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Introduction

When analyzing experimental dataitis standard procedure
to make various cuts in observed kinematical variables in
order to single out desired features. A specific choice of cuts
corresponds to a particular set of feature functions 0,= F'(x,)
intermsof thekinematical variablesx,. This procedureis often
not very systematic and quite tedious. Ideally one would like
to have an automated optimal choice of the functions F.This
is exactly what feature recognition artificial neural networks
(ANN) aim at. For feed-forward ANN the following form of
Fis often chosen

F(x,)= g[? W,»jg(‘k; w ,kxk)] (1)

where w,; and w), are the parameters to be fitted to the distri-
butions and

g(x)=0.5[1 + tanh(x)] 2

Eq. 1 cormresponds to the feed-forward architecture of
Figure 1. The bottom layer (input) corresponds to the mea-
suredkinematical variables x, and the top layer o the features
0, The mission of the so-called hidden layer is to build up an
internal representation of the observed data. Eq. 1 and
Figure 1 are easily generalized tomore than one hidden layer.
Eachunit or neuron has the threshold behaviour givenby g(x).
Fitting to a given data set (or learning) takes place with
gradient descent on, for example, a summed square error

E=23(0-t) e
W Yi
h;
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Figure 1. A one hidden layer feed-forward neural network
architecture.
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with respect to the weights W, and Wi where t,are the desired
feature values. In this process, which is called back-
propagation(BP)(1),thetraining patternsare presentedover
and over again with successive adjustments of the weights.
Once this iterative learning has reached an acceptable level in
terms of a low error E the weights are frozen and the ANN is
ready 1o be used on patterns it has never seen before. The
capability of the network 1o correctly characterize these test
patterns is called generalization performance.

This back-propagation procedure assumes the knowledge
about what features (o) are relevant from the outset and
separates the data accordingly. There is also an alternative
approach, sel f-organization, where the network organizesthe
data into features without any external teacher (no output
units) (2). The underlying architecture consists of an input
layer (x,) and a layer of feature nodes denoted hj (sce
Figure 2), where

hj= g(% wjkxk) = g(v—vji) (4)

Forall patterns presented the weights are updated suchthat
the angles between W ;and * are minimized. Also, topologi-
cal ordering between the feature nodes /; are introduced with
a“mexican-hat” potential, such that neighbouring nodesina
plane react to similar features. Suchasystem has no “teacher”
like the feed-forward BP network above where answers are
compared with correct values £, The results in this approach
are extremely easy to analyze; the weight vectors vaj. for the
different feature nodes point in the direction of typical datain
X -space.

The ANN approach has turned out tobe very profitable for
a wide range of pattern recognition problems ranging from
identification of handwritten numerals (3), transformation of
wrilten text to speech (4) to quark identification in particle
physics (5,6,7,8). The latter domain of applications is the
focus of this paper. Most applications described here aredone
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Figure 2. A one-layer self-organizing network. Lateral interactions

between the feature nodes correspond to the “mexican-hat”
potential.
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with the BP algorithm since it seems to give the best
performance in terms of classification percentages.

Identifying the Origin of Hadronic Jet
Background

In high energy lepton-lepton, lepton-hadron, hadron-
hadron andnucleus-nucleus collisions, quarks and gluons are
produced. These basic quanta of Quantum Chomodynamics
(QCD)cannever be observed due to the confinement mecha-
nism. They fragment into jets of hadrons, which are observed
in the Iaboratory. Currently, this fragmentation process can
not be calculated from first principles, but theoretically
plausible Monte Carlo Markov models (9,10,11) have been
developed that reproduce the data extremely well. The main
problem here is given a pattern of hadrons in terms of their
kinematical variables, unfold their origin by quark species or
gluonidentity. In e*e” reactions, the kinematical information
is typically given in terms of energy and momenta, whereas
in hadron-induced reactions calorimeter detectors pick up
transverse energy deposits (E,) in different cells. The cell
positions are given by azimuth angle ¢ and pseudorapidity 1
(the latter is to a good approximation the velocity of the
produced hadrons in the beam direction).

Quark-gluon separation

Being able to distinguish whether a jet of hadrons origi-
nates from a quark or a gluon is important from many
perspectives. Itcan shed light on the hadronization mechanism.
For example, experimental studies of the so-called string
effect require identification of the gluon jet. In addition, a
fairly precise identification of the gluon jet is required for
establishing the existence of the 3-gluon coupling in e*e-
annihilation reactions. Inrefs. 5, 6 and 7 the BP algorithm was
used to dothe separation both in e*e” reactions and in hadron-
induced large Dy processes.

e*e reactions (5, 6). In order not to reveal too much about
the MC model dependent low momentum part of the jet, four-
momenta (p’ » E}) of the four leading particles in the jet were
used as inputs to the network. One output node representing
the quark/gluon identity was used, as well as 10 hidden units.
Training and test sets were generated at 2 different energies
(92 GeV and 29 GeV) with 3 different MC generators;
JETSET (9), ARIADNE (11) and HERWIG (10). The inputs
were cither single jets defined by the LUCLUS clustering
algorithm in JETSET (9) or entire 3-jetevents. After training
Was completed the network was tested with a middle point
Succes criteria where > (.5 for the output node is interpreted
asa gluon jet and < 0.5 as a quark jet.

On the average the network was able to correctly classify
85% of the test set jets. The MC model independence of the
results was demonstrated by training on MC data generated
by On_c model and tested on MC data from another. Almost no
deterioration in performance was observed. Runs where

detector acceptance effects were included showed only O(2%)
degradation.

The QCD matrix element suppresses gluon jet production
as 1/Eg won: A fatir part of the ANN discrimination originates
from this property. In order to factor out this matrix element
dependence from the intrinsic differences between quark and
gluon jets, different networks should be trained with quark
and gluon jets in different energy intervals, combining the
answers with the appropriate matrix element predictions.
With such a procedure, the classification power increases to
92% (12).

Large p, processes (8). In this case, the network gets no
lead from QCD matrix element information, since the
kinamatics of the incoming quarks are unknown. A lower
classification performance can be expected. Also, in hadron-
hadron collisions the momenta and energies of the produced
hadrons are available in a “raw” form in terms of towers in a
calorimeter representing the transverse energies £, as men-
tioned previously. Inref. 7, a set of pp events at 630 GeV was
generated with the PYTHIA MC (13). The transverse energy
of the fragmentation products was mapped into a calorimeter
with a granularity of An = 0.20 in pseudorapidity
(=longitudinal velocity) and A@ = 0.26 in azimuth. This calo-
rimeter had a complete coverage in @ and extends out to
Il < 2. The set-up corresponds to the UA2 calorimeter at
CERN. Jet transverse energies were collected in cones of
radius 0.8 in m,¢ space. The calorimeter information was
presented to the network as follows: Take the £,.of the leading
cell in the 7x7 matrix and assign it to the first node x,. Assign
then and @ coordinates relative to the center of the jet to x,and
X, respectively. Then take the second leading cell and assign
its E_,mand ¢to X,, X; and X, and so on for the first 15 cells.
This corresponds to 45 input nodes. The reason for choosing
this representation of the input data rather than the 7x7 cells
directly is that in this way, invariances of the data are more
efficiently incorporated.

After training, the network correctly classifies 70—72% of
the jets using the 0.5 criteria. Rather than having this success
rate, the cut of the output node should be varied and a value
corresponding to an optimal efficiency and signal-to-back-
ground ratio should be chosen. Figure 3 shows the signal-to-
background increase as a function of the signal efficiency. In
ref. 7 asimilar encoding was successfully used for separating
jets stemming from the intermediate vector boseon W from
those originating from QCD collision processes. Such a
network can reduce the QCD background to W/Z— jets by
factors 20 — 30.

Heavy quark jet tagging

So-called heavy quarks (c and b) are produced at high
energies. These are unstable and decay, weakly emitting
leptons. The conventional way of identifying heavy quarks in
e*e”reactions is either through leptonic tagging or secondary
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Figure 3. The signal-to-backround ratio increase versus the
efficiency for a neural network quark trigger.

veriex with efficiency/purity levels of approximately 5%/
05% and 25%/80% respectively. Wehave designed anetwork
that identifies heavy quarks (6), which is entircly based upon
hadronic information. Total jet energy and momentum along
with the energy and direction for the 6 leading particles in the
jet are used as input variables, giving a total of 20 input units.
Again, one layer of 10 hidden units is used with a single output
neuron (b=1,non-b=0). Asinthelargep, application, theoption
of varying the cut on the output node can be used to select a
desirable efficiency versus purity. The network is then able to
produce efficiency/purity numbers comparable with what is
expected from vertex detectors. This remarkable resultimplies
that a general purpose hadronic detector could also prove very
efficient for heavy quark tagging. Even better efficiency/
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Figure 4. Output distributions for b (full line) and non-b (dashedline)
hadronic jets (from ref. 14).

purity ratios were obtained in subsequent work (14) by
preprocessing the kinematic variables in terms of different
shape variables. In Figure 4 the distribution of events for the
output node is shown from ref. 14. It is clear from this figure
how choosing the output threshold govems the efficiency/
purity ratio.

Studying heavy quark tagging inaself-organizing network
can prove very illuminating. In ref. 8, such a network,
consisting of a plane of 77 feature nodes, was used to dis-
entangle b-, c- and light (uds) quarks. The resulting distribu-
tions of the feature nodes are shown in Figure 5 while
Figure 6 reveals the mapping in terms of dominating quarks.

Not surprisingly, the two extremes in terms of quark
masses occupy two distinct areas separated by the c-quarks.
It is very interesting to inspect the corresponding weight
vectors W ;» For example, the nodes in the lower right corner
have ﬁ?j's with an even distribution of momenta (see
Figure 7), which is exactly what one expects for b-quarks
since they decay more isotropically.
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Figure 5. Distribution of b-quarks (a), c-quarks (b) and uds-quarks (c) over the self-organized 7%7 feature nodes.



Mass reconstruction

The problem of computing invariant masses of expected
decay products often appears when hunting for new particles
or resonances. For example, in the case of the intermediate
vector boson W (produced in pp collisions in its hadronic
decay channel, W — gq — hadrons, M,,, is reconstructed
relativistically from the momenta and assumed masses of the
produced hadrons. The problem here is that the g and q jets are
nottheonly hadrons in the collision—there are also remnants
from projectile hadrons. An additional complication is that
the g and/or g jets can give rise to additional jets through
bremsstrahlung, so identifying the appropriate jets is crucial
for a good reconstruction of the mass. The “standard” proce-
dure (15) for doing this is by sweeping through the calorim-
eterwitha “window” of acertain (@,n) size. The two windows
with the largest total E,_ are selected as containing the two jets
and the hadrons in these jets are used to compute M,,,.

The neural network approach to this problem is as follows
(16). Since this is not a classification task, a linear rather than
nonlinear (eq. (2)) output node is used for the answer (M ).
The 30 largest towers from the calorimeter are used as inputs
(ct. quark/gluon separation above) together with the total £,.
Anetwork with two hidden layers with 36 and 15 hidden units
respectively is trained with the BP algorithm. As a training set
MC generated data with a flat distribution of M, in the range
[50,150] GeV is used. When tested on “real data” in terms of
MC generated realistic W-masses, the ANN approach pro-
duces a distribution which is more narrow and symmetric
than the one using conventional methods (see Figure 8). The
main reason why the ANN method does better than the
conventional method is that it captures gluon bremsstrahlung
well.

Feedback networks—track finding
The networks discussed here have been based on feed-

)

O
O

O . b quarks
‘:) @ ¢ quarks
O uds quarks

® O
OO ONOINONGC)

S0 e e

Figure 6. The resultin g map for uds- c- and b-quarks. The shading

indjc, ; . }
- Jc_am the dominant flavor for the units. The units are numbered as
i Figure 5.

e e e O OO
® 06060 6 O

feature article_

e

(a) x N

(b) » /'/V/

Figure 7. The weight vectors corresponding to the 4 leading hadrons
for b-sensitive (a) and uds-sensitive (a) units in the self-organizing
network. The pT component has been multiplied by a factor of 5
relative to the px component.

forward architectures with classification as the main applica-
tion. In feedback architectures, information flows both ways
through the weights and the final state is given by a fixed-
point solution of the neurons v, that minimizes an energy
function.
1
Ez—Eg,va,vj (5)
Such networks have been successfully applied to difficult
optimization problems (17). The weights w; in this case are
not adaptive parameters —they are fixed constants set by the
optimization problem in such a way that an optimal solution
minimizes eq. 5. The neurons v, encode different solution
possibilities. Reconstructing tracks out of signals is a com-
mon optimization problem in subnuclear physics, where the
feedback ANN approach and variants thereof have shown
greatpromise (18-21). Since feedback networks are natural to
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implement in VLSI, a very good candidate algorithm for
O(ns) real-time track finding is thus available.

Summary and outlook

The neural network method is very efficient for extracting
features in hadronic data. World record performance can be
obtained for quark/gluon separation. With respect to heavy
quark tagging, the results are in parity with those expected
from a vertex detector. A similar network is also able to
reduce the QCD background to W/Z — jets by a factor of
20-30.

All results reported here (5,6,7,8) were obtained by using
a JETNET F77 software package (22). It should be empha-
sized that the feed-forward ANN approach involves nothing
more than fitting data with layers of sigmoids (cf.
eq. 2). For high-dimensional problems this is more effecient
than the more common approach of using Gaussian expan-
sions. In addition, sigmoidal amplifiers are easily available
VLSI devices, which facilitates hardware implementations.

The neural network approach is in general very noise- and
damage-resistant, making it suitable for high energy experi-
ments where various parts of a detector may malfunction.
With its inherent concurrency and simple structure, fast
execution custom-made hardware could also be an asset for
real-time triggering. In addition to feature recognition, ANN
will very likely play an important role in track finding, since
feedback networks easily lend themselves to real-time
hardware implementations.
——vreceived 29 July 1991
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