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Track finding with deformabletemplates
— the elasticarms approach
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A novelalgorithm for particle tracking is presentedandevaluated.It is basedon deformabletemplatesthat converge
usinga deterministicannealingalgorithm.Thesedeformabletemplatesareinitialized by Hough transforms.The algorithm,
which effectively representsa mergerbetweenneuronicdecision making and parameterfitting, naturally lendsitself to
parallel execution.Very good performanceis obtainedfor both non-magneticand magnetictracks.For thelatter simulated
TPCtracksfrom the CERN DELPHI detectorare used.

1. Motivation and results

Particlephysics containsmanychallengingfeature recognitionproblemsrangingfrom off-line data
analysisto low-level experimentaltriggers. In particularfor the next generationof accelerators(LHC,
SSC)the availability of efficient patternrecognitionalgorithmsthat can be executedin real-timewill be
crucial.The eventrateat thesemachinesis expectedto beof the orderof oneeventper 10—100ns. One
classof featurerecognitionproblemsis trackfinding. This is a combinatorialoptimizationproblem;given
a setof signalsreconstructparticle trajectoriessubjectto smoothnessconstraints.

Artificial neuralnetwork (ANN) techniques,or variationsthereof,haveshowngreatpower in finding
good approximatesolutionsto difficult optimizationproblems[1—3].In refs. [4,5] a neuralapproachwas
pursuedfor the track finding problemwith encouragingresults with respectto solution quality for
toy-sizedproblems.The basicidea is to assigna decisionelement(neuron)S11 betweentwo signalsi and
j which is equalto 1 if i andj areconnectedand0 otherwise.An energyfunction is constructedin terms
of S,3 such that smooth tracks with no bifurcations correspondto minima. In its “raw” form this
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approachrequires N2 degreesof freedomfor N signals. This assumesfull potential connectivity. In
reality this is never the casedueto the locality of the problem; a trackcannotpasstoo many pad-rows
without giving rise to a signal. Also at high energiesthe curvature is limited, which constrainsthe
connectivityin (SO,~4).In ref. [61suchrealisticcuts on the degreesof freedomweremadeon real TPC
data from the CERN ALEPH detector.The performancein terms of quality of this ANN algorithm
turns out to be compatible with the conventionalone used in the ALEPH detector.With regardto
executionspeedthe ANN approachis a winner, in particular for high-multiplicity events[61.Another
local neuralnetwork inspired approachis to have a rotor [7] associatedwith eachsignal interactingin
sucha way that smoothtracks[81arepromoted.This method,which still needsto be workedout in more
detail, would only require N degreesof freedom.

Eventhough the neuralapproach[4—61seemsto work very well, it may not be the optimal way to
proceedfor the particlephysics trackfinding problemfor the following reasons:
1. It only solvesthe combinatorialoptimization part of the problem; assignssignalsto tracks. In reality

onealso needsto know the momentacorrespondingthe tracks.In the neuralapproachone then has
to augmentthe algorithmwith somefitting procedure.It would be nice to havea algorithmthat does
both thingssimultaneously.

2. The neural approachis presumablymore general than what is neededfor this problem. The
parametricform of the tracks is known in advance— straight lines or helices.The network has no
prior information about this. However, in other applications with no prior knowledge of the
parametricform of the tracks, the veryversatileANN approachis the way to go “.

3. The numberof degreesof freedomneededto solve the N signal problem is large even with the
connectivityrestrictionsimposedin refs. [5,6]. For a problemwith N signalsand M tracksoneshould
only needi9(M) degreesof freedom.

4. As demonstratedin ref. [91the neural approachis somewhatsensitiveto noise.Again with prior
knowledgeof the parametricform one shouldbe morerobustwith respectto noise.

All theseissuescanbe accountedfor in a novel approach[101basedon so-calleddeformabletemplates
[11] or elasticnets[3]. A verysimilar approachwas independentlypursuedin ref. [9]. The strategyis to
try to match the observedeventsto simpleparameterizedmodelswhere the form of the modelscontains
thea priori knowledgeaboutthe possibletracks— circles passingthrough the origin (the collision point).

Tracking elementaryfeaturesand grouping them coherently is not a problem unique to particle
physics.It is an importantproblem in computervision in general.There are many additional applica-
tions, such as the detectionof incoming aircraft, but also interestingperceptualphenomena,such as
thoseexploredby Gestaltpsychologists[12,13].In some of theseapplicationsthe parametricform is not
known in advance.In those instancesone is of coursebetteroff with the non-prejudicedpureneuronic
formulation [4,5].The templateapproachis basedon a globalview on the trackfinding problem,which is
in line with how humanssolve the problem. On the other hand,conventionaltrackfinding algorithmsin
particlephysicslike the roadfinder [14] arebasedon local optimization.

The particle tracking problem consists of fitting smooth curves through a set of data points,
correspondingto thelocationof sensorresponses.An unknownsubsetof thesedatapoints correspondto
sensor“noise” and should be unmatched.Our strategy is to match the observedevents to simple
parameterizedmodels. Currently we assumethat the possible tracks are circles passingthrough the
origin (the collision point). This assumptionis correct if the particlesmove in a constantmagneticfield
andwith negligible ionization losses(suchlosseswould leadto changesin the curvature).The approach
can be modified if necessaryto allow for more complex paths.The formulation allows for some data
points, hopefully those correspondingto sensornoise, to be unmatched.The mechanisminvolved is

* In neuralapproachesthereis of coursealwayssome prior knowledgeor bias introducedin termsof penalty termsin energy

functions.
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closely related to redescendingM-estimatorsused in robust statistics[15]. For a discussionon this
connectionseeref. [16].

Hough transforms[17] are usedto provide initial conditions for the templatesand to specify the
number of templates required. Hough transforms are essentiallyvariants of “histogramming” or
“binning” techniqueswhich havepreviouslybeenappliedto particletracking[181.

It turns out that the deformabletemplates and the Hough transformsare not unrelated.In the
low-temperaturelimit one can show the Hough transformto be a specialcase of the deformable
templatealgorithm [10]. A somewhatoppositeapproachwastakenby Gyulassyand Harlander[9] who
startedout from the Hough transformandthengeneralizedit to elastic netsor deformabletemplates.

Deformabletemplatesand Hough transformscomplementeachother nicely for this problem. The
deformabletemplates,with a deterministicannealingalgorithm, give accuratefine-scalematchingand
can decline to match certain points — but need a rough estimatefor the number of tracks. Hough
transformswould guaranteeto get the correctanswerfor noiselessdataandfor infinitely small boxesin
parameterspace — but will make errors otherwise. Hough transforms, however, can be used to
hypothesizea numberof possibletrackswhich canbeverified, or rejected,by deformabletemplates.

Someanalyticalsupport for this strategycomesfrom the work of De Veaux [20] on fitting data to a
mixture of two Gaussiandistributions.His fitting criterion can be reformulatedin termsof deformable
templates.De Veaux provesmathematicallythat, for a sufficient amount of data, a binning technique
will provide a rough estimatefor the parametersof the Gaussianswhich is sufficiently accurateto
guaranteeconvergenceto the globally optimum solution for the deformabletemplates.

The basic underlying idea of the defonnable templates (or elastic arms) approachwas briefly
presentedin ref. [101. In this paper we develop this approachfurther with respect to theoretical
understanding,extensionsandimplementationissuesalong the following lines:
— A local variantof the Hough transformis introduced,which is lesscomputationalexpensivethan the

standardone.
— Both the Houghtransformandthe elasticarmsapproachesareextendedto threedimensions.It turns

outthat this gives betterresultswith respectto disentanglingtrackswhich areclose in the projected
xy-plane.

— Non-magnetic(straight)trackswith different originsaredealtwith in a successfulmanner.
— We demonstratethat the elasticarms algorithmeasilydealswith situationswhen it is initialized with

too many tracksfrom the Hough transform — extratracksare eitherattractedto noise sparksor to
other arms, which have settled. Both casescan be dealt with by a removal procedureafter the
algorithmhassettled.

— An alternative derivation of the elastic arms approachbasedon performingmaximum likelihood
estimationis given.

— The role of the effectiverepulsionterm (winner-takes-all)in the algorithmis well understood.
— Phasetransitionpropertiesof the algorithmarediscussed.
— When implementingthe algorithm the domainsof attractionfor each arm can be limited to one

hemisphereor less,which speedsup the computations.
— Genericprescriptionsfor settingthe parametersregulatingconvergenceof the algorithmaregiven.
This paperis organizedas follows: Geometricalconventionsandthe metricusedis found in section2. In
section 3 we describethe classicHough transformand the cost-effectivelocal variant used in our
approach.Section 4 containsthe derivation of the deformabletemplates(elasticarms) algorithm.We
also demonstratehow it gives rise to the Hough transformas a specialcase.Implementationissuesand
practical hints are discussedin section 5 togetherwith numericalexplorationsusingsimulatedDELPHI
TPC data. Finally, in section 6 the readerfinds a brief summaryandoutlook.
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2. Geometryand metric

2.1. Curvestracks

Throughoutthis paperwe work with a constantmagneticfield in the z-direction, B = BI. Further-
more,we neglectenergylosses— all tracksarehelicesin the xy-plane. In threedimensionsa track a is
thus a spiral emergingfrom the origin with emission angle °a in the xy-plane, curvatureKa and a
parametery~governingthe longitudinal (non-curved)direction. In termsof theseparametersa spiral is
givenby

x = ~~~{5~fl(Oa+ sgn(Ka)t) — sin Oa}, y = —~--{—cos(60+ sgn(K~)t)+ cos Oa), z = )‘at, (1)

where t E [0, Tr] correspondingto a half-spiral (this limitation, whichcorrespondsto real life, is necessary
in order to avoid closedcircles in the projectedplane).We useK rather than r = 1/K to describethe
curvaturesince the former is boundedin track-finding situationswhere the detectordefines a lowest
possiblehelix radius.

The minimal squared EuclideandistanceMia between a spiral a and a signal i with position
(x,, y~,z,) is givenby

Mia = ~ + ~

=
4(1_f(kaxj+sinoa)2+(Kayj_cosea)2)2+(zj_yat)2, (2)

where

K x.+sinO
t= —sgn(~) arctan a a +Oa . (3)

— cos

We will later also apply the method to situationswhere the eventshave beenprojected on to the
xy-plane(cf. ref. [10]). In thosecases,of course,only the first term in eq.(2) is kept (M,~’~).

2.2. Straight tracks

Onemight alsowant to considersituationswith no magneticfield — straighttracks. In our casethese
applications,which are limited to two dimensions,areof two kinds. Oneis as abovewith a givenvertex,
in which caseone hasoneparameteronly, the emissionangle 0a in the equationsdescribingthe track.
The other application is when the vertex (x

0, y0) is also an unknown to be determined.The general
equationsfor this read

x=x0+t cos Oa, y=y0+t sin °a’ (4)

where t � 0.

3. The Hough transform

As a first stepwe needa methodthat providesuswith the approximatenumberof tracksin an event
andthe approximateparametervaluesfor thesearms.The Hough transform[17,18]is appropriatefor



M. Ohtssonetal. / Trackfindingwith deformabletemplates 81

this. In its original form one determinesa curve in parameterspacefor a given signal (x1, y~,z1)
correspondingto all possibletrackswith a given parametricform it could possibly correspondto. All
such curves belonging to the different signals are “drawn” in parameterspace.This spaceis then
discretizedandentriesarehistogrammed— onedivided parameterspaceup into boxesand countsthe
numberof curvesin eachbox. If the towers in the histogramexceedsthresholdsin the parametervalues
(0, i~,.~)then the correspondingparametervalues define a potential track. Needlessto say, if the
granularity of this procedureis chosento be very small, the computationalrequirementsgrowsvery
rapidly. As will be shownin the nextsection,thisHoughtransformcanbe derivedasa limit of the elastic
armsalgorithm.

In ref. [10] a variantof the Hough transformwas developedwhere all possiblepairs of signalsare
pickedand the intersectionof their curvesin parameterspaceis found.One of the parametersis then
eliminatedand the remainder(s)form the basis for a new histogram,which is has a cleanersignal-to-
backgroundseparationthan the original Hough transform.This versionwasfound to be verysuccessful
with respectto solutionquality but at the expenseof heavyCPU demand.

In this paperwe presentanotheralternative,which is local and hencevery fast to execute.One
definesa small neighbourhood(circle) aroundeachsignal and calculatesthe parametervalues (K,,, 0,,
and y,,) for eachothersignalwithin thisneighbourhood.In thisprocessoneignoressignalssitting on the
samepad-layer,since it is most unlikely that a track follow a pad-layer “. This proceduremakes the
numberof calculationsgo like t9(N) and not like 9(N

2) when one takesall possiblepairs of tracks.
And, maybemore importantly, it reducesthe noise.In what follows we usethis local Hough transform.
We haveexploredthis techniquein a numberof differentsituationsrangingfrom “academic” tracksto
morerealisticdata including trackswith energyloss(non-perfectspirals)andnoisesignals.

Straight tracks. For perfectlineswith no noisesignalsthe Houghtransformis of coursetrivial — it is an
analytical transformation.In order to challengethe algorithmwe havegeneratedtrackswith noise and
small deviationsfrom purelinesoriginatingfrom thesamevertex.In fig. la we show suchan event.The
resulting 0-distributionis shownin fig. lb. As canbe seenfrom fig. 1 the transformgives good solutions
to the problem. No additional ambiguitiesneed to get resolvedby further processing.We havealso
generatedsignalscorrespondingto straight tracks(perfect lines with no noise) originating from three
differentvertices.Suchaneventis depictedin fig. 2 togetherwith the parameterdistributionsunderlying
the solution.Again the algorithmseemsto work verywell. This exampleis particularlyinterestingsinceit
gives a hint on how to handlesituationsinvolving vertex reconstructionand situationswith multiple
collisionsas expectedat LHC and SSC.

To improve the solutionsfor straight trackswith the elasticarmsmethoddescribedin the nextsection
is straightforward.We thereforeleavestraight tracksandmove to curvedones.

Curvedtracks. Academiccurvedtrackswith perfecthelicesandno noisesignalsare easilyhandledby the
local Houghtransformas is shownin fig. 3. This is in contrastto “real” curvedtracksgeneratedby the
CERN DELPHI TPC eventgenerator[19], which contain energylosses(the physical dimensionsof the
TPC detectorcanbe found in section5.2) (non-perfecthelices)andnoise.Suchan eventprojectedonto
the xy-planeis shown in fig. 4 togetherwith the (0, K)-distribution obtainedwith the local Hough
transform.As canbe seenfrom fig. 4 the local Houghtransformcannotsolve the problem.Furthermore
ascanbe seenfrom the (0, K)-distribution it is very difficult to havea uniqueprocedurefor defining a
cut that yields the numberof tracks.Theorigin of theseproblemsis threefold:
— energyloss(non-perfecthelices);
— presenceof noisesignals;
— decayingparticles.

* Pad-layersare concentricalrings of detectorelements.
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Fig. 1. (a) Generatedsignalscorrespondingto non-perfectstraight trackswith noisetogetherwith the solutionobtainedfrom the
local Houghtransform.(b) Resulting0-distribution.

In a certainsensedecayingparticles(secondaryvertices)are also a form of noisewithin our approach,
since all trajectoriesare in generalassumedto originatefrom a commonorigin. The first two itemswill
be efficiently dealt with by the elastic arms approach,which is presentedin the next section.The
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practicalproblemwith extraverticesoriginatingfrom decayingparticlesis not the focusof this paper—

possiblesolutionsarediscussedin the end.

4. The elastic arms approach

4.1. Derivation of the algorithm

Armed with a set of M deformabletemplates(0,,, Ka~Ya)’ a = 1,...,M, we fit them to the measured
points (x1, y~,z~)with a fitnessmeasuredefinedas

E[J’~a; 0,,, K~ Ya] = ~ViaMia +A~(EVia i)2, (5)

where Via is a binary decisionunit suchthat

(6)

if the ath arm goesthrough the ith point andis zerootherwise.
We want to minimize E[l’,,; Oa, Ka~ Ya] with respectto ~ ~a’ Ka and y,, subject to the global

constraintthat eachpoint is either matchedto a unique circle or not matched.More precisely,given i
thereexist a unique a suchthat V~a= 1; a measuredpoint shouldonly be assignedto one arm. The
secondterm in eq.(5) imposesa penalty A if a specific point is unmatchedto any circle. This canbe
relatedto robust statistics[15]. With thisparameterA onecanallow for noisepoints not to be associated
with any arm (e.g.cosmicrayevents).Also it governsthefinite width of a track in termsof signalsbeing
slightly displacedfrom an ideal arm. Whenfinding global minima of an energyfunction oneoften needs
to introduce noise in order to avoid getting stuck in local minima. A common procedurefor this is
simulatedannealing[21], where the systemis allowedto thermalizefor asequenceof temperature(noise)
7;,> 7’ ~> ... > T3 accordingto the Boltzmanndistribution

~[Vi,,;Oa, Ka~ Ya] = ~ . (7)

where /3 = 1/T is the inversetemperatureand Z is a normalizationconstant,the so-called partition
function

Z = ~ ~ (8)
(V1,} ~

We now computethe so-calledmarginalprobabilitydistribution

PM[Oa, Ka~YaI = ~ P[l’~,,; 0,,, Ka~ Ya] (9)

by integrating(summing)overthe neuronicdegreesof freedom,“ca’ In doingthiswe mustensurethatwe
sumonly overconfigurationsof the V’s, whichsatisfythe global constraintsdefinedabove.As a first step
we rewrite eqs.(7) and (9) as

PM[Oa, K,,, y,,] = i ~ ~ (10)
{I,cj
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Fig. 2. (a) Generatedsignalscorrespondingto straight tracksemittedfrom threedifferentvertices.(b) Resulting(x0, y0)-distribu-
tion.

The different possibleVia’5 correspondto functions a’(i) which areeither 1 or 0. This meansthat the
first term in the exponentof eq.(10) only getscontributionsfor a’(i)’s, which are 1. Correspondinglythe
secondterm is only non-zerowhen a ‘(i) = 0. This gives

1
PM[Oa, K,,, Ya] = ~ fle_PMI ‘r~ = — fl Ee~Mj~~~k, (11)

a’(i) ~ Z ~ a
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Fig. 3. (a) Generatedsignalscorrespondingto perfect heliceswith no noise togetherwith the solution obtainedfrom the local
Houghtransform.(b) Resulting(0, K)-distribution.

where in the last step we have interchangedthe order of the summationand product and madethe
notational replacementa’(i) —a a. We now rewrite eq. (11) as

PM[0,,, K,,, Ya] = —e~10~”~ (12)

wherewe haveintroducedthe effectiveenergyEeff as

Eeff[0a, K,,, Va] = — ~ ~log(e_/3A + ~ (13)

We are looking for the most probable configurations to eq. (12). These should be givenby the minima of
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Eeff with respect to 0,,, Ka and -ye. This is done by a gradient descentmethod for a sequenceof
decreasingtemperatures(annealing).Onegets

ff ,. aM.

(14)

aE ff aM.
(15)

aK,,

aE ff aM.
(16)a7,, a7,,
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or in amore genericform with notation~ = (0,,, K,,, 7,,),

z~.w,,=—~qVE~ff=~11~.l
2~,,VMia, (17)

whereV operatesin ir,, space.In eqs.(14)—(17) the Pottsfactor l~,,is given by

e_~Mj~
= e~~k+ ~ (18)

From eq.(2) oneeasilycomputesthepartial derivativesaM~,,/ao,,,aMj,,/aKa andaMja/ay,,,which canbe
found in appendixA.

4.2. A Bayesianview

Maximizing PM[0,,, K,,, y,,] can be thought of asperforminga maximum likelihood estimationof the
parameters0a’ Ka~y,, of a model that generatesdata r~with probability

P[r~:0,,, Ka~ Va] = ~(e~ + ~ (19)

We thenapply Bayes’theoremto obtain

P[r~ :0,,, K,,, Ya]PM[Oa, K,,, 7,,]
P[Oa,Ka,7a:ri]= P[] . (20)

If we makethe reasonableassumptionthat theprior probabilityof K,,, 0a andy,,, P[0,,, K,,, y,,] is uniform
then finding the best a posteriori estimate,maximizing P[Oa, K,,, y,, : r,] with respectto 0,,, Ka~ Va’ i5

equivalentto maximizing PEr, : 0,,, K,,, y,,].
This correspondsto a mixture of distributionsandcan be thoughtof as multiple regression(see ref.

[20]). The /3-parametermust now be interpretedas a measureof the spreadof the distribution andmust
beestimatedfrom our sensormodel. Our probabilitydistribution thereforeassumesthat the datacomes
eitherfrom oneof the templates0,,, Ka~ Va or from a uniform distribution parameterizedby A. Note that
if we allow the r, to occur in an infinite range then, becauseof the uniform distribution, the
normalization factor Z * will be undefined.This need not concernus, however, since we are only
interestedin the mostprobablestate.

4.3. How does the algorithm work?

How doesthis algorithmwork? At the starting temperatureTH a set of templatearms are placed
accordingto theHough transformvaluesfor the parameters0,,, K,, andy,,. The templatesare Gaussian
distributionscenteredaround the arm valueswherethe width is given by the temperature(seefig. 5).
Initially eacharmcanattractmany signals.The relativeimportanceof the different signalsis measured
by the Potts factor (eq. (18)). As the temperatureis lowered the different armsareattractedto nearby
signalsmoreintensely.As discussedin connectionwith eq. (5), A governsthe amountof noisepointsor
outliers the algorithm allows for. It enters the Potts factor (eq. (18)) as a “zero” neuron in the
denominatorwhich is neverupdated— it doesnotdependupon M,,,. For A —* ~ no noiseis ignoredand
the “zero” neuronvanishes.For finite valuesof A the “zero” neuronabsorbsall dataoutside1/A from
the domain of attractionof the arms.
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Fig. 5. An elasticarmat temperatureT.

4.4. Theeffectiverepulsiveforce

The potts factor implicitly contains a repulsiveforce with its winner-takes-allstructure.Consider a
situationwhere an arm is locatedapproximatelyin betweentwo tracksof signals.The trackwhich has
smallestM,,,-valueswith respectto the arm (no matter how small the possibledifferenceis) will take
overand move the arm to the correctposition. Any otherarm in the “area” will be attractedto other
tracks. In this sensethereis a repulsive force betweenthe arms. This repulsion force is transparent
alreadyat the effectiveenergylevel. Omitting an unimportantexp(Af3) factoreq. (13) reads

Eeff[0,,, K,,, Va] = — ~ ~log(1 + ~e_~Mi~~). (21)

Taking the limit as /3 —* gives

lim _log(l + ~e_~Mi~_~) 0, if M1,, > A for all a,
a

—aA — minaMja, otherwise. (22)

If the algorithmis initiatedby too many arms from the Hough transform,the extra trackswill behave
accordingto the following 3 possibilities:
(1) attractedto noise;
(2) attractedto pointsbelongingto tracksoriginatingfrom the decayvertices;
(3) attractedto a trackupon which anotherarm hasalreadysettled in.
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In the third alternativethe effectiverepulsiveforce dies away whenoneof the arms is alreadysettled.
Onegetsoneextraarm on top of the other.This is in contrastto the approachof ref. [9],whereone-arm
templatesare fitted to the datain a serial way. Incrementallyfitted arms avoid alreadyfitted signalsby
an explicitly introducedrepulsiveinteractionterm w2/(w2+ x2), which is quite similar to the onein eq.
(21) — both are unimodal and peakedat the origin, and fall to zero at infinite. For largevaluesof /3
varying w is essentialthe sameas varying A. In our terminology, therefore,Gyulassyand Harlander’s
strategy[9] of decreasingw during the computationcorrespondsto reducingA andis an alternativeto
annealingon /3.

4.5. Phasetransitionproperties

Decision problemsdescribedin thermodynamicallanguagetypically contain phasetransitionswhen
going from high to low temperatures.This is the casefor problems that can be mappedonto pure
neuronicmagnetic-likesystems[2], but also for template systemslike the elasticnet for the traveling
salesmanproblem [3,23] and in principle also for this one. In the traveling salesmancase a set of
template cities with spring-forceinteractionsare placedon circle with an origin close to the centerof
gravity of the signals(in this casethe cities). The equationhavea similar form to thoseof eqs. (14) and
(15), the main differencebeing the absenceof the “zero” neuron.As the temperatureis lowered the
circle containingthe templatecities is deformedandexpandedto matchthe cities. During this annealing
the correspondingPotts factors sharply go from all componentsbeing equal to a situation where one
componentis 1 andthe remainders0. Such aphasetransitionbehaviouris often convenientlymonitored
by the saturation .~ = (1/N)~,,~V~[2], which rises sharplyfrom 1/M to 1, where M is the numberof
template cities, when the temperaturegoes from infinite down to zero. In the travelingsalesmanthe
T —~ correspondsto the circle being contractedto a pointwhere the distancesto all citiesare the same
(centerof gravity).

What is the correspondingT —* ~ limit in our caseof track finding? It correspondsto a situation
where all the arms have identicalparametersgiven by minimal distanceto all signals. In principle one
could initialize the algorithmin thevicinity of this trivial fixed point. However,from the pointof view of
computationalspeedit is moreadvantageousto usethe Hough transformparametersvaluesas a starting
point — this meansthat the algorithmis initialized belowthe phasetransitionpoint 7;. Being initialized
below 7; doesnotmeanthat all matchingdecisionsaretakenby the Houghtransform.It only hasimpact
on theglobaldistribution of arms— many matchingdecisionsbetweennearbyandcrossingtracksneedto
be taken. This is efficiently doneby the elasticarmsalgorithm.

4.6. Relationto EM algorithms

An alternativealgorithmfor minimizing eq. (5) is the EM algorithm[24]which proceedsiteratively by
alternatingtwo operations.The first minimizes E[Via; 0,,, K,,, y,,] with respectto the 0,,, K,,, y,, variables
with the V,,, being fixed. The secondthencalculatesthe best estimateof the V,,, analyticallyusingeq.
(18). EM algorithms* haveempirically shown themselvesto be very quick to convergethoughthereis
currently no theoreticalresultswhich explain this.

4.7. TheHough transform limit

There is an interestingrelation betweenthe effective energyfor our deformabletemplatesand the
Hough transform. Whereasthe authors of ref. [9] start with the Hough/Radon transform* * and

* EM is short for havingiterationswhereanexpectationstepis followed by a maximization step.
* * The Radontransform is the continuousversionof the Houghtransform.
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generalizeit to elastictracking,our approachimplies the opposite.We start with deformabletemplates
andshow that the Hough transformcomesout in the large/3 small A limit.

The effectiveenergyfor one deformabletemplateis given by (a = 1)

Eeff[a] = — — ~log(e_PA + e_PM~(a)), (23)

where a = (0k, K
1, yi) are the parametersof the single template and M11(a) is the closest distance

betweenthe datapoint r1 and the templateparameterizedby a.
Minimizing Eeff[a] with respectto a is equivalentto maximizing

H[a; /3, A] = ~log(1 + eMi~_~), (24)

wherewe havedroppeda constantfactor NA from the cost function.
In the limit as /3 —* ~ we find

1
—log(1 + e_~M~_~)—a 0 if M-1 > A
/3

—*A—M,,,, if Mia<A. (25)

This alreadyhasthe flavour of a histogrammingtechnique;if a point r is sufficiently close(closenessis
measuredby A) to a curve with parametersa, then it gives a contributionto H[a : /3, A]. The discrete
limit can be attainedby dividing H[a : /3, A] by A. Then, as A —* 0, we geta contribution= 1 if Mia = 0
andzerootherwise— this is nothingbut the Houghtransform.The sameargumentis easily generalized
to the continuouslimit, the Radontransform[10].

Thuswe obtainthe Radon/Houghtransformin thelimit as /3 —~ ~ and A —* 0. In this limit we canuse
standardHough techniquesto find the extrema of H[a : /3, A], alternatively we could use gradient
descentalgorithms with multiple starting points. This is not entirely surprising. The /3 —* ~ limit
correspondsto T—* 0, which is gradientdescentin neuralnet language.Multiple gradientdescentsfrom
different seedsis a form of exploratory searchwhich the Hough transformdoesin the zero resolution
limit. In ref. [22] it is demonstratedthat for the related problem of image segmentationa numberof
existingalgorithmscansimilarly be understoodin termsof “annealing”along different parameters.

5. Simulationsandresults

5.1. Implementationissues

5.1.1. The Hough transform
The Hough transform is used to initialize the elastic arms algorithm. In its standardform possible

track parametersir,, = (0a, K,,, y,,) with finite resolutions~ ~,, and ~Va are determinedfrom the
measuredsignalsr~by solvingthe equation

M.,,(r,, 1•Ta) =0. (26)

One thenmakesa histogramin parameterspaceto find the most“popular” parametervalueswithin the

resolution.Equation(26) hasvery many solutions * for every r~.This fact togetherwith the existenceof
* In the continuumlimit a circular trackcorrespondsto infinitely manysolutions.



M. Ohissonet al. / Trackfinding with deformabletemplates 91

energylosses(non-perfecthelices) and of noise makesthe standardHough transformnot so effective.
We thereforeusea local Houghtransform(see section3) which consistsof two steps;first 0,, andK,, are
determinedusingsignalsprojectedontothe xy-planeandthen y,, aredeterminedusingthe found 0,, and
K,,.

1. Projectedtracks.First we define a circle with radiusp~aroundeachsignal i such that it coversat
least two pad-layersin the detector. For all signals j within the p~5-neighbourhoodexcept those
belongingto the samepad-layerwe thensimultaneouslysolve

M,~’~=0, M~~=0 (27)

for all pairsof projectedsignalsr~ and r~. The solution to eq. (27), which canbe found in appendixB,
is a helix going through ~ ~ and(0, 0). Thesesolutionsare then usedto makea histogramin (6,
K)-space.The size of the detectordefinesthe upperlimit of K (0 � I K � 1/2rmjn), where rmjn is the
distancefrom the collisionvertexto the innerboundaryof the cylindrical detector.In caseswhereoneis
only interestedin particleswith a certain minimal energythe upper limit of K should be lowered
accordingly. The emission angle limits (0 � 6,, � 2’rr) can of course also be changed if one is only
interestedin particlesappearingin certaindirections.The entries(6,,, K,,) that exceedcertainthresholds
are thenkept aspotential (projected)tracksfor the next step.

2. Correlation with thelongitudinaldimension.We now use the establishedset of (6,,, Kq) to seeif there
is a correlatedset (y,,}. Again this canbedonelocally by defininga smallneighbourhoodc~aroundeach
found trackin the xy-plane— p~definesa thin “sausage”aroundthe track(for the DELPHI TPC data
we chosep~= 5). Onetrack (6,,, K,,) is chosenandthe equation

M,~=0 (28)

is solvedfor eachsignalr~that has a projection r~’~in this neighbourhood.Onethen makesa histogram
in y-spaceto find the most popular 7. If (6,,, Ka) is a valid track, then there should only be one
substantialpeakin the histogramcorrespondingto its y,,-value. If no such distinct peakexists,it is very
likely that the track (0,,, Ka) is non-validone. Theselast two stepsare repeatedfor every (6,,, K,,)-pair.

We arenow armedwith a set of spirals ir,, = (0,,, K,,, Va) to initiate the elastic armsalgorithmwith.

5.1.2. The elastic arms algorithm
Given the approximatenumberof arms andthe correspondinginitial valuesof parametersfrom the

Hough transformwe next minimize the effective energyEeff[6,,, K,,, y,,] defined in eq. (13) using the
gradientdescentequations(eqs. (14)—(17)). In this subsectionwe give a set of prescriptionsandhints of
how to ensuregood and rapidconvergencein a way that is as problemindependentas possible.

From eq. (17) we have Liir,, = — ‘qVE~~~.However, the partial derivatives E,,~1/a0,,,aEeff/aKa and
aEeff/aya all have different magnitudes.We therefore use different update rates for thesedifferent
parameters.Also the natureof K is different than the other two. For an almost straight tracka minor
changein K hasmoreimpact thanon a stronglycurvedtrack. Forthis reasonwe needlearningratesfor
K that dependsstrongly upon I K I. This naturally implies individual ic updaterates, ~ ~ ,
For 0,, and Va the situation is the oppositesince they should be independentof 6,, and I -y,., I. We
thereforehavecommonupdateratesij~ and for theseparameters.In summarywe have:
— commonupdateratesi~ and for all M arms;
— individual updaterates it” for eacharm a.
Also, the magnitude of the partial derivatives dependstrongly upon the magnitudeof our signal
coordinates I r~I. In order to makethe updaterateslessdependenton different tracking-problemswe
rescalethe signalsr~to some predefineddynamicrange,in our case, I r~I � 10.
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When initiating the ~‘s wewant a smoothtransition from the Houghparametervalues.This can be
accomplishedby choosing~, i~ suchthat ij0(1/M)L,, I aE~~/ao,,I andij~(1/M)~,,I aEeff/aV,,I aresmall
numbersas comparedto the rangeof 0 and y, respectively.The flK’s arechosensuchthat ~IK,, is some
fraction of Ka~wherewe againas an estimateof I aEeff/aK,,I use(1/M)~,,I aE~~/a~<,,I.

As mentionedearlier, T is measureof the width of the Gaussianaroundeacharm, thereforeT0 and
Tfjflal shouldbe chosenwith respectto the magnitudeof the dynamicalrange.

The left-handsidesof eqs.(14)—(16) in principle containsumsoverall signalsi. But the templatearms
are in reality half-spiralswhich meansthat the sumsshouldbe restrictedto includeonly those signals
lying in the samehalf-sphereas the arm does.If we are looking for very highenergyparticleswith small
curvaturesthis aperturecanbe limited evenmoreleadingto a significant speed-upof the algorithm.

As mentionedin section4.4 it is possiblefor extratracksto be attractedto noise-signals.Thesecanbe
removedafterthe algorithmif we requirevalid tracksto passthrougha minimal numberof signal-points.
Another possibility is that the extra track becomesidentical with an alreadyexisting track. This check
shouldbe done after the algorithmhas converged.

The parameterA governsthe relative importanceof signalsnot associatedwith any track. Sincethere
are noise-signalsandsignalsoriginatingfrom secondaryvertices(alsoconsideredasnoisein this context)
A shouldbekept small as comparedto an averageM,,,, allowing signalsnot to bematchedto any track.

The gradientdescentmethod is just oneway of minimizing Eeff, which is verysimple to implement.
Othermoreelaborateandpowerful minimization involve the secondderivative(Hessianmatrix) of Eeff.
Conjugategradientdescentis anotherpossibleminimizationprocedurewhere only the first derivativeof
Eeff is needed[25]. We did not use thesemethodsin our application studies. A very simple way to
improve the gradient descentmethod is to introduce a so-called momentumterm. Each degreeof
freedom ‘n-,, is given some inertia or momentum. In other words ~(t) gets a contribution from
1~7Ta(t— 1) accordingto

1~ir,,(t)= —~7VEeff+a~1r,,(t—1), (29)

where 0 <a < 1. This meansthat p,, feels an average downhill “force” when moving on the energy
surface.The momentumterm can preventthe energyfrom oscillating andhencemakethe minimizing
more effective.We use this updatingapplicationsin our with a = 0.5.

In fig. 6 we show a “black box” prescriptionof the elastic arms algorithm that we use in our
applicationstudies.

5.2. Numericalexplorations

We havetestedthe performanceof the algorithmwith simulateddatafrom the CERNDELPHI TPC

detector[191.This detectoris a cylinderwith 35 cm inner and 111 cm outer radiusanda length of 2.7m.

1. Obtain an initial setof arms from the local Houghtransform.
2. Rescalethe signals r, to the dynamicalrange.
3. Chooseupdaterates ~, i~,i~and a accordingto the dynamicrange.Do the same thing for A, T0 and T~1,,,,1.
4. For a sequenceof temperatures1’,, = kT,, ~, 1’,, � T~j~ai,with k = 0.95, updateaccordingto eqs. (14)—(16) and(29).
5. Make it convergeat T = Tij,,ai by lowering the updateratesuntil ECff is not changing.

~18EXfl6, =�X?~, =�Xfl~

wheree = 0.9.
6. Deleteextra tracks,which are attractedto noiseor doubleones(seetext).

Fig. 6. Theelasticarmsalgorithmfor particle-tracking.The algorithm is not very sensitiveto choiceof k ande. Parametersspecific
for theDELPHI TPC experimentcanbe foundin table 1.
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Table 1
Detectorspecificparametervaluesfor the local Hough andthe elastic armsalgorithm usingdata from the CERN DELPHI TPC
detector.

Local Houghtransform resolution (iSO, ~K) [180,100]

threshold(ë, ,~) 6

Elasticarms dynamicrange I r. I � 10
A 0.01
TH 0.2
Ttinai 0.01
� 1.06
a 0.5

This simulatoris supposedto bevery realisticwith respectto energylosses,noise,etc. Henceit shouldbe
sufficient as a challengingtest bedfor our algorithm.The elasticarmsalgorithmweusedfollows closely
the onein fig. 6. Detectorspecific parameterschoicesare foundin table1. The final resultsareshownin
figs. 8 and 9. It is encouragingto seehow well the algorithm works. The arms do not confuse one
another,evenwhen passingclose,or crossingeachother.This is, of course,dueto the Potts factor(eq.
(18)),which in a sense“decides”which trackeacharmshouldbeattachedto andignoresthe others.It is
interestingto seehow different ~,, = ~.,V,,,developwith decreasingtemperature(or iteration step).This
is shown in fig. 7. In this figure we havedeliberatelychosento initiate the algorithm at a high starting
valuefor the temperature.This implies that after a few iterationssome armeswill becomeidentical (see
section4.5). During the annealingprocessdifferent arms are thenattractedto different tracks.This can
be seenin fig. 7 as the developmentof E,,’s. There are also “neurons” that die out, which meansthat
they are redundantand do not correspondto tracks. In practice, however, we use a lower initial
temperaturesincewe do not want to “destroy” the Hough initialization. This decreasesthe numberof
iterations neededto be approximately40—50 for DELPHI TPC problems.

When the algorithm is initiated at a temperatureclose to the one correspondingto the Hough
transformvalues,the problemis easierin the sensethat many of the roughHoughestimatesof the track
parametersonly needfine tuning. It is impressivethat the algorithmis also ableto solve problemswhen
this “intelligent” initialization is smearedout at a higher initial temperatureas is the casein fig. 7.

0 20 40 60 SO ~.OO

iteration
Fig. 7. Developmentof the ~,,‘s.Thesehavebeennormalizedto theaveragenumberof signalsper track( 16).
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Table 2
Generalscalingpropertiesandtime consumptionneededto processa typicalDELPHI TPCevent.N and M denotethenumberof
signalsand potentialarms, respectively

Scalingproperties CPUconsumption(DEC3100)

Houghtransform N—N
2 9(1 s)

Elasticarms N X M2 ~l mm)

Errors that may occur comefrom tracksthat violate the assumptionsfor this algorithm, that is, (i)
tracksthat do not originate from our a priori knownvertex positionand (ii) tracksthat, due to energy
loses,arenot spirals.The problemwith secondaryverticescan, in principle,be dealtwith if we introduce
a new parameter~ which is the vertex position for track a. The elastic arms algorithm, derived in
section 4.1, does not change,but the distancemeasure M,,, is now also a function of r~0). A
generalizationto include unknownvertex positions shouldbe straightforward.Problem(ii) comesfrom
particleswith verylow energy,andusuallyonewantsto ignore thiskind of particles.If, for some reason,
onewantsto detecttheselow energyparticlesonewould haveto usea newparameterizationfor the arm
to includeenergyloses.

We consistentlyfind that treatingthe problemin threedimensionswith our algorithmis crucial when
resolvingsomeassignmentambiguitiesappearingon the two-dimensionallevel.

Not only doesthe algorithmexhibit good performance,it is also very cost effectivein every respect.In
table2 we show scalingpropertiesandtime consumption.The underlyingF77 codecontainsonly ~9(500)
lines.

6. Summaryandoutlook

We have deviseda trackfinding method that combinesthe matchingand the fitting problem into a
singlealgorithm.It goesfrom coarseto fine resolutionby usinga variant Hough transformto initialize a
set of elasticarms.The latter settle in an annealingprocessin a deterministicway to deliver the final
parameters— the momenta.

The approachgives rise to high-quality solutionswith very good scalingproperties(approximately
linear with the numberof signals) andmodesCPU consumption.It is straightforwardto implementon a
parallelprocessor.The algorithmis fairly insensitiveto convergenceparameters— we haveapplied it to
DELPHI TPCdatain a “black box” manner.

The elasticarmsapproachis very similar to humanprocessingfor this kind of recognitionproblem.A
humanlooks for helicesin a global way and then makesfine-tuning adjustments.This is in contrastto
conventionalroadfindermethods[4] and pureneuronicapproaches[4,5],which arebasedon more local
considerations.

The algorithmis closely relatedto robuststatistics— it ignoresnoiseto a desiredlevel.
The approachis easyto adaptto specific situations.For example,supposemeasurementprecisions

vary for different pad-layers.Thenthe formalism canbe generalizedto allow for different i-dependent
A’s for the different pad-layers.

In this paper we have focused on the basics~of the algorithm and methology for getting fast
convergence.Our main applicationstudywas simulatedcurvedtracks(includingnoise) in the DELPHI
TPC detector. At this point we ignored secondaryvertices from decaying particles. These can be
accomodatedby allowing for moreparametersdescribingthe arms(vertex positions).Preliminarystudies
of thisextensionusingstraight trackslooks promising.Also with theseextensionsthealgorithmcouldbe
usedfor vertex detectionin general.At LHC/SC luminositiesone expectsmultiple eventsperbunch
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Fig. 8. (a)Resultfrom Hough/elasticarmsalgorithm with signalsgeneratedby CERN DELPHI TPC event generator(308signal
points). (b) The sameresult projectedonto the xy-plane.

crossing.Again, allowing for extra parameters,this algorithm has the potential of disentanglingsuch
events.Cerenkovimagesare also of parametricnatureandshouldhencebe tractablewith this approach.
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Fig. 9. (a)Resultfrom Hough/elasticarmsalgorithm with signalsgeneratedby CERN DELPHI TPC eventgenerator(395 signal
points).(b) Thesameresultprojectedonto thexy-plane.

AppendixA

In this appendixwe give the partial derivativescomputedfrom eq.(2) that areneededin the elastic
armsequations(eqs.(14)—(16)).

au,,, aM~’~ at

a’~ —2y,,(z~—y,,t)~—, (Al)a a a
aM~,, aM~~ at

(A2)
aK,, a,, aK,,

aM.
—~= —2t(z~—y,,t), (A3)
a7,,
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where t is found in eq.(3) andthe xy-projectedquantitiesaregiven by

aM~~ 2 1 1

ao,, = ~ sin 0,,)2+(K,,y~—cos0,,)2 _1)(xi cos0~+~sinG,,), (A4)

aM~’~ 2

aK,, = —---~(l—~/(K,,x~+sin0,,)2+(ic,,y~—cos0,,)2)

x(1+
K,,y

1cosO,,—K,,x1sinO,,—l \
+ sin g,,)2+ (ic,,y~— cos 0,,)2 ) (A5)

and

ao,, — (K,,x1 + sin 0,,)2+ (Kayj — cos g,,)2 + (A6)at s~n(K~){ K,,y~cos 0,, — K,,x, sin 6,, — 1

at cos 0,, + y, sin 0,,

aK,, (K,,) { (K,,x~+ sin 0,,)2+ (ic,,y~— cos ~,,)2 (A7)— = +sgn

AppendixB

In order to calculate(0,,, K,,) for a helix going throughrf, rJ’ and (0, 0),we needto solve eq.(27)with
Mf,,~given by eq.(2). With (x,, y1) = rf, we get

4(l—~/(K,,x~+sin0,,)2+(K,,y~—cos0,,)2)=0,

1

~ (i — ~I(KaXj + Sifl 6,,) + (K,,y~ — cos 0,,)2 )2 = 0. (Bi)

Nextwe changeto polar coordinates(r~cos ~ r, sin vi,) = (x,, y.) —* (r,, ~ which givesus

2 2

= —sin i/is — 0,,, K,, = —sin ~/i~— 0,,. (B2)

Eliminating ic,, from eq.(B2) yields

r
1 sin ~ — Ti sin

tan 0,, = (B3)
cos — Ti cos ~J;~
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