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A F77 package of adaptive artificial neural network algorithms, JETNET 2.0, is presented. Its primary target is the high
energy physics community, but it is general enough to be used in any pattern-recognition application area. The basic
ingredients are the multilayer perceptron back-propagation algorithm and the topological self-organizing map. The package
consists of a set of subroutines, which can either be used with standard options or be easily modified to host alternative

architectures and procedures.

PROGRAM SUMMARY

Title of program: JETNET version 2.0

Catalogue number: ACGV

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this
issue)

Licensing provisions: none

Computer for which the program is designed: DECstation,
SUN, Apollo, VAX, IBM and others with a F77 compiler
Computer: DECstation 3100; Installation: Department of

Theoretical Physics, University of Lund, Sweden

Operating system under which the program has been tested:
ULTRIX RISC 4.2

Programming language used: FORTRAN 77
Memory required to execute with typical data: ~ 90 kwords

No. of bits in a word: 32

Peripherals used: terminal for input, terminal or printer for
output

No. of lines in distributed program, including test deck data,
etc.: 3345

Keywords: pattern recognition, jet identification, artificial
neural network

Nature of physical problem

High energy physics offers many challenging pattern-recogni-
tion problems. It could be separating photons from leptons
based on calorimeter information or the identification of a
quark based on the kinematics of the hadronic fragmentation
products. Standard procedures for such recognition problems
is the introduction of relevant cuts in the multi-dimensional
data.

Method of solution

Artificial neural networks (ANN) have turned out to be a very
powerful paradigm for automated feature recognition in a
wide range of problem areas. In particular feed-forward
multilayer networks are widely used due to their simplicity
and good performance. JETNET 2.0 implements such a
network with the back-propagation updating algorithm in
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F77. Also a self-organizing map algorithm is included. JET-
NET 2.0 consists of a number of subroutines, most of which
handle training and test data, which should be loaded with a
main application specific program supplied by the user. The
package was originally mainly intended for jet-triggering
applications, where it has been used with success for heavy-
quark tagging and quark-gluon separation, but it is of general
nature and can be used for any pattern-recognition problem
area.

Restriction on the complexity of the problem

The only restriction on the complexity of an application is set
by available memory and CPU time (see below). For u
problem that is encoded with n; input nodes. n, output
(feature) nodes, I layers of hidden nodes with ny (/=

1., H) nodes in each layer the program requires (with full
connectivity) the storage of 2M_ real numbers given by

H 1
M= nng g, + Z Paciting - o Moot

;1

LONG WRITE-UP
1. Introduction

When analyzing experimental data, it is a
standard procedure to make various cuts in ob-
served kinematical variables x, in order to single
out desired features. A specific choice of cuts
corresponds to a particular set of feature func-
tions o, = Flx, x,...)=F{x) in terms of the
kinematical variables x,. This procedure is often
not very systematic and quite tedious. Ideally one
would like to have an automated optimal choice
of the funcitons F,, which is exactly what
feature-recognition artificial neural networks
(ANN) aim at. For a feed-forward ANN the
following form of F, is often chosen:

{
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where w,; and w;, are the parameters to be fitted
to the data distributions and g(x) is the non-lin-
car neuron transfer function

g(x) =051+ tanh(x)].
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Also, the neurons requires the storage of 3M | real numbers
according to

H
M, =n;+ Z”hm* n,.
i

[n addition one needs of course to store at least temporarily,
the patterns; M, = n; + n,, real numbers.

Typical running time
The CPU time consumption for the learning process is
proportional to M. the number of training patterns N, und
the number of learning passes (or epochs) N,

epoct, needed:

70 N,y N M.

cpach
As an example we take a b-quark identification as in ref. [1]
where 100 epochs are required to train a network with 16
input nodes, one output node and one hidden layer with 10
nodes. With 6000 training patterns. 7 = 360 s (on the DEC
3100).

Reference

[1] L. Lonnblad, C. Peterson and T. Rognvaldsson, Using
neural networks to identify jets. Nucl. Phys. B 349 (1991)
675,

Equation (1) corresponds to the feed-forward ar-
chitecture of fig. 1. The bias, or threshold, terms
8, and 6, arc easily generalized into the weights
w;; and w,, by adding an extra “dummy” unit to
cach layer. The bottom layer (input) corresponds
to the measured kinematical variables x, and the
top layer to the (output) features o,. The task of
the so-called hidden layer is to build up an inter-
nal representation of the observed data. Equation
(1) and fig. 1 are easily generalized to more than
one hidden layer. Fitting to a given data set (or
learning) takes place with e.g. gradient descent
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Fig. 1. A one-hidden-layer feed-forward neural-network archi-
tecture.
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Fig. 2. A one-layer self-organizing network. Lateral interac-
tions between the feature nodes correspond to the “mexican-
hat’-like potential.

on a summed square error between o, and the
desired feature values ¢, (targets) with respect to
the weights w;; and w;,.

This back-propagation [2] procedure assumes
knowledge about what features (0;) are relevant
from the outset and separates the data accord-
ingly. There are also alternative approaches, like
self-organization where the network organizes the
data into features without any external teacher
(no target values) [3]. The underlying architecture
consists of an input layer (x,) and a layer of
feature nodes denoted #; (see fig. 2). These fea-
ture nodes are updated according to

h,=G(§(wjk 5’| =Gllw,=x1%). ()

where G(x), the neuron response function, is a
monotonically decreasing function. For all pat-
terns presented the weights are updated such
that the distances between w; and x are mini-
mized. Also, topological ordering between the
feature nodes 4, is introduced with a “mexican-
hat”-like potential, such that neighboring nodes
in a plane react to similar features.

The JETNET 2.0 package implements both
the back-propagation and self-organizing algo-
rithms in a stream-lined way. In sections 2, 3 and
4 we briefly describe these algorithms together
with modifications, extensions and practical hints.
For a more extensive list of references we refer
the reader to refs. [1-5].

JETNET 2.0, which is backwards compatible
with the earlier 1.0 version [1] has been extended
with the following capabilities:
® includes self-organization (JETMAP 1.0);

o includes learning vector quantization JETMAP

1.0);

® allows for selective receptive fields;

® allows for different learning rates between dif-
ferent layers;

¢ allows for different temperatures (gains) at dif-
ferent layers;

® allows for different initial widths of weights in
different layers;

® allows for decay of unused weights;

e allows for limited precision (number of bits)
simulations;

® includes (Langevin) noise in learning;

e includes a pruning procedure for determining
minimum architecture;

® includes the possibility of monitoring network
saturation.

2. The back-propagation learning algorithm

The key ingredient is the fitting procedure, i.e.
minimizing a summed square error for all pat-
terns p,

E=%Z Z(Oi_ti)2’ (4

with respect to the parameters w. Gradient de-
scent with respect to w;; and w, for each pattern
corresponds to

oF
Aw. = —p——
w;; ”aw,.j (5)
and
oF
Aw;, = — .
w}k nawjk (6)

The chain rule for the partial derivatives with
respect to E gives

o é.h 7
a—a—);_ ity ( )
and

3 = Zﬁiwt‘jg’(aj)xk/’r’ (8)
W jk i
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where §; is given by
8= (o0, +1,)g'(a))/T. (9

The “temperature” T sets the gain of g(x) and
a; is the summed input signal to node i. Equa-
tions (7) and (8) trivially generalize to architec-
tures with more than one hidden layer; the 8’s
are just back-propagated further down according

to equations identical to eq. (8).

A few useful variations and extensions of this
algorithm exist:

Alternative error measures. Other error meas-
ures than the one in eq. (4) are sometimes used.
One is the so called cross-entropy error:

E=—-Y Y [tt” log o,+ (1 ="} log(1 —0,)].
Pl

(10)

In this case the g'( ) factor in the updating of w,
disappears, but the updating of the hidden—hid-
den and input-hidden connections are the same
(eq. (8)).

Another error measure variant is the so-called
Kullback measure,

(r)

E=Y Yt log—, (11)
P 0;

which is used when replacing the binary neurons
in the output layer with K-valued ones (see ¢.g.
ref. [1}). The sigmoid updating rule of eq. (2) is
then replaced by

r CXp(a,'/T)
o =o(ay aa, T) = 5w
/
(12)
satistying
Zoi: L. )

This encoding is often efficient in “winner-takes-
all” situations. The back-propagation algorithm
turns out to be the same as in the case of the

entropy error above, again without a g'( ) be-
tween top hidden and output layers.

Linear output nodes. So tar we have only been
concerned about using the ANN for classifica-
tion, i.e. the output nodes represent binary deci-
sions. In case one wants to use the network as a
plain “fitting engine”, the output nodes should
encode any real number; i.e. be linear (g(x) = x).
In this case g’( ) also disappears from egs. (7) but
the lower layers are the same.

Updating parameters. Back-propagation in its
basic form has two parameters, the temperature
(inverse gain) T and the learning rate n. Some-
times it is profitable to have different values for
these parameters for different layers. Also, learn-
ing can be more efficient (less oscillatory) by
including a so-called momentum term in egs. (5)
and (6),

o
Aw(t+1)=—na—+aAw(t), (14)
®

where Aw(t) refers to the previous updating and
« IS a parameter.

Pruning. An important question is what ANN
architecture (number of layers, hidden nodes and
degree of connectivity) to use for a particular
problem. Clearly one should use as few parame-
ters (w) as possible, in order to have powerful
generalization properties. A straight-forward, but
costly, way is of course trial-and-error. However,
it would be advantageous to use a more algorith-
mic method. One such pruning procedure goes
as follows [6]: Add to the error function (eq. (4))
a complexity term [6]

2,02
i/ wj

E-o>E+A) ——=—
L 1+a),-2j/cuﬁ'

i

(15)

where the sum extends over all weights. For large
weights Iw,-jl, the cost is A, whereas for small
weights it is zero. The scale of the weights is w,,.
Hence the network gets pruned to only contain
weights that are really needed to represent the
problem.



L. Lonnblad et al. / Pattern recognition in HEP 171

Weight decay. An alternative way of shrinking
the number of weights is to allow unused weights
to decay. The updating equations then become

oF
Aw(t+l)=——n5——ew, (16)
w

where € is the decay parameter, typically a very
small number, @(10"*). Weights that are not up-
dated frequently are thus allowed to decay away.

3. Self-organization

The self-organizing algorithm is very similar to
the k-means clustering algorithm [7). To every
feature node £; belongs a weight vector w; of the
same dimension as the input vectors x. For every
input pattern p the node 4, whose weight vector
w,, is closest (by some measure, e.g. Euclidean
distance) to the pattern x‘?’ is termed the
“winner”. The winning vector w,, is then moved
closer to the input pattern p:

Awm=n(x(”)—wm), (17)

where again 7 is the learning-rate parameter.
This amounts to gradient descent on the error
function

E,=% ¥ (x7-a,), (18)

peEX

where # is the set of input patterns that has
node Ak, as winner *. This results in the weight
vector w,, approaching {x),, the center-of-mass
of the “cluster” #. The feature nodes will thus
divide the input-space into a number of polyhe-
dral regions.

The topological ordering is achieved by also
updating the neighbors of the winner node, the
updating equation becomes (cf. eq. (17))

Aw,=nA(j, m)(x? - w,), (19)

where A(j, m) is the neighborhood function, emu-
lating lateral connections between the feature
nodes. A(j, m) can be “mexican-hat”-like func-

* Note that .# is not static — it changes during training.

tion, or any function that is 1 for j =m and falls
off with distance || r; —r,, || from the winner unit.
JETNET 2.0 implements the so-called short-cut
version where the entire neighborhood is updated
equally, i.e.

)l
. m || <A, (20)
0, OtheIWlSC.

L, ifllr,—r

A(j, m) = {

One can supplement the self-organizing algo-
rithm with supervised learning, learning vector
quantization (LVQ), which amounts to changing
the sign of n in eq. (17) whenever input data
activates the wrong units — moving the weight
vectors away from undesired input patterns.

4. Practical implementation issues

4.1. Back-propagation

Number of layers: Feed-forward networks are
commonly used for prediction and classification
tasks. In principle any such task can be per-
formed with two hidden layers [8], or even with
only one hidden layer [9] (this could be at the
expense of an enormous total number of hidden
units).

Number of nodes: In prediction and classification
one aims at good performance in generalization,
i.e. network performance on a set of test data it
has never seen before. Using too many parame-
ters (weights) will cause the net to overfit the
data. Too few parameters, on the other hand,
increase the probability of the network getting
stuck in a local minimum during training. The
generalization error for one hidden layer is
@(N,/N,), where N, is the number of weights
and N, is the number of patterns (see ref. [11]).
As a rule of thumb, one should have N, <0.1 N,,.

Initial weight values: The weights are initiated at
random in the range [ —w,, +w,]. In the begin-
ning of learning, one should be in the central
(linear) part of the sigmoid with large gradient.
The width should thus be w = w,/(fan-in), where
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fan-in is the number of units feeding to the actual
unit and e, is sufficiently small to be in the
central part of the sigmoid. JETNET 2.0 allows
for different initial widths for different layers
with different fan-in.

Learning rate: 1deally, the lcarning rate n should
be allowed to change during training, depending
on how well the network is learning. Too high
n-values cause oscillations in the training. 7
should approach zero in the end of training to
allow the net to settle into a stable state.

The optimum learning rate scales with fan-in,
i.e. the learning rate 7,; affecting the weights w,;
(see fig. 1) scales like m;; oc 1 /(fan-in to node /).
JETNET 2.0 allows for different learning rates in
different layers.

Updating frequency: Gradient descent on eq. (4)
means averaging over the complete training sct,
so-called batch-mode or off-line back-propa-
gation. An alternative (on-line) way is to update
the weights after each pattern, or a small subset
of patterns. The latter method avoids local min-
ima, provided that patterns are chosen at ran-
dom, and is often faster.

Momentum term: The momentum term (eq. (4))
averages over past updatings and prevents oscilla-
tion. The parameter « must be between 0 and 1;
it is often set very close to 1. The optimum
a-value varies from problem to problem. Some-
times a momentum term deteriorates the perfor-
mance.

Receptive fields: In many pattern recognition
problems there are invariances inherent in the
data, like translational invariance. With large
enough training sets the network should capture
these. However, for finite training sets it could
pay off to impose these explicitly. One way is to
preprocess the data performing Fourier trans-
forms. For translational invariance it has turned
out to be efficient to introduce receptive fields of
weights that cover different areas of the input
space and are linked together in the updating
(see e.g. ref. [2]).

Manhattan updating: In cases where there are
many patterns /updates, it might be beneficial to
replace the standard gradient descent with
“*Manhattan” updating [10]

Aw,; = —n sign(dE /0w, ;) (21)

In this case the learning is bounded and it is
easicr to tind an appropriate value for n, which
should decrease with increasing learning. This
updating procedure is convenicnt for networks
with more than onc hidden layer.

Langevin updating: In order to avoid getting stuck
in local minima onc¢ might want to introduce
noise into the system. One option is to add noise
to the input data, which is easily done (not an
option in JETNET 2.0). Another alternative is to
add a noise term to the updating equations. This
is accomplished in JETNET 2.0 with so-called
Langevin updating cquations, which generate
weight configurations within the Boltzmann c¢n-
semble.

Pruning: The pruning algorithm adopted in JET-

NET 2.0 is described in ref. [6], and we refer to

this reference for a more extensive description. It

automatically adjusts A in eq. (15) by comparing

three measures:

® [, _ . previous crror;

® 4, . exponentially weighted average error. A,
=vA + (I - y)E, with y relatively close
to 1.

® [, desired error, which is externally provided.
For hard (e.g. “real”) problems, D is sct just
below the chance performance error.

The crucial thing is to set D right. A value just

below chance performance works fine on mirror

symmetry problems of different dimensionality.

The parameter w,, in eq. (15) should be of order

unity for transfer functions of order unity. After

cach epoch, E, is evaluated and A is changed

accordingly:

® A=A+ AA if the error is below the desired
error or still falling (£, <D or E, <E, ).

® A=A — AA if the error is above the desired
crror and increasing, but still below the long

n—1
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term average (E,>D, E,>E, | and E, <
A,). If A becomes negative it is set to zero.

® A = 0.9\ if the error is above the desired error,
increasing and larger than the long time aver-
age (E,>D, E,>E,_, and E, > A,). In this
last case the pruning has grown too strong and
A has to be “cut”.

4.2. Self-organization

Number of nodes: The goal of unsupervised self-
organization is usualy to extract some features of
the data or relations between data-types. There is
consequently no problem of generalization, un-
less one is doing LVQ. For LVQ the comments in
the previous section also apply.

The relative generalization performance of
LVQ and back-propagation (BP) depends on the
problem. For high-dimensional problems BP gives
best performance, since LVQ fills the input-space
with polyhedrals, whereas BP (see e.g (1)) divides
the space by using hyperplanes. The latter is
more economical for high-dimensinal problems

Topology of the network: The optimum topology
of the net (dimensionality, periodic boundaries,
etc.) is difficult to predict without explicit knowl-
edge of the topology of the input data. If the
dimensionality of the input space is higher than
the dimensionality of the feature map, the map
will try to fill out the space as well as possible
(like a snake rolling up to fill the bottom of a
basket), provided that the plasticity of the net is
high. JETNET 2.0 only supports one- and two-di-
mensional feature maps.

Initial weight values: The input data usually occu-
pies only a small subspace of the input-space. To
shorten learning time, initial weight values should
be chosen inside this subspace, by assigning val-
ues from some input data to the weights, or at
least in the same “quadrant” as the input data.

Learning rate: The initialization of weights values
may produce twists and kinks in the net. The
initial adjustments of the net should therefore be
large in order to produce the correct topological

order. Towards the end of training the adjust-
ments should approach zero in order for the net
to settle into a stable state.

Size of neighborhood: Initially, all weight vectors
need adjusting. The initial size of the neighbor-
hood, the parameter A, should thus be large. The
size is then allowed to shrink, in order for the
weight vectors to converge towards their cluster
centers. Decreasing A means decreasing the cou-
pling between the weight vectors, increasing the
plasticity of the net.

Temperature: The default response function for
the self-organizing map is

h; = exp(—llw; —xII*/T) (22)

where the “temperature” T sets the width of the
Gaussian. If 7 is too small, the exponent will
overflow. This will manifest itself by a “no re-
sponse in net” warning issued by JETNET. In
case this happens, the temperature 7, should
thus be increased (which means decreasing the
inverse temperature ).

5. Limited precision — hardware implementations

A real asset in the ANN approach is the
possibility of custom-made hardware for real-time
applications. In case such an implementation is
planned for a particular application, it is impor-
tant to do the training with the number of bits
precision that the hardware will provide. We have
included such an option in the back-propagation
case.

6. Program components

JETNET 2.0 is a F77 subroutine package,
meaning that it contains a number of subroutines
that are called from a main program written by
the user. The only non-standard function needed
to run the program is a random number genera-
tor, with a flat distribution in the interval 10, 1{.
The random number generator is called RLU
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(ISEED) and if the user has access to a running
version of JETSET 7.3, this function is already
implemented. JETNET 2.0 is divided in two parts,
one for the feed-forward back-propagation net-
work and another for the self-organizing map.
The subroutines associated with the feed-forward
net all begin with the letters JN, as in JetNet,
whereas the self-organizing map subroutines all
start with JM, as in JetMap. All passing of train-
ing data and parameters /switches is done via the
common blocks /JINDAT1/ and /INDAT2/.

0.1. Feed-forward network

6.1.1. Main subroutines

The main routines are JNINIT, INTRAL, JN-
TEST, INDUMP, INREAD (JNROLD), JNSEFI
and JNSTAT. These are usually the only routines
the user has to invoke. The network is initialized
by setting switches in /JINDATI1/ and calling
JNINIT. The net is trained by putting an input
pattern in the vector OIN and the desired output
values in the vector OUT and calling INTRAL.
Subsequent testing of the net is done by putting a
test pattern in OIN, calling JNTEST and compar-
ing the produced output values, stored in OUT,
with the target value.

SUBROUTINE ININIT

Initializes the network according to the
switches in /JNDATl/ and /IJNDAT2/.
Weights are given inititial random values accord-
ing to PARJN(4) or WIDL(I). Cannot be called
after a call to JMINIT (see below).

SUBROUTINE JNTRAL

Takes the pattern stored in the vector OIN
and calls INFEED to produce an output pattern,
which is compared to the target pattern in the
vector QUT. The resulting error is used to deter-
mine the change of the weights. The produced
output pattern is stored in the vector OUT.

The actual updating of the weights is per-
formed every MSTIN(2) call to JNTRAL and the
procedure is specified by the switch MSTIN(5).

SUBROUTINE JNTEST
Feeds the input signal through the net and
places the produced output in the vector OUT.

SUBROUTINE INDUMP (NF)

Writes all relevant information of a network to
the file ABS(NF). If NF is negative the output is
unformatted, otherwise it is formatted. The user
must make sure that the corresponding file is
opened with write access accordingly.

SUBROUTINE JNREAD(NF)

Reads the information from the file ABS(NF)
produced by INDUMP and initializes the net-
work described there. All switches and parame-
ters in common blocks /JNDATI1/ and /JN-
DAT2/ set prior to a call to JNREAD are lost.
The comments about the file number for JN-
DUMP apply also here.

SUBROUTINE JNROLD(NF)

Same as JNREAD(NF) except that it reads
files produced by previous versions JETNET 1.0
and JETNET 1.1.

SUBROUTINE JNSEFICILA, I1,12,J]1, 2, NO)
Switches off (NO < 0) or on (NO > 0) the up-
dating of weights between nodes I1 to 12 in layer
ILA and nodes J] to J2 in layer ILA-1. f NO =0
the weights are set to zero and if NO = the
weights are reinitialized. This choice of
enabling /disabling can be used for selective in-
put fields or for training only portions of the
network. Selective input fields means that a hid-
den node only sces a portion of the input pattern,
which is not identical to using receptive fields.

SUBROUTINE JNSTAT(IS)

Writes out information about the network on
file number MSTIN(6).

IS = 1 gives a header and number of nodes in
each layer (done automatically when the network
is initialized).

IS = 2 gives the switches and parameters used
in common blocks /INDAT1/ and /INDAT2/.

IS = 3 writes out an approximate time factor
and the effective number of weights in the net.

6.1.2. Internal subroutines
The subroutines are presented in the order
they are used when training the network.

SUBROUTINE JNSEPA
Sets the internal parameters and switches in
common blocks /ININT2/ and /ININT3/. If
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receptive fields are used, the defined geometries
are checked for inconcistencies. '

SUBROUTINE JNHEAD
Writes a header on file number MSTIN(6).

SUBROUTINE JNFEED

Feeds the values in OIN through the network
and calculates the values of the output nodes,
without writing to OUT.

SUBROUTINE INDELT

Calculates the error from the output nodes
and current values in QUT. The error is back-
propagated to calculate the §’s (see eq. (9)); the
updatings for each weight layer.

SUBROUTINE JNSATM

Calculates the saturation measure s of each
layer if the transfer function g(x) for that layer is
a sigmoid. The saturation measure is given by

Y(1-2-h}) if g(x)€]0, 1,

s=

: . (23)
th if g(x)<€]1, 1]

and is a measure of the average “information” in
each layer (i.e. if the nodes have wandered out
into their flat regions). INSATM is only called if
MSTIN(22) # 0.

SUBROUTINE JNCHOP(ICHP)

Switches on (ICHP > 0) or off (ICHP < 0) fixed
precision weights, thresholds and sigmoid func-
tions. If ICHP >0 the current values of the
weights and thresholds are chopped to the fixed
precision. The bit precision is set by switches
MSTIN(28-30).

SUBROUTINE JNERR(IERR)

If something goes wrong or if any inconcisten-
sies are encountered during execution, JNERR is
calied and writes out an error message and stops
the execution.

SUBROUTINE JNTDEC
A “test-deck”, which automatically tests JET-
NET.

6.1.3. Internal functions

INTEGER FUNCTION JNINDX(IL, I, J)

Gives the node vector index of node I in layer
IL if J =0, otherwise it gives the weight vector
index of the weight between node I in layer IL
and node J in layer (IL — 1). (See common block
/ININT1/ for details on the node and weight
vectors.)

REAL FUNCTION GIN(X, N)

Gives transfer function g(x) of type N with
argument X. The transfer function type is deter-
mined by switches MSTIN(3) or IGFN(I). (See
common block /JNDAT1/ for more details.)

REAL FUNCTION GPIN(X, N)
Gives the derivative g'(x) of g(x).

REAL FUNCTION GAUSIN(IDUM)

Generates a Gaussian distributed random
number with standard deviation 1.0 and mean 0.0
for use in Langevin updating.

6.2. Self-organizing map

6.2.1. Main subroutines

The main subroutines are JMINIT, IMINWE,
JMTRAL, IMTEST, IMDUMP, IMREAD, JM-
STAT and JMINDX. The network is defined by
setting the switches in /JNDAT1/ and invoking
JMINIT. Training is done by putting a pattern
into the vector OIN and calling JMTRAL. If the
learning vector quantization option is used, a
target pattern has to be placed in the vector OUT
before IMTRAL is called. The network is tested
by reading a pattern into OIN and calling
JMTEST, that puts the network response into the
vector OUT.

SUBROUTINE JMINIT

Initializes the map according to the switches
set in /JNDAT1/ and gives start values to the
weights determined by MSTIM(2) and PARIM
(4). JMINIT cannot be called after a call to
JNINIT (see above).

SUBROUTINE JMINWE(INOD)
Sets the weight vector belonging to network
node INOD equal to the current values in vector
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OIN. Used to make the initial weight vectors lic
inside the “problem area” (see section 4.2).

SUBROUTINE JMTRAL

Takes the pattern stored in vector OIN and
trains the network. If learning vector quantization
is used, a corresponding output must be stored in
the vector OUT before JMTRAL is called. The
updating option used is determined by the switch
MTSIM(5).

SUBROUTINE JMTEST

Takes the pattern stored in the vector OIN
and uses the current values of the weights in the
network to produce an output pattern which is
stored in the vector QUT.

SUBROUTINE JMDUMP(NF)

Writes all relevant information of a network to
the file ABS(NF). If NF is negative the output is
unformatted, otherwise it is formatted. The user
must make sure that the corresponding file is
opened with write access accordingly.

SUBROUTINE JMREAD(NF)

Reads the information from the file ABS(NF)
produced by JMDUMP and initializes the net-
work described there. All switches and parame-
ters in common block /JNDAT1/ set prior to a
call to JIMREAD are lost. The comments about
the file number for IMDUMP apply also here.

SUBROUTINE JMSTAT(IS)

Writes out information about the network on
file number MSTIM(6).

IS =1 gives a header and number of nodes in
each dimension (done automatically when the
network is initialized).

IS = 2 gives the switches and parameters used
in common block /INDAT1/.

IS = 3 writes out an approximate time factor
and the effective number of weights in the net.

SUBROUTINE JMINDX(INOD, I, J)

If the map topology is two-dimensional,
JMINDX is used to transform map coordinates
(L)) to and from the index INOD used in the
node vectors OUT and O (see common block
/ININT1/ for details). If INOD = 0, network

coordinates (I, J) are returned. Otherwise, if
INOD = (), network coordinates (I, J) are used to
calculate INOD, which is returned.

6.2.2. Internal subroutines
The subroutines are presented in the order
they are used when training the map.

SUBROUTINE JMSEPA

Sets parameters and switches in common block
/IMINTT1 /. Checks for inconcistencies in switch-
es set in /INDATI /.

SUBROUTINE JMNBHD

Specifies the neighbourhood of every node in
the map. The result is stored in the vector NBHD.
JMNBHD is called every time the neighborhood
size MSTIM(9) is changed.

SUBROUTINE JMNORM

Normalizes the weight vectors so that |, || =
1 for all units j. Used when the response function
¢(x) is a sigmoid function and the magnitude of
the input vectors is unimportant.

SUBROUTINE JMFEED

Feeds the input in OIN to the network and
calculates network response and winner node.
The index for the winner node is placed in
MXNDJM. If no winner unit is found, JIMFEED
issues a warning message. JMFEED also calcu-
lates the weight updates (see eq. (17)).

SUBROUTINE IMWARN(IWARN )

If a minor error occurs during execution of the
program, JMWARN is called and issues a warn-
ing message on file number MSTIM(6).

SUBROUTINE JMERR(IERR)

If something seriously goes wrong or if any
inconcistensies are encountered during execution,
JMERR is called and writes out an error message
and stops the execution.

6.2.3. Internal functions
REAL FUNCTION GIM(X,N)

Gives response function g(x) of type N with
argument X. The type is determined by switch
MSTIM(3).
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6.3. Common blocks

6.3.1. Interface common blocks

The user interface common blocks are /JN-
DATI1/ and /JINDAT2/. /INDAT1/ is the main
common block while /INDAT2/ is intended for
the “advanced” user.

COMMON /INDAT1/ MSTIN(40), PARIN(40),
MSTIM(20), PARIM(20), OIN(1000), OUT(1000),
MXNDIM

MSTIN is a vector of switches used to define the
feed-forward network used:
MSTIN(1) (D = 3) number of layers in the net.
MSTIN(2) (D = 10) number of patterns per up-
date in INTRAL.
MSTIN@) (D = 1) overall transfer function used
in the net:
1 ->g(x)=1/[1+exp(—2x)],
2 - g(x) = tanh(x),
3> g(x)=-exp(x) (only used inter-
nally for Potts-nodes),
4—-g(x)=x,
5—-g(x)=1/[1+exp(—2x)] (only
used internally for entropy error).
MSTIN(4) (D =0) error measure:
0 — summed square error,
1 — entropy error,
> 2 — Kullback error with Potts
nodes of dimension MSTIN(4).
MSTIN(5) (D = 0) updating procedure:
0 — normal updating,
1 - “Manhattan” updating,
2 — “Langevin” updating.
MSTIN(6) (D = 6) file number for output statis-
tics.
MSTIN(7) (R) number of calls to INTRAL.
MSTIN(8) (D) initialization done.
MSTIN(@) (D =100) number of updates per
epoch.
MSTIN(10 + I) number of nodes in layer I (I =0
— input layer).
MSTIN(10) (D = 16)
MSTJN(11) (D =28)
MSTIN(12) (D=1)
MSTIN(13-20) (D =0)
MSTIN(21) (D = 0) pruning (> 0 — on).

MSTIN(22) (D = 0) saturation measure s(# 0 —
on).

MSTIN(23,24) (D =0) (x, y)-geometry of input
field when using receptive fields: <
0 — periodic boundary conditions.
See COMMON /JNINT3/ for fur-
ther explanations.

MSTIN(25,26) (D = 0) (x, y)-geometry of recep-
tive fields.

MSTIN(27) (D = 1) number of hidden nodes per
receptive field.

MSTIN(28-30) (D = 0) bit-precision (0 —
machine precision) for sigmoid func-
tions (28), thresholds (29) and
weights (30).

MSTIN(@31) (D = 1) procedure for handeling
warnings:

0 — no action is taken after a warn-
ing,

1 — the execution is stopped after
the program has experienced MST-
JN(32) warnings. In any case only
MSTIN(32) warning messages are
printed out.

MSTIN(32) (D = 10) maximum number of warn-
ing messages to be printed. As de-
scribed above.

MSTIN(33) (R) code for latest warning issued by
the program.

MSTIN(34) (I) number of warnings issued by the
program so far.

MSTIN(35-40) no used.

Switches 2,5, 6, 21, 22, 28,29 and 30 can be
changed at any time by the user.

PARIN is a vector of parameters determining the

performance of the feed-forward net:

PARIN(1) (D =0.01) learning rate 7.

PARIN(2) (D =0.5) momentum parameter a.

PARIN(3) (D =1.0) overall inverse network
temperature g =1/T.

PARIN(4) (D =0.1) width o of initial weights.

PARIN(5) (D =0.0) weight decay parameter e.

PARJIN(6) (D = 0.0) width of Gaussian noise in
Langevin updating.

PARIN(7) (R) last error per node.

PARJIN(8) (R) mean error in last update.
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PARJIN(9) (R) mean error last epoch (equal to
MSTIN(9) updates).

PARIN(10) (R) weighted average error A4, used
when pruning.

PARIN(11) (D = 1.0) decrease in 7 (scale factor
per epoch).

PARIN(12) not used.

PARJIN(13) (D = 1.0) decrease in temperature T
(scale factor per epoch).

PARIN(14) (D = 0.0) pruning parameter A.

PARJIN(15) (D = 107°) change AA of A.

PARJN(16) (D = 0.9) parameter y used for cal-
culation of PARIN(10).

PARIN(17) (D = 0.9) pruning “cut-off’.

PARIN(18) (D = 1.0) scale parameter w,, used in
pruning.

PARJIN(19) (D =0.0) target error D used in
pruning.

PARJIN(20-40) not used.

All parameters can be changed at any time by the
user.

MSTIM is a vector of switches used to define the
self-organizing network used:
MSTIM(1) (D = 1) number of dimensions in the
net (maximum = 2).
MSTIM(2) (D = 0) symmetry of initial weights:
0-1[0, +w],
l-[-w, +wl.
MSTIM(3) (D =2) overall response function
used in the net:
1 - glx)=1/[1 + exp(—2x)] (if
data is normalized),
2 - g(x) =exp(—x).
MSTIM(4) (D = 1) error measure:
1 — summed square error.
MSTIM(5) (D = 0) updating procedure:
() — unsupervised clustering and
topological ordering,
1 — learning vector quantization,
2 - LVQ with neighborhood func-
tion.
MSTIM(6) (D = 6) file number for output
statistics.
MSTIM(7) (D = 0) normalize weights (1 — on).
MSTIM(8) (1) initialization done.

MSTIM(9) (D = 0) neighborhood size A:
> () = square neighborhood
< () - circular neighborhood.
MSTIM(10 + I) number of nodes in dimension 1
(I =0 — input).
MSTIM(10) (D = 8)
MSTIM(11) (D = 10)
MSTIM(12) (D= 1)
MSTIM(13-20) not used.

Switches 5, 6, 7 and 8 can be changed at any time
by the user.

PARIJM is a vector of parameters determining

the performance of the self-organizing net:

PARIJM(1) (D =0.001) learning rate n.

PARIM(2) (D =0.0) not used.

PARIM(3) (D =0.01) overall inverse network
temperature 8 =1/T.

PARIM(4) (D =0.5) width w of initial weights.

PARIM(5-20) not used.

All parameters can be changed at any time by the
user.

OIN is the vector used to pass the values of the
input nodes to the program.

OUT is a vector used both to pass the desired
value of the output nodes to the program during
supervised training and to pass the output pro-
duced by the network given an input pattern in
OIN.

MXNDJM is the index of the winner node in the
vector OUT (when using the self-organizing map).

COMMON /INDAT2/ TINV(10), IGFN(10),
ETAL(10), WIDL(10), SATM(10)

TINV(I) (D =0.0) if greater than (.0, this value
is used as inverse temperature § in the
sigmoid function for layer I, otherwise
the overall inverse temperature PAR-
JN(3) is used. Can be changed at any
time by the user.

IGFN(I) (D = 0)if greater than 0, these switches
determine the sigmoid function to be
used 1n layer I, otherwise the overall
function determined by MSTIN(3) is
used. These switches are only active
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before the network is initialized with
subroutine JNINIT.

ETAL(D) (D =0.0) if greater than 0.0, this value
is used for the learning rate n for
weights in weight layer 1. The weights
between input and first hidden layer is
considered to be weight layer number
one. Can be changed at any time by
the user.

WIDL(I) (D = 0.0) if greater than 0.0, this value
is used for the width w for initial
weight values in weight layer 1.

SATM(I) (R) if MSTIN(22) # 0 this vector con-
tains the average saturation of nodes
in layer 1.

6.3.2. Internal common blocks

COMMON /ININT1/ 0O(2000), A(2000), D
(2000), T(2000), DT(2000), W(150000), DW
(150000), NSELF(150000), NTSELF(2000)

/JNINT1/ contains weight and node vectors
for the net. Node vectors are O, A, D, T, DT and
NTSELF. Weight vectors are W, DW and
NSELF.

o) current value of node 1 in the net-
work, does not include the input units,

A current value of the summed input a,
(see eq. (9)) to node 1.

D() current value of the §; at node 1 (see
eq. (9)).

T current value of the threshold 6, (see

eq. (1)) at node 1.

DT(I) current value of the update A#; for
the threshold at node 1.
W(IW) current value for weight with index

IwW.
DW(IW) current value of the update for weight
with index IW.
NSELF(IW) switches for updating weight with
index IW:
0 — do not update,
1 — update.
For self-organizing map, NSELF is
equivalent to the vector NBHD.
NTSELF{) switches for updating threshold for
node I:

0 — do not update,

1 — update.

For self-organizing map, NTSELF is

equivalent to the vector INDW.
NBHD(,NB) contains the indexes to the neigh-

borhood nodes of node I, the first

element (NB = 0) tells how many units

there are in the neighborhood.
INDW(I) the index to the weight ,, belonging

to unit I,

COMMON /JNINT2/ M(0:10), MVO(10),
MMO(10), NG(10), NL, IPOTT, ER1, ER2, SM
(10), ICPON

/ININT2/ contains pointers and internal
switches for the feed-forward network.

M) number of nodes in layer I (I = 0 — input
layer),

MVO(]D) offset index for node vectors — tells the
index in the node vectors for the last
node in layer (I — 1).

MMO(D) offset index for weight vectors — tells
the index in the weight vectors for the
last weight going from layer (I — 1).

NG(1) transfer function g(x) for layer I.
NL number of layers except input layer.
IPOTT switch if Potts units are used in output

layer.
ER1, ER2 internal variables used for calculat-
ing PARIN(7-9).
internal variable used for calculating
saturation measures.

SM(D

COMMON /ININT3/ NXIN, NYIN, NXRF,
NYRF, NXHRF, NYHRF NHRF, NRFW, NH-
PRF

/ININT3/ common block for receptive fields
indices.

NXIN  x-width of input field (if negative —
periodic boundary). Set from MSTIN
(23).

NYIN  y-height of input-field (if negative —
periodic boundary). Set from MSTIN
(24).

NXRF x-width of the receptive field. Set from

MSTIN(25).



180 L. Lonnblad et al. / Pattern recognition in HEP

NYRF  v-height of receptive field. Set from

MSTIN(26).

NXHRF number of overlapping receptive field
in x-direction.

NYHRF number of overlapping rcceptive fields
in y-direction,

NHRF total number of receptive ficlds.

NRFW number of weights per receptive field.

NHPRF number of nodes per receptive field.
Sct from MSTIN(27). If negative,
weights from equivalent receptive field
nodes in the first hidden layer to each
node in the second hidden layer are
clamped.

The geometry of the receptive fields is defined as
follows: The input nodes are assumed to be orga-
nized in a plane of NXIN=*=NYIN nodes (with
periodic boundaries if NXIN or NYIN are nega-
tive). Note that the coordinates (IX, 1Y) corre-
spond to input node number IN = (IX —
1)« NYIN + 1Y. Each receptive field node in the
first hidden layer scan an arca of NXRF «NYRF
input nodes.

COMMON /IMINT1/ NDIM, ISW(10),
NODES(0: MAXD + 1), NBO

/JMINTI / contains pointers and switches for
the self-organizing map.

NDIM number of dimensions in the map.
ISW(I) internal switches.
NODES(I) number of nodes:

I =0 — input units,

I =1 — first dimension,

1 =2 — second dimension,

I = 3 — total number of nodes in map.
NBO  last used neighborhood size A.

7. Restrictions and technical information

JETNET 2.0 includes a *‘test deck™ subroutine
called INTDEC. If you call this subroutine, it will
test JETNET automatically.

The maximum number of layers in JETNET is
11, although it is very difficult to find a situation
where mode than 4 is needed.

The maximum number of input nodes is 1000.
This can be changed by changing the parameter
MAXI in the PARAMETER statement in each
routine.

The maximum number of output nodes is 100.
This can be changed by changing the parameter
MAXO in the PARAMETER statement in each
routine.

The maximum total number of nodes is 2000
(not including the input nodes). This can be
changed by changing the parameter MAXV in
the PARAMETER statement in each routine.

The maximum total number of weights is
150000. This can be changed by changing the
parametcr MAXM in the PARAMETER state-
ment in cach routine.

The maximum number of dimensions for the
self-organizing map is 2. This number cannot be
changed.

The program must be loaded together with a
function called RLU returning random numbers
callable by eg. X = RLU(ISEED), where ISEED
is an integer. RLU should return random num-
bers with a flat distribution within ]0, 1[.

The code is written entirely in FORTRAN 77.
All subroutine and common block names start
with the characters JN or JM, except for the
functions GAUSIN, GJM, GJN and GPIN.
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