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A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are back-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e*e™ events with ~ 85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used to siudy the so-called string
effect.

In addition, heavy quarks (b and c) in e*e~ reactions can be identified on the 507 level by
just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and
purity, which is comparable with what is expected from vertex detectors. We also speculate on
how the neural network method can be used to disentangle different hadronization schemes by
compressing the dimensionality of the state space of hadrons.

1. Introduction

During the last couple of years there has been an upsurge in interest for
brain-style computing in terms of artificial neural networks (NN). The origin of this
enthusiasm is the power this new computational paradigm has shown for a wide
variety of real-world feature recognition applications. Not only is the performance
of the NN promising but the entire appreach is very appealing with its adaptive-
ness and robustness. Another attractive feature is the inherent parallelism in
neural networks and the feasibility of making custom made hardware with fast
execution times and thereby facilitating real-time performance.

High-energy physics contain many feature recognition problems, ranging from
low-level trigger conditions in experimental setups, to extraction of theoretically
relevant quantities in collected data. Needless to say, the demand for efficient
feature extraction procedures will become more acute with increasing luminosity
and energy. In a previous paper [1] preliminary results for gluon-quark separation
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in e*e~ reactions using the neural network approach by only considering energy
and momentum information from the leading particles were reported. The present
paper contains, among other things, elaborations and extensions of those results
with respect to the inclusion of secondary quarks, using more than one Monte
Carlo model for generating the events, inclusion of experimental acceptance
effects, and estimates of theoretical limits. The resulting detection efficiency
(~ 85%) exceeds previous state-of-the-art in this field. The approach is also used
to identify heavy quarks with very encouraging results. We are able to distinguish
b-quarks with an efficiency and purity level, which is comparable with what is
expected from vertex detector methods. Also, we pursue the separation of gluons
to hadron-hadron reactions. We feel that our results could serve as examples for
many other applications areas; we are just scratching the tip of an iceberg.

The neural network approach is nothing but functional fitting to data. In feature
recognition situations one wants to construct a mapping F between a set of
observable quantities x, and feature variables y;,

yi=F(x), (1)

by fitting F to a set of M known “training” patterns (x{; y{”), p=1,..., M.
Once the parameters in F are fixed one then uses this parametrization to
interpolate and find the features of “test” patterns not included in the “training”
set. The NN approach consists of a particular choice for F. It is an expansion of

sigmoidal units g(a, T) in a network structure (see fig. 1),
g(a,T) = 3tanh(a/T), (2)

where the “temperature” sets the gain. The adjustment of parameters, or learning,
is done with a gradient descent method, e.g. back-propagation [2].

This paper is organized as follows. In sect. 2 we briefly describe the back-propa-
gation learning algorithm. Its derivation and details on parameter choices etc. can
be found in appendix A. Appendix B contains a brief description of a F77 software
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Fig. 1. A feed-iorward neural network with one layer of hidden units.
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package, JETNET 1.0 [3], that implements the back-propagation learning algo-
rithm for jet identification studies. The MC models used to generate the events
and the jet clustering algorithm are described in sect. 3. Sect. 4 contains the
gluon-quark and heavy quark identification in e *e~ reactions. Gluon-quark identi-
fication for jets originating from hadronic collisions can be found in sect. 5. Using
the gluon-quark separator to study the string effect is treated in sect. 6. A brief
summary and outlook is found in sect. 7.

2. The network learning algorithm

The basic ingredients in a neural network are neurons n; and connectivity
weights o;;. For feature recognition problems like ours the neurons are often
organized in a feed-forward layered architecture (see fig. 1) with input (x,),
hidden (k;) and output (y;) nodes. Each neuron performs a weighted sum of the
incoming signals and thresholds this sum with a sigmoid function g(a,T) [eq. (2)].
For the hidden and output neurons one has

h;=g(a;/T), y,=8(a/T), (3). (4

where the “temperature” T sets the slope of g. The weighted input sums a; and a;
are given by L, w;, x, and X;w;;h;, respectively. The hidden nodes have the task of
correlating and building up an “internal representation” of the patterns to be
learned. Training the network corresponds to changing the weights w;; such that a
given input pattern x‘P) gives rise to an output (feature) value y'” that equals the
desired output or target value ¢, A frequently used procedure for accomplishing
this is the back-propagation learning rule [2], where the least mean square error

function

E=3L L -4y )

is minimized. Changing w;; by gradient descent corresponds to [2] (see ap-
pendix A)

Aw;;= —nd;h; + adwf}® (6)
for the hidden to the output layer, where §; is given by

&=(y;—t)g'(a/T). @)
Correspondingly for the input to the hidden layer one has

Aoy = —n L o;8,8'(a;/T)x, +adoji. (8)
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In egs. (6) and (8) 7 is a learning strength parameter and we have also included
so-called momentum terms adw{ and aAw$’ in order to damp out oscillations.
This procedure is repeated for each pattern p until the network has learned all
patterns to a satisfactory level. As will be discussed in connection with our
applications below, termination is set by performance quality on a set of patterns
that are not included in the learning process. Suitable choices of parameters, 7, a,
T and initial weight range, are discussed in appendix A.

The error function (5) and the corresponding updating rules (6) and (8) are by
no means the only possibilities. In appendix A we discuss two alternatives, entropy
error and Kullback error, where the latter is handy in situations with more than
one output unit. Also, the gradient descent can be modified into a so-called
“Manhattan” updating (see appendix A). There is, of course, also the option of
having more than one layer of hidden nodes. However, it turns out that for most
applications in this paper the plain “vaniila™ version of egs. (5)—(8) is sufficient.

An important question is what NN architecture (number of layers, hidden nodes
and degree of connectivity) to use for a particuiar probiem. Cieariy one shouid use
as few parameters as possible, in order to have powerful generalization properties.
Compare with the situation in curve fitting, where an abundance of parameters
might lead to a non-smooth curve between the data points giving rise to poor
interpolation. A straightforward but costly way to get a rough feeling for the
relevant architecture given a particular class of problems is of course trial-and-error.
However, it would be advantageous to have a more algorithmic method available,
since one could then also analyze how the network captures the different features
of the data set. One such pruning procedure goes as follows [4]: Add to the error

function (5) a complexity term [4], -
E->E+A)Y, ol 9
-+ .
g 1+ ©)

where the sum extends over all weights. For large weights |w;;l, the cost is A,
whereas for small weights it is zero. Hence the network gets pruned to only contain
weights that are really needed to represent the problem. The choice of A requires
some fine-tuning. Typically A is incremented (A — A + ) whenever the error [eq.
(5)] decreases with a very small value on . We stress that this procedure should

only be done in a “research mode” and not when doing the final neural network
learning.

3. The Monte Carlo data

3.1. THE MODELS

The Monte Carlo data used in our analysis were generated with three different
generators: ARIADNE 3.1 [5], HERWIG 3.4 [6] and JETSET 7.2 [7]. All three
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generators are able to give a good description of event shapes, multiplicities, etc. at
LEP energies [8], although they differ substantially in the detailed description of
e.g. heavy quark fragmentation. The main difference is that HERWIG uses a
cluster fragmentation scheme whereas JETSET and ARIADNE uses the Lund
string fragmentation [9] as it is implemented in JETSET. Among other things this
results in softer fragmentation functions for heavy quarks in HERWIG.

The generators also differ in the treatment of the perturbative stage of the jet
evolution. However they all include coherence effects due to soft and colinear
gluon emission, so even if the implementation is quite different (e.g. ARIADNE
uses a colour dipole cascade [10] whereas HERWIG and JETSET uses partonic
cascades [6, 11]) the observable differences are quite small.

All options and parameters in each generator were set to their default values
when the event samples for the neural network analysis were produced.

3.2. CLUSTERING THE DATA

After generating an event, the jets are defined using a clustering algorithm. We
have chosen to use the LUCLUS algorithm contained in JETSET. The method used
in LUCLUS is to form clusters of particles which are close together in phase space,
where closeness is defined as the relative p; of two particles. All particles which
are closer together than a certain cut are in this manner clustered together into a
jet. In most cases in this paper, this cut was set to 2.5 GeV, with an additional
constraint requiring at least three jets. An exception is the “forced three-jet”
events, where the cut was set to infinity requiring exactly three jets.

A quark jet is defined as the jet closest to a quark, with the closeness defined in
the same way as in the clustering. All jets not assigned to a quark are defined as
gluon jets. Note that we also include secondary quarks from the perturbative
splitting of a gluon into a quark—anti-quark pair, and that in the case where both
the quark and the anti-quark ends up in the same jet, this is taken to be a gluon
jet.

We have only used events where the jets are well separated (minimum angle
between two jets is 40°). In addition we have required at least four particles in each
jet and that no jet has less than 5% of the total center-of-mass energy.

In the analysis of the string effect, slightly different cuts were used (see below).

4. e *e “-annihilation

4.1. SEPARATING QUARKS FROM GLUONS

Being able to distinguish whether a jet of hadrons originates from a quark or a
gluon is important from many perspectives. It can shed light on the hadronization
mechanism. For example experimental studies on the so-called string effect [12]
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needs identification of the gluon jet. Also a fairly precise identification of the
gluon jet is required for establishing the existence of the three-gluon coupling in
e*e -annihilation [13, 14]. To date the gluon jet identification has been done by
making various cuts on the kinematic variables. The most straightforward one is to
select the jet with smallest energy as the gluon [12]). This procedure, which is based
on the underlying perturbative QCD matrix element, typically yields ~ 65%
identification rate. More elaborate schemes have been suggested [14-16] with
improved performance ( ~ 70-75%) as a result. Here we will use the back-propa-
gation learning algorithm to do quark-gluon identification. Preliminary encourag-
ing results with this method were reported in ref. [1] using the ARIADNE Monte
Carlo. In this section we give a mcre complete treatment of this problem with
several extensions, among others the inclusion of other different MC models,
allowing for secondary quarks in the MC data, and using entire ¢*e~-events as
input to the network.

Events are generated with all the three models, ARIADNE, JETSET and
HERWIG, at two different energies, 29 and 92 GeV respectively. The clustering
algorithm described in sect. 3 is used to find the jets in each event. The data is
then compiled according to two different options:

(i) Single jets. The data set consists of jets with no correlation to their event
origin. In this case the network sees only one jet at a time and knows nothing
about the total number of jets in the event or their relative spatial orientation.

(ii) Three-jet events. The data set consists of forced (see above) three-jet events.

For each of the different data sets we use two different approaches of presenting
the jets to the network:

(1) L4 input mode: L4 uses as inputs the four-momenta (p,, E,) of the four
leading particles in the jet (k=1,...,4). In this way we do not reveal too much
about the structure of the low-momentum part of the jets. Hence e.g. the string
effect might be studied in a fairly model-independent way.

(2) JL1 input mode: JL1 uses as inputs the total energy and momentum of the jet
together with the four-momentum of its leading particle. The model dependency is
thus reduced when studying details of the jet structure, such as asymmetries.

Each data set is divided into two parts; one that is used for training the network
(training set) and one that is used for testing the ability of the network to classify
the jets (est set). We thus make sure that the network is tested on patterns which
it has never seen before and that we really measure its ability to generalize.

We next discuss the details of the learning for single jets and three-jet events
separately.

4.1.1. Single jets learning. The relative sizes of all training and test sets are 2: 1.
For both the training and testing phases, patterns are picked at random from the
respective set in such a way that the network is presented with equal amounts of
gluon jets and quark jets. In the L4 input mode the network consists of 16 linear
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input units, 10 hidden neurons and 1 output neuron. In the JL1 case there are 6
linear input units, 6 hidden neurons and 1 output neuron. The network perfor-
mance is not very sensitive to the number of hidden units (see discussion below).
The output unit is used to code the jet identity; 1 for gluon and 0 for quark. We
use strict middle-point success condition; if the output is > 0.5 the jet is inter-
preted as a gluon jet and if the output is < 0.5 the jet is interpreted as a quark jet.

The weights in the network are initialized at random with values in the range
[-0.1,0.1}. For every pattern Aw;; and Aw;, are computed [egs. (6) and (8)] and
recorded. Actual updating takes place with these numbers summed over 10
patterns. The parameters used are a =0.5, T=1 and n = 0.01. The performance
is remarkably insensitive to these choices, although a too high learning rate 5 leads
to the network not being able to learn at all (see appendix A).

In fig. 2 a typical learning curve is shown. As can be seen the network to a good
approximation learns to recognize the feature even before it has seen the entire
learning set once (one “epoch™). In table 1 the performance for different models,
energy and input options are displayed. The results are impressive*. For complete-
ness we have also included the case when heavy quarks (c and b) are not present;
using this reduced set only marginally improves the performance.

In order to check the model independence of our approach we have also made
“mixed” runs, where we train on one MC model and test on another (see table 2).
As can be seen the approach is indeed very model independent.

Two important questions need to be answered. How well can the network in
principle perform given a certain data set? What characteristics in (or correlations)
the data does the network utilize?

The Bayesian limit. The upper limit of performance is set by the Bayesian limit
(see e.g. ref. [17]), which is given by the minimal overlap between the two
multidimensionai disiributions. An estimate of this limit can be obtained numeri-
cally within realistic CPU consumption by reducing the accuracy of the kinematical
variables and using the total energy and momentum of the jet. By dividing the
kinematical ranges into 100 X 100 bins the integration yielded the results shown in
table 3. As can be seen from table 3 the neurai network prediction is just a few %
below the theoretical limit. We feel confident that with proper adjustments and
parameter fine-tuning of the learning algorithm the theoretical limit can be
reached. We have tried using a “Manhattan” [18] updating algorithm (see ap-
pendix A) when training the network since it has been shown to work better on
inconsistent data sets, but we found no improvement.

Correlations used by the network. 1t is clear from the sharp rise of the learning
curve in fig. 2, that some distinguishing properties of the data are obvious and

* The numbers reported here are slightly lower than those in ref. [1], since we here also allow for the
possibility of secondary quarks.
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TABLE 1

683

Percentage correct classifications (averaged over quarks and gluons) of jets for different models,
energies, input and flavour options (see text)

Model Vs Input mode udsch uds
ARIADNE 29 GeV JL1 83% (87/81) 85% (87/83)
L4 84% (85/83) 85% (90/81)
92 GeV JL1 84% (92/78) 85% (89/83)
L4 85% (89/82) 85% (91/80)
JETSET 29 GeV JL1 82% (89/79) 84% (86/82)
L4 84% (79,/86) 84% (86/81)
92 GeV JL1 84% (90 /80) 85% (89/80)
L4 84% (85/83) 84% (90/79)
HERWIG 29 GeV JL1 84% (73 /90) 82% (76 /88)
L4 83% (83/83) 84% (86/83)
92 GeV JL1 87% (93 /82) 88% (94 /81)
L4 86% (92/82) 88% (94/81)

The numbers within parentheses denote how the success rate splits up into quarks and gluons,
respectively. The errors are about 1% for the overall classification numbers.

TABLE 2
Percentage correct classifications for 92 GeV jets for “mixed” runs

ARIADNE JETSET HERWIG
ARIADNE 85 8 86
JETSET 84 86 87
HERWIG 83 85 87

Rows indicate training set and columns test set. The values are for L4 representation and both heavy
and light quarks.

TaBLE 3
Comparison of neural network prediction with the theoretical limit

ARIADNE JETSET HERWIG

Theoretical limit 87 88 89
Neural network 85 86 87
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Fig. 3. Distribution of quark and gluon events in the E;..~p;c-plane. The curve (approximate line)
corresponds to the network solution of the problem.



L. Lonnblad et al. / Neural nets and jets 685

immediately picked up by the network. This striking property is the fact that the
gluon jets often have smaller energy as predicted by the leading-order QCD matrix
element and has been utilized in ref. [12]. But the network is more subtle than just
making an energy cut. The way the network solves the problem is very transparent
if we look at the solution when the network is fed with a reduced two-dimensional
input, E,, and p,,. The performance then drops to 80% corresponding to the
sharp rise in fig. 2a. In figs. 3a,b we show the distributions of quark and gluon jets
in the E.-p,-plane. From fig. 3 we see that there is a non-negligible region
where the two distributions are not trivially separable with e.g. a cut. The network
does its best by producing the separating curve. This solution is responsible for the
sharp rise.

What determines the remaining few %? In order to answer that question we
apply the pruning method of eq. (9), starting with a generous architecture [O(10)
hidden units] in the L4 representation. Careful tuning of A in eq. (9) puts most
weights to zero. What remains are those weights connecting Py P, and energy of
the hadrons io ihe hidden layer and iwo of the hidden nodes to the output iayer.
The overall performance is very little affected by this procedure. This shows that
the network needs at most two hidden units to achieve its goal. Representing the
line in the E;.~p;.-plane (fig. 3) needs no hidden units at all!

4.1.2. Three-jet event learning. The analysis above was based on single jets
processed through the network. In an experimental situation it is more natural to
consider an entire event. The question then arises how to feed an arbitrary event
into the network. Since the network needs a fixed number of input units we
confine ourselves to samples with a fixed number of jets. We have chosen forced
three-jet events (see subsect. 3.2). An architecture of 3 X 16 input, 10 hidden and 3
output units is used (L4 representation), where the output units represent whether
jet number 1, number 2 or number 3 is the gluon. In other words, syntactically
correct answers are (100), (010) or (001). These are used for training as target
values. For testing purposes we adopt a winner-takes-all interpretation in the sense
that the output neuron with largest value is taken to be the gluon. A more compact
treatment of three-feature outputs can be achieved with the so-called Potts
representation (see appendix A). These are multi-valued neurons with solutions
(100), (010) or (001). In this case we stick to the winner-takes-all representation for
simplicity since no improvements were obtained with the Potts representation. The
situation is different in the string effect analysis (see sect. 5). The learning rate was
n = 0.001, whereas other parameters, a, T and updating procedures were the same
as in the single jet case above. The relative training set-test set size used is again
2:1. All identifications were made with the ARIADNE generator. In addition to
present the jets in “raw” form to the network, two modifications were tried. One
was to rotate the momenta onto a plane and the other to supplement the
momentum information with two input units representing relative angles between
the jets expressed in radians. As can be seen from table 4 the results are
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TABLE 4
Percent correct classifications of three-jet events. The network was trained to find which one of
three jets is the gluon jet

Input structure Performance
“raw’ data 85%
rotated data 85%
“raw” data + 2 angles 85%

independent of these optional choices. This is not too surprising since all the
information is already present in the “raw’” mode.

It is very satisfying that the neural classifier is able to separate gluons from
quarks in an event environment as well as when presented in the single jet mode.

All exercises so far have taken place in an ideal world with no acceptance
iimitations, aii particies deiccied, eic. In order to partly emulaic an experimentai
situation we have chopped the precision of ingoing momenta and energies to +0.5
GeV. The corresponding performance of the network only degrades by 1%. A
check on how our approach might work under real experimental conditions has
been done, where the MC models have been processed through the DELPHI
detector simulator [19]. We find only a modest degradation in performance
(~ 3%), which is very encouraging.

4.2. IDENTIFYING HEAVY QUARKS

Identifying heavy quarks from light quarks is another important pattern recogni-
tion task. We will pursue here the possibility of detecting heavy quarks by
considering hadron distributions only, as in the gluon-quark separation case above.
We use two different ways to study the problem; one where the network is taught
to classify the (single) jets into three different classes—gluon, light quark and heavy
quark-and one where the network only distinguishes between a heavy quark jet
and any other jet.

In tagging processes it is not only the efficiency (success rate) which is important
but also the purity of the tagged sample. We have therefore in both cases
compared the efficiency of the network trigger with the purity of the classified
sample.

4.2.1. Gluon /light quark / heavy quark classification. We present single L4 jets
to the network. The network architecture is 16 input units, 10 hidden neurons and
3 output neurons. The output neurons code the three classes gluon (100), light
quark (010) and heavy quark (001). By “light quark” we mean u, d or s. When

testing the network we use a “winner-takes-all” criterion for the output neurons
(see sect. 3).
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TABLE 5
Efficiency for different MC generators for three output neurons

Model Vs Gluons Light quarks Heavy quarks
ARIADNE 29 GeV 82% (10%) 54% (59%) 45% (48%)
92 GeV 85% (75%) 54% (80%) 50% (35%)
JETSET 29 GeV 84% (69%) 54% (61%) 41% (44%)
92 GeV 85% (80%) 50% (72%) 54% (38%)
HERWIG 29 GeV 85% (67%) 55% (55%) 44% (46%)
92 GeV 87% (81%) 55% (76%) 56% (42%)

The numbers within brackets are the purities of the samples.

In table 5 the efficiencies (and purities of the resulting samples) for the different
MC models are shown. The results do not differ much between the models,
although some characteristics can be extracted; ARIADNE seems to produce the
“cleanest” light quark sample while HERWIG has the highest combination of
efficiency and purity for heavy quarks at 92 GeV. These are really specific
signatures of the individual MC generators as will be discussed in more detail in
subsect. 4.2.2. To check the MC independence for the training of the network we
have trained the network on a data set generated by one MC model and then
tested on a data set generated by another model. The results for networks trained
on different data sets at 92 GeV and then tested on a data set generated by
JETSET at 92 GeV are found in table 6. The success rates do not differ much,
indicating that the training is rather insensitive to which MC model that is used.
On the other hand, the different purity values imply that, although the available
four-momentum space region for the jets is the same for the different models, the
distribution of these jets in four-momentum space is somewhat different from
model to model.

4.2.2. b-quark / others classification. A commonly used signature for a b- or a
c-quark jet is the presence of a fast lepton. Branching ratios are 0(10%), so many
events are lost. On the other hand, the purity levels are high. A more ambitious

TABLE 6
Efficiencies for testing on a data set generated by JETSET at 92 GeV for networks trained on
data sets generated by the three different MC generators

Training set Gluons Light quarks Heavy quarks
ARIADNE 85% (82%) 53% (72%) 51% (43%)
JETSET 85% (80%) 50% (72%) 54% (38%)
HERWIG 84% (79%) 49% (66%) 47% (34%)

The numbers within brackets are the purities of the resulting samples.
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(and expensive) approach is to use a vertex detector to find the secondary vertex.
With such a device one expects about 25% tagging efficiency for heavy quarks
(c + b) with 20% background from light quarks [20]). Since there are roughly as
many c- as b-quarks at 92 GeV e*e™ reactions, the background for identifying a
b-jet with this method is actually 60%.

Ideally one would prefer two-jet events only so that no additional confusion is
added by the presence of gluon jets, since these are often broader like the heavy
quark jets. However, at 92 GeV there are very few clean two-jet events so we have
chosen to only consider the jet with the largest energy from every multijet event as
input to the network. In this way we reduce the gluon background and improve the
results considerably. As input variables we use the total jet energy and momentum
along with the energy and direction for the 6 leading particles in the jet, giving a
total of 20 input units, corresponding to a calorimeter with infinitely high angular
resolution. The binary answer is represented by a single output neuron (b-jet = 1,
non-b-jet = 0). The number of hidden nodes is 10.

In fig. 4 we show output value distributions for b-jets and non-b-jets. As can be
seen from fig. 4 it is not clear that a decision threshold value 6, = 0.5 as used in
the quark-gluon single jet studies above gives an optimal mixture of efficiency and
purity. In fig. 5 we give efficiency vs. purity plots resulting from neural network
learning of data generated at 92 GeV with ARIADNE and HERWIG MC as
described above. The figure for JETSET looks much the same as for ARIADNE
and is not included.

As can be seen from figs. 5a,b the expected result of a neural b-quark trigger
depends on which MC generator is used. The HERWIG MC is generally more
optimistic, suggesting the possibility of detecting b-quarks with purity-efficiency
levels higher than in the vertex detector (assuming no b-c separation is made). The
JETSET and ARIADNE MC are more modest, indicating purity—efficiency levels
comparable with the vertex detector. A direct comparison between fig. 4a and fig.
4b shows that this is really a signature for the different models. The HERWIG
b-quark jets are more “typical” than the ARIADNE (and JETSET) jets. Note
however that the purity-efficiency results are independent of the model used for
the training. We see here a possibility to distinguish between different MC models!

In order to more directly compare the neural network with the vertex detector,
we have trained the network to classify heavy quarks (c + b) and other jets. The
results for the different MC models are compatible with the vertex detector, with
JETSET and ARIADNE slightly below. We find the results to be very impressive!

One could of course also imagine powerful combinations of vertex and neural
triggers where the vertex selects (c + b) and then the NN separates b from c. Also
a neural network model could be employed to select b-quarks decaying semi-
leptonically as demonstrated in ref. [21] using calorimeter sign ls.

An interesting question is to what extent the identified b-quark jets contain
p-mesons. We found that the muon content in the whole b-jet sample is about
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11-13%, which remains constant for the enhanced samples. This shows that the
network has not learned to recognize muonic decay but has found some other
signature of the b-quark jets. In other words, the NN method supplements leptonic
triggering. This also means that leptonic triggering can be used to calibrate the NN
trigger in experiments.

All the results for b-quark tagging reported so far has been done in the single
jets mode. Similar runs could of course be done for three-jet events.

If the objective of b-tagging is to measure bb mixing then one needs to know the
charge of the b(b) jets. Without leptonic information this can be done fairly
reliably by considering various weighted charge measures [22], i.e.

4
Q.= Lz°Q;, (10)

where i runs over the L4 set and z = E,/E,,,.

5. Large-p, production

In hadron-hadron collisions the situation is different due to the lack of knowl-
edge of the event structure. The gluon jet is not very likely to have least energy as
in the e*e™ case. Consequently we expect a smaller identification rate. Also the
experimental setup is normally different from e*e™ experiments. An event is
recorded as a calorimeter signal and not as reconstructed energy—momentum
pairs. For that reason we will feed our network with transverse energies only. A
square of cells are defined around a jet according to two different options: (i) 4 X 4
cells around the energy c.m.s. of the jet; (ii) 7 X 7 cells centered around the
calorimeter cell with the largest energy (the “tower”). In both cases the network
performance never exceeds 70% in performance.

We have here tried using selective input fields for the hidden units (allowing one
hidden unit to see only the central calorimeter cell and another to see only the
closest surrounding cells etc.), hoping that this would make it easier for the
network to see an energy profile for the jet, but we have found no improvement in
network performance for these architectures. Nevertheless, we have included
selective fields as an option in JETNET 1.0.

6. The string effect revisited

Using the NN approach to identify gluon jets when measuring the string effect
[12,23] is potentially very dangerous. It is very likely that the network has already
used the string effect when learning to recognize the gluon, in which case the
measurements will be very model dependent. In the following analysis we have
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Fig. 6. The sectors in the plane of a three-jet event used for the measurements of the string effect.

tried to teach the network as little as possible about the string effect and in
particular show it nothing about the regions where we perform the measurements
in an event.

We have chosen to take as a measure of the string effect the ratio r = (n,)/{n,),
where {(n,) and {n,) are the multiplicities in the sectors between the quark and
the gluon jet, and the quark and the anti-quark jet, respectively, as defined in fig.
6. The event sample was generated using “forced three-jet” clustering, requiring a
minimum angle 8, of 80° between the jeis, more than 10% of the total c.m.
energy in the smallest jet and at least four particles in each jet.

An architecture with 48 input nodes, 12 hidden and 3 output nodes was used.
The input was the energy and direction (encoded as E,E,, E , E,) of the four
fastest particles in each jet, and we trained the network to give the output (00 1),
(010) or (100), where (00 1) corresponds to the gluon jet being the least energetic
one etc. To be sure that we do not give the network any information about what
we later intend to measure, we only used particles which lay inside a cone of
opening angle 0.3 6,,;, around each jet (see fig. 6). If there are only three particles
in this cone, the nodes corresponding to the fourth particle are set to zero and
SO on.

Since we do not give the network as much information as in subsect. 4.1, the
performance of the network is much lower. In this case it turns out that the
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TABLE 7
Results for the r = {n,)/{n,) measured on a sample of 10000 MC events (ARIADNE) for
different methods of identifying the gluon jet; using the true gluon jet of the MC, the NN
approach and the “smallest jet” approach

MC truth Neural network Smallest jet
Success rate 100% 74% 67%
r={n,)/{ny) 2.16 +0.03 2.00 +0.02 1.60 + 0.02
r(my,y>mg) 3.0+0.1 2.7+0.1 1.9+0.1

performance can be increased slightly if we use Potts neurons (see appendix A). It
seems that the associated asymmetric error measure makes it easier for the
network to correctly classify events where the gluon jet is the most energetic one.
Using the ‘“winner-takes-all” approach of subsect. 4.1 the network chooses to
disregard these events since there are so few of them (= 15%).

We used 10000 training patterns and 100 training epochs (n = 0.001, a = 0.5,
T = 1), which yielded a fraction of correctly classified events of 74%. This should
be compared with the method of assuming that the least energetic jet is the gluon
one, which gives 67%. This does not seem to be much of an improvement, but it
does make a big difference in the measurements.

The results for the measurement of r, using MC data generated by ARIADNE,
are presented in table 7. The difference between the NN approach and the
“smallest jet” approach in measuring r is much larger than what is expected from
the difference in gluon tagging performance. This indicates that the network still
uses the little information it gets about the string effect when identifying the gluon,
and hence generally prefers to make the identification in a manner that increases
the string effect. But even if the NN approach in this way is not a very “objective”
way of studying the string effect, we still feel that it may be an important way of
studying the consistency of the model used to compare with data.

In table 7 we also present results for the ratio r when looking only at K-mesons
(and heavier hadrons). In ref. [12] it was shown that the string effect is strongly
dependent on the particle masses, hence the ratio r is larger for heavy particles
than for lighter. At 29 GeV where the string effect is dominated by the hadroniza-
tion process, this is easily explained within the Lund model [9] simply by looking at
the Lorentz boost back to the c.m. of the event after the string has been
fragmented in its c.m. At higher energies this effect is reduced as the string effect
becomes more dominated by the perturbative phase of the jet evolution [24]. A
recent study [25] indicates that this becomes important already at 92 GeV.

Since the network has not been shown the masses of the particles, one should be
able to use it in a fairly model-independent way when measuring this dependence
of the string effect on the masses.
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7. Summary and outlook

We have used a simple neural network learning algorithm to parametrize
various jet features in terms of energy and momentum of the leading particles in
the jet. Our results can be summarized as follows:

(i) Gluons can be separated from quarks in e e~ reactions at an 85% level in a
Monte Carlo independent way. Only modest degradation is obtained when pro-
cessing the data through a detector simulator (provided the detector is of high
quality).

(ii) The corresponding numbers are lower for hadron induced large-p; jets
(~ 70%).

(iii) b-quarks can be separated from other quarks and gluons at a purity—
efficiency level comparable with what is expected from a vertex detector.

These results were obtained with the simplest possible feed-forward network
using the back-propagation learning rule. Very little parameter fine-tuning was
needed. (In appendices A and B we have neveriheless included more claborate
options as potential tools for studies of other and more difficult problems in the
future.) What determines the success of the approach is the information contained
in the observed hadron kinematics. Indeed, when computing the Bayesian limit we
find that the network almost hits this information theoretical limit.

It is remarkable that we are able to tag b-quarks on such a high level of
efficiency and purity with no leptonic triggers. It seems that a general purpose
detector with reasonable neutral detection capability is what is needed.

We have used the NN algorithms to separate different features. Another
possible use of NN emerged from the varying 6, in connection with b-quark
separation. The NN compresses a multidimensional description of a MC data,
which is difficult to analyze, into a compact encoding of a few feature variables
(one in the b-quark case). It might be easier to understand the data produced in
different MC models in this way. This is very different from looking at integrated
distributions, where information has been averaged away.

We also used the method to study the string effect. The results here are less
“clean” in the sense that the neural network has picked up some of the effect
already in the learning phase. However, the approach in this case could be very
useful for verifying model consistency.

The NN approach is in general very noise- and damage-resistant. Hence it is
suitable for high-energy experiments, where various parts of a detector might
malfunction. Also with its inherent concurrency and simple structure fast execution
custom-made hardware could be a real asset for on-line triggering.

Needless to say, the success rate of the NN method will vary with different
detectors. Much detailed work with various detectors needs to be done.

One should mention that neural networks have also shown great promise for
solving difficult optimization problems [26,27]. Also in this application area the
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NN approach could be fruitful for high-energy physics in real-time track finding
[28,29].

We have benefitted from discussions with O. Barring, T. Sjostrand and P.M.
Zerwas.

Note added in proof

After the acceptance of this paper it was brought to our attention that our
comparison with the results of ref. [14] on quark—gluon separation was not
appropriate. The result of 70-75% in ref. [14] applies to quark and gluon jets of
the same energy, whereas the neural network approach described in this paper is
applied to jets of different energies, and to a large extent uses the energy
difference between the quark and gluon jets in the separation.

A preliminary comparison between the two methods on more similar jet samples
shows that the approach of ref. [14] performs better than our neurali neiwork
method. This difference is very likely due to the fact that the approach of ref. [14]
uses information of the entire jet in contrast to this paper where only the four
leading particles are used.

We would like to thank Z. Fodor for bringing this to our attention.

Our results for heavy quark identification has not been subject to a similar
comparison with other approaches.

Appendix A

A.1. ERROR MEASURES

In this appendix we derive the back-propagation learning rule for three different
cases, the summed square error measure of eq. (5), an entropy error measure and
the asymmetric error (Kullback) measure for the Potts representation. Very little
in this appendix is original; it is included for completeness.

Summed square error. This is the case described in sect. 2 and used throughout
most of the paper. We limit ourselves to the case of one hidden layer. The notation
follows fig. 1. Gradient descent with respect to ;; and wj, for each pattern p
corresponds to

oE JF

= —py— Aw;, = — . Al),(A2
Awu n 3w,~,- ’ w,k n awjk ( ) ( )
The chain rule for the partial derivatives with respect to E gives
oE dF dy; da,
=_-_}.).'.._.._' =8|g'(al/T)hl’ (A.3)

aw,.,.
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where §; is given in eq. (7),

dE 0dy; da; oh; da;

oE
= —— — —— — 6 . 'a. Tx . A.4

Egs. (A.3) and (A.4) trivially generalize to architectures with more than one hidden
layer; the &’s are just back-propagated further down according to equations
identical to (8).

Entropy error. An alternative error measure to eq. (5) is the log-likelihood or
entropy measure [30]

= - L X [t”logy;+ (1 - 1{")log(1 - y))] . (A5)

P t

For dE /dw;; one then gets for each pattern p

. 8:h;, (A.6)

with
8;=yi—t. (A7)

The only difference is the absence of g'(a;/T) in eq. (A.7). For the updating of the
input to hidden layer the expression is of course identical to the summed square
error case [egs. (A.4) and (A.8)].

Potts neurons—asymmetric error. As discussed in connection with three-jet
events and heavy flavour tagging, when the output consists of more than two
exclusive alternatives there are two options at our disposal. One is to use 3 normal
binary neurons together with a “winner-takes-all” interpretation in the testing
phase. The other option is to use one multi-state output neuron y corresponding
to a Potts spin in physics. The sigmoid updating rule of eq. (2) is then replaced by

ea,/T

y,=y(a,,a,,...,a,,T) (A.8)

=Yoo/t

satisfying

n
Zy,- =1. (A.9)

A suitable error function for this representation is the Kullback measure [31]

E = z Zt}p) log —y— . (A.10)
p i i

t[(l’)
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For dE /dw;; one gets for each pattern p

oE 1 dy,
= - t,— —— . .
S, ; o h; (A.11)
which with
Ay,
"‘E =0 Vi — YiVi (A.12)
together with X, ¢, = 1 gives
ok 8.h
e = Oih; (A.13)

as in the entropy error case above. Again, the input to the hidden layer updatings
are unaffected and identical to cgs. (A.4) and (A.8).

A.2. PARAMETERS AND OPTIONS

The training of the network is quite insensitive to the choice of learning
parameters. The parameters we have used to achieve the results described in this
article are given below.

Learning rate. ldeally, the learning rate should decrease as learning proceeds.
We have used a fixed learning rate in the range 7 =[0.01,0.001]. A too high
learning rate results in the network not being able to learn.

Momentum term. We have used a = 0.5. The network is very insensitive to this
choice. The momentum term is used for damping out oscillations and can be
increased with learning epochs.

Temperature. The temperature has throughout all applications been 7= 1.0. A
too low temperature obstructs the network from learning, since g'(a;/T) becomes
too narrow. One would expect that a high temperature should be used in the
beginning of learning and then lowered as learning proceeds. We found no
increase in the network performance if we allowed the temperature to vary in this
way.

Initial weights. The weights are initiated at random in the range [—0.1,0.1].
This is important, since a too “wide” initiation is unfavourable for the network
when the input signals are very different in magnitude (as they are in our
applications). It is preferable to start at low weight value and work up those
weights that are supposed to be large instead of starting at high values and
decrease the other weights, since the updating step increases with the size of the
inputs.

Updating frequency. Ideally, each step in weight space reflects the influence of
the entire training set. In most cases positive and negative contributions result in
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moderately sized weight changes, but in instances with a large number of weights
and training passes, some contributions might fail to balance out resulting in
inappropriately large changes for some of the weights. It is then advisable to have
more than one training pass between the updates. In all our applications we have
chosen this updating frequency to be 10 patterns/update.

Manhattan updating. In cases where there are many patterns/update it might
be beneficial to replace the standard gradient descent with ‘“Manhattan” up-
dating [18]

oF
Aw;j= —n sign[ ] (A.14)
dw;;

In this case the learning is bounded and it is easier to find an appropriate value for
7, which should decrease with increasing learning. In all applications dealt with in
this paper there was no need for this alternative procedure. In most cases, when
training, one should present equal amounts of patterns from the classes one wants
the network to distinguish between. This is because the back-propagation strives to
minimize the total error. If there is an excess of one type of patterns, the network
will concentrate on them, leading to a poorer result for the other classes. After
training it is possible to shift the cut between the classes by manipulating the
output threshold 6,,,, as we have done in the case with b-quark jets.

Number of hidden layers. We have tried using two hidden layers for the
quark-gluon separation. No improvement of performance was found.

In theory, any pattern classification task is realizable with at most two hidden
layers [32]. This is because any reasonable function can be represented by a
superposition of gaussian-like “bumps” (similar to Fourier analysis). Combining
two sigmoids, by using two hidden layers, produces such bumps. This does not
mean that two hidden layers necessarily is the optimal for every classification
problem. More than two hiddcn layers may well lead to a solution with fewer units

in all, or speed up learning. The option of several hidden layers is included in
JETNET 1.0 [3].

Appendix B

All analysis in this paper were performed using the FORTRAN 77 subroutine
package JETNET 1.0 developed by the authors. It implements all features de-
scribed in appendix A. It is available on request via BITNET. The package
includes a manual and examples of programs using JETNET. For completeness we
here include a brief description of its user interface.

The user interface basically consists of two common blocks and seven subrou-
tines. All passing of variables to and from the program is handled through the
common blocks /JNDAT1/ and /JNDAT2 / and all actions the program takes are
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invoked by calling the subroutines JNINIT, JNTRAL, JNTEST, JNDUMP,
JNREAD, JNSEFI,and JNSTAT.

The program works as follows: First the network is defined by setting the
switches in common block /JNDAT1/ and calling the subroutine JNINIT. Then,
to train the net, simply put the input pattern in the vector 0IN and the desired
output pattern in the vector OUT in common block /JNDAT1/ and call the
subroutine JNTRAL. After training, the network is tested by again placing an input
pattern in the vector 0IN and calling JNTEST. The network then uses the weights
obtained in the training to produce an output pattern which is stored in the vector
OuT.

B.l. THE COMMON BLOCKS
COMMON/ JNDAT1/MSTJN(C20), PARJN(20), OINC100), 0OUT(C100)
/JNDAT1 / is the main common block used to communicate with JETNET:

MSTJN is a vector of switches uscd to dcfine the network to be used:
MSTJINC1) (D = 3) number of layers in the net

MSTJN(2) (D = 10) number of patterns per update in JNTRAL
MSTJNC3) (D = 1) overall sigmoid function used in the net

1 -g(x)=1/[1+ exp(—2x)]

2 - g(x)=tanh x

3 — g(x) = exp x (only used internally for Potts nodes)
4->g(x)=x

MSTJN(4) (D =0) error measure

0 — summed square error

1 — entropy error

> 2 - Kullback error with Potts nodes of dimension MSTJN (4)
MSTJN(5) (D =0) “Manhattan” updating

0 — off

1-o0n

MSTJINC6) (D = 6) file number for output statistics

MSTJN(7) (1) number of calls to JNTRAL

MSTJN(8) (I) initialization done

MSTJN(9) not used

MSTJNC10+ 1) number of nodes in layer I (I =0 — input layer)
MSTJIN(10) (D =16)

MSTJIN(11) (D=28)

MSTJINC12) (D=1)

MSTJINC(13-20) (D=0)

Switches 2, 5 and 6 can be changed at any time by the user, the others are only
activc before the network is initialized with subroutine JNINIT.
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PARJN is a vector of parameters determining the performance of the net:
PARJN (1) (D = 0.01) learning parameter n (“learning rate”)

PARJN(2) (D = 0.5) momentum term «

PARJIN (3) (D = 1.0) overall inverse network temperature 8 =1/T
PARJN(4) (D =0.1) width of initial weights

PARJN(5) (D = —1.0) pruning parameter A (<0 — pruning is turned off)
PARJN(6-20) not used

All parameters can be changed at any time by the user.
01N is the vector used to pass the values of the input nodes to the program.

OUT is a vector used both to pass the desired value of the output nodes to the
program during training with JNTRAL and to pass the values of the output nodes

produced by the program given an input pattern in 0IN (routines JNTEST and
JNTRAL).

COMMON/ JNDAT2/TINV(10), IGFN(10)
The common block /JNDAT2/ is intended for the “advanced” user:

TINV(I) (D =0.0) if greater than 0, this value is used for the inverse tempera-
ture in the sigmoid function for layer I, otherwise the overall temperature
PARJN(3) is used. These parameters can be changed at any time by the user.

IGFNCI) (D = 0) if greater than 0, this switch determines the sigmoid function
to be used in layer 7, otherwise the overall function determined by MSTJN(3) is
used. These switches are only active before the network is initialized with subrou-
tine JNINIT.

B.2. THE SUBROUTINES

SUBROUTINE JNINIT
Initializes the network according to the switches set in /JNDAT1/ and /JNDAT2/

and gives random start values to the weights and thresholds according to
PARJN(4),

SUBROUTINE JNTRAL
Takes the pattern stored in the vector 0IN and uses the current values of the
weights in the network to produce an output pattern. This is compared with the
given pattern in the vector OUT to produce a value of the error function from
which the change of the weights is determined. The produced output pattern is
stored in the vector OUT.

The actual updating of the weights is performed every MSTJN(2) call to
JNTRAL.
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SUBROUTINE JNTEST
Takes the pattern stored in the vector 0IN and uses the current values of the

weights in the network to produce an output pattern which is stored in the vector
OUT.

SUBROUTINE JNDUMP (NF)
Writes all relevant information of a network to the file ABS (NF). If NF is negative
the output is unformatted, otherwise it is formatted. The user must make sure that
the corresponding file is opened with write access accordingly.

SUBROUTINE JNREAD(NF)
Reads the information from the file ABS (NF) produced by NJDUMP and initializes
the network described there. All switches and parameters in common blocks
/IJNDAT1/ and /JNDAT2/ set prior to a call to JNREAD are lost. The comments
about the file number for JNDUMP applies also here.

SUBROUTINE JNSEFI{IL, I1, 12, J1, 42, NO?
Enables (NO = 1) or disables (NO = 0) the weight between nodes 11 to 12 in layer
IL and nodes J, to J, in layer IL-1. When a weight is disabled it is set to 0 and
is prevented from being updated by calls to JNTRAL. When a weight is enabled it
is given a random value according to PARJN(4). This choice of enabling/dis-
abling is used for selective input fields (see sect. 5).

SUBROUTINE JUNSTAT(IS)
Writes out information about the network on file number MSTJN(6). IS =1 gives
a header and number of nodes in each layer (done automatically when the network
is initialized). 1S =2 gives the switches and parameters used in common block
/JNDAT1/ and /JNDAT2/.
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