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Rotor neurons are introduced to encode states living on the surface of
a sphere in D dimensions. Such rotors can be regarded as continuous
generalizations of binary (Ising) neurons. The corresponding mean
field equations are derived, and phase transition properties based on
linearized dynamics are given. The power of this approach is illus-
trated with an optimization problem—placing N identical charges on
a sphere such that the overall repulsive energy is minimized. The ro-
tor approach appears superior to other methods for this problem both
with respect to solution quality and computational effort needed.

1 Background

Standard McCulloch-Pitts neurons are characterized by sigmoidal updat-
ing equations

v; = g(u;) = tanhy; (1.1)
where the local field u; is given by

Uu; = Zw,-jvj/T (12)
]

and the inverse temperature 1/T sets the gain. The neurons are binary in
the high gain (T — 0) limit. In feed-back networks (Hopfield and Tank
1985) with a quadratic energy function in terms of binary neurons s;,

1
E=-3 > wisis; (1.3)
i.f

the iterative solutions of the mean field equations (equations 1.1 and 1.2)
represent approximate minima to E for appropriate values of T, where
v; =< s; >7. In the more general case one has

1 0E

T, (1.4)
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In a series of papers, we have investigated the generalization of this
approach to multistate (Potts) neurons, which are superior in situations
where one wants only one of the s; (v;) to be “on” and the others “off.”
In effect, equation 1.1 is replaced by!
et

v = 5 o (1.5)
Such a constrained encoding turns out to be crucial for many optimiza-
tion applications (Peterson and Soderberg 1989; Peterson 1990a). Potts
neurons also play a crucial role in deformable templates or so-called elas-
tic net methods (Durbin and Willshaw 1987). In feedforward networks
with exclusive classifications Potts neuron encoding of the output layer
could be profitable (Lonnblad et al. 1991).

In the present paper we investigate the generalization from binary
neurons to the case of a continuum of states on a D-dimensional sphere,
and apply the method to the problem of optimal configuration of charges
on a sphere.

2 Rotor Neurons

Consider the general problem of minimizing an energy function E(sy, .. .,
sy) with respect to a set of N D-dimensional unit vectors s; (hereafter
denoted rotors)

|S,'| =1 (21)
A locally minimal configuration must satisfy
si = —ViE/|V.E| (2.2)

Local optimization consists of iterating these equations until convergence.
This is in general not a very good method for finding the global mini-
mum: the configurations easily get stuck in local minima. A more careful
method is simulated annealing (Kirkpatrick et al. 1983), where a thermal
distribution oc exp(—E/T) is simulated. The temperature T is very slowly
lowered, until a stable state results. This method is very time-consuming,
if a good result is desired.

For this kind of problem, we suggest a mean field theory (MFT) ro-
tor approach analogous to what is used for combinatorial optimization
problems (Hopfield and Tank 1985; Peterson and Sderberg 1989).

2.1 Mean Field Equations. Consider a thermal distribution of con-
figurations, characterized by the partition function Z,

= / e FBTds,  dsy 2.3)

Using [0,1] representation rather than the [~1,1] of equation 1.1.
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where the simplified notation ds; means that the integration is to be per-
formed only over the direction of s;, and normalized such that [ds; = 1.

For simplicity, consider first a single integral I = [ H(s)ds, over the
directions of a D-dimensional unit vector s, with H an arbitrary function.
It can be rewritten as

/H(s) ds = /H(v)é(s —v)dsdv /H(v)e“'(s"’) dsdvdu (24)
Performing the s integral, one is left with

I / H(v)e " *H® dy du 2.5)
where u = |u| and F(u) is defined by

F(u) = log/e“'s ds (2.6)

For a D-dimensional integral, this evaluates to

F(u) =logIip_2)2(u) — log u + const. 2.7)
where I,, are modified Bessel functions.
Repeating this trick N times with the multiple integral Z, we obtain

7 x /exp [—E[v]/T =S vi-wi+ > Fw)| dvidu ... dvyduy 2.8)

Next, we seek a saddlepoint of the effective potential, appearing in the
argument of the exponent in the integrand in equation 2.8, by demanding
its derivatives with respect to u; and v; to vanish. This results in the mean
field equations

u = —%V,‘E[V] (29)
vi = g(w) = iug(w) = iF () 2.10)
where #; = w;/u;. They give v; as the average of s; in the local field

V,E(v). In Table 1, g(u) is listed for different values of D. When D =
1, equation 1.1 is recovered. The corresponding curves are shown in
Figure 1. In the large D limit, the shape of g is given by

2

lim g(Du) - Y+l =1 @.11)

D—oo 2u
We regard this system as a neural network, with v; as a generalized neu-
ron, u; as its input (local field), and g as a generalized sigmoid function.
The obvious dynamics consists in iterating equations 2.9 and 2.10.
The performance of the neural network thus defined will depend on T;

this is to be discussed next.
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Table 1: Proper g(u) for Different Dimensions D.

D 8(u) gu)u—0  g(u)u— oo
i tanh u u 1 — Dp—2u
2 () /Io(u) u/2 1—1/2u
3 cothu —1/u u/3 1-1/u
4 Ip(u) /I (u) u/4 1-3/2u
D Ipp(u)/Iip-2)2(u) u/D 1-(D-1)/2u
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Figure 1: Graphs of g(u) for different dimensions D.

2.2 Critical Temperature Estimation. From equation 2.10 we infer
that for small w;, v; = u;/D. Making the simplifying assumption that E is
rotationally invariant, we can approximate E for small v with a quadratic
form

1
E=Eo— 5> wyvi v+ 0@ .12)
ij

But then vi = ... = vy = 0 is a fixpoint of the updating equations 2.9
and 2.10. Linearizing these for small v, we obtain

1
Vi= By 2}: WijV; (2.13)
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Figure 2: Schematic evolution of a D = 2 rotor initialized close to the center, for
T<T..

If the temperature is higher than the critical temperature

T, = %max()\max, —Amin) (2.19)
where Amin/max are the extreme eigenvalues of w, this trivial fixpoint is
stable under synchronous updating, and the system is in a symmetric
phase. For a lower T, it becomes unstable, and the mean fields v; will be
repelled by the origin. For low enough temperature they will stabilize
close to the sphere v? = 1 (cf. Fig. 2). The dynamics is thus very different
from that of local optimization and simulated annealing, where moves
take place on the surface.

For serial updating, things are similar, although T is different. In the
special case of a constant self-coupling w;; = p, we have instead

Te = & max(hmas, —1) 2.15)
Thus, for a large set of energy functions, we can estimate T, in advance. A
good strategy is then to initialize the system close to the symmetry point,
with T close to T, and slowly anneal while the system settles. When
finally a stable state is reached, a possible solution to the minimization
problem is extracted.
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For both types of updating, it turns out to be advantageous to be able
to adjust the sel f-(.ouphng to achieve maximum stability. This is done by
adding a term —(/3/2) 3,92 to the energy. For a more detailed discussion
of § and T, and of serial versus synchronous updating, the reader is
referred to Peterson and Soderberg (1989).

3 Placing Charges on a Sphere

We now turn to the specific problem of the equilibrium configuration of
N equal charges on a sphere (D = 3). With Coulomb interaction between
the charges the energy function is given by

2
Z __ﬁE: 2 3.1
2\/_ i 1—sl s}) 2 < % @.1

where we for dynamic reasons have added a 3 term as discussed above.
With this energy function the local field u; (cf. equation 2.9) is given by

1 \f
i = T 3 + i (32)
B 2\/_§]—v, of A2

with the corresponding updating equation (see Table 1)
v; = t;(cothu; — 1/u;) (3.3)

The critical temperature T. for this system in serial updating mode is, for
reasonable ( values (cf. equation 2.14)

T.= (8 + 535)/3 (3.4)

The f(-term also affects the low temperature behavior, controlling the
tendency for the system to remain in a local minimum. A good final
configuration, with the charges uniformly distributed over the sphere,
should be stable. This means that the updated u;s should satisfy

ll,'(t) -V,‘(t — 1) >0 (3.5)
A necessary condition for accomplishing this can be derived for large N.
The result is
N3/2
B> fo= (3.6)

The role of § is thus twofold: it controls the phase transition and the
dynamic behavior at low temperatures. Equipped with prior estimates
of T. and /3, the algorithm for a given problem size can take the following
“black box” form:

1. Compute T, and {5 according to equations 3.4 and 3.6.
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Figure 3: Time consumption as a function of problem size (N) for the MFT rotor
(MFT), gradient descent (GD), and simulated annealing (SA) algorithms. Both
axes are logarithmic. The three lines correspond to N, N?, and NP, respectively.

2. Initialize with v¢ = 0.01 - rand[-1,1].

3. Update all v;s in turn according to equations 3.2 and 3.3.
4. Decrease the temperature, T — 0.95-T.
5

. Repeat from step 3, until the saturation (Peterson and Soderberg
1989) 3°;vZ/N > 0.99.

6. Extract configuration by setting s; = 0;.

Using this prescription we have computed configurations of 3, 5, 10, 20,
30, and 100 charges, respectively. In Figure 3 the time consumption as a
function of problem size is shown. As in the case of other MFT applica-
tions (Peterson and Soderberg 1989; Gislén et al. 1989, 1992), the number
of iterations needed for convergence empirically shows no dependence
on problem size. Hence, the time consumption scales as N? for the MFT
rotor algorithm.

As for the quality of the solution, the MFT rotor model gives the
correct solutions where these are explicitly known (N = 2, 3, 4, and 6).
For larger problems we have compared the solutions with those from a
gradient descent (GD) and a simulated annealing (SA) algorithm. In GD
one charge at a time is moved on the sphere a step o« —gradient/N. In
SA, a maximum step size x 1/N was used, with the annealing schedule
T — 0.95-T. These algorithms were clocked when the energy was within
1% of the MFT rotor result. The time consumption to achieve this is
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Figure 4: Evolutions of rotors for an N = 32 problem as T decreases. Open
and filled dots represent charges placed in front and the back of the sphere,
respectively. The two graphs are generated to provide a stereo effect.

shown in Figure 3. In Figure 4 the evolution of the rotors for an N = 32
problem is shown.

Comparing the MFT rotor approach with the conventional ones we
find that for the MFT rotor algorithm the number of sweeps needed to
reach a satisfactory solution is practically independent of problem size,
while for the other methods it is (with optional step size) roughly pro-
portional to the problem size. As for quality, the final energies obtained
by the MFT rotor approach were always equal to or lower than the ones
obtained with the other approaches.

We have also run the MFT rotor algorithm fora D = 3 system, where
we substituted the appropriate sigmoid in equation 3.3 with a properly
scaled tanh function

v; = fi; tanh(u;/3) 3.7)

We find that the algorithm performs as well (if not better) with respect
to the number of sweeps needed to obtain a good solution. The rea-
son for this investigation is that this sigmoid is more natural in a VLSI
implementation.

4 Summary

The formalism and dynamics for D-dimensional feedback rotor neurons
have been developed. For D = 1 one recovers the conventional sigmoidal
updating equations. As a first test bed for this approach in higher dimen-
sions we applied the method to the problem of finding optimal charge
configuration on a D = 3 sphere. The performance of the rotor method
appears to be superior to that of gradient descent and simulated anneal-
ing for this problem.
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Other potential problem areas of more practical use are, e.g., curve de-
tection in the early vision system (Zucker et al. 1990), or the reconstruction
of tracks from signals (Peterson 1990b). The D > 1 updating equations
can of course also be used in feedforward multilayered networks.
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