20, 25] between BZ, BP and LLVQ (learning vector
quantization) were not done in a reasonable manner. Only eight hidden units were
used in the BP case in contrast to LVQ, where the authors allowed for the number of
hidden units to increase with the dimensionality of the problem. It is thus not
surprising that BP had a hard time with the eight-dimensional overlaps, and indeed,
when adding input-output connections as was done in ref. [4], the BP performance is
very close to the Bayes limit (see Table 1). Furthermore, if the authors of refs [20, 25]
had allowed for the number of feature nodes to vary as a power of the dimension of
the problem, LVQ would very likely have reached that limit as well—to fill a
d-dimensional volume requires something that grows exponentially with d. Sig-
moidal networks like BP, MFT and BZ on the other hand cut out planes, which is
much more economical in terms of nodes for high-dimensional problems of this
kind. Another factor that made the results of ref. [4] superior to those of refs [20, 24]
for BZ was the fact that in ref. [4] ‘Manhattan’ updating was used.

Notes

1. Feedback networks may also exhibit non~ fixed-point dynamics (limit cycles, chaotic behaviour).
Such networks are not relevant for the applications dealt with in this review.

2. Resistors are of course always positive. Positive and negative T;; elements are implemented by having
a pair of connections between the amplifiers, T,-j» and Tj;. Each amplifier is given two outputs, a
normal (>0) and an inverted one (<0). T,-j and T; are both positive but interpreted with different
signs depending on the sign of the outgoing voltage from the amplifier.

3. In Section 5 we will discuss how its use can be ‘extended’ to the case of no hidden units in the context

of content addressable memories.

. This factorization property of MFT was wrongly stated as an additional assumption in refs (3, 4].

. This is not meant to imply that MFT cannot learn analogue values.

. Varying the gain for BP in the [ —1, 1] case (fixed for a given run) did not improve generalization.

. No change in performance was observed in trials using two output units.

. In BP, the hidden units cannot be symmetrically interconnected, so they were connected

asymmetrically: imagining the hidden units in a row, each hidden unit was connected to all hidden
units to its right.

00 ~1 & W\
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9. Throughout this review we refer to standard BP, not to recurrent BP [28] and other variants.

10. There exist two other functional possibilities, partial-contents CAM and schemata-completion (see
ref. [4] for details).

11. The only remaining difference between the two algorithms is then that the MFT CAM has modifiable
bias connections.

12. The 4[1+...]-form of equation (40) originates from the [0, 1] notation of equation (38).

13. The idea of using the Potts glass for GP was first introduced in ref. [47].

14. A similar approach was employed in ref. [48].

15. This is of course not the only way of coding the problem. One could, for example, interchange the
roles of the labels 1 and a.
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