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A deterministic algorithm for calculating polymer properties is presented.

It is based on a

variational approach where the bond and Coulomb potentials are approximated by a quadratic trial
energy. The parameters, which describe average atom positions and Gaussian fluctuations, are the
solutions of matrix equations. By a judicious choice of parameter representations and the use of
incremental matrix inversion, an efficient iterative algorithm is constructed that is several orders
of magnitude faster than Monte Carlo methods. The method is explored numerically at realistic
temperatures with results that agree within 5% with those of Monte Carlo calculations.

PACS numbers: 61.41.+e, 31.20.Wb, 36.20.—r

We consider polymers with nearest neighbor harmonic
oscillator bonds and Coulombic self-repulsion as a model
for, e.g., polyelectrolytes. These play an important role
as modulators in colloidal interactions and in the inter-
actions of large “particles” in general. Both synthetic
and natural polyelectrolytes are widely used in industrial
processes. From a more general point of view one could
regard proteins as polyelectrolytes, since they normally
carry a large number of charges at neutral pH.

The energy of such a polymer of N atoms is given by
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where i, = 1,..., N label the atoms and 7;; is the dis-
tance between atom ¢ and j.

To avoid an unnecessary complication of expressions,
we will work with dimensionless entities in what follows:
all lengths are expressed in units of the N=2 equilib-
rium distance 7o = (¢%/4mereok)!/3, energies in kr3, and
temperatures in krg/kp. With 7o = 6 A, ¢ = e, and
€, = 78.3, room temperature (298 K) corresponds to
T = 0.838.

In dimensionless variables, the Boltzmann distribution
at a finite temperature T' reads

 exp(~B/T), 2)
with
1 1
E=§Zri2,z'+1+z;fv (3)
i i<j Y
where it is understood that the global zero mode center
of mass position is to be excluded from integration.
Such a polymer system is strongly fluctuating and
hence standard Monte Carlo methods [1] are quite time
consuming. Typically N = O(200) are within reach
with good statistics for interesting quantities like atom-
to-atom distances. Being able to compute such quanti-

ties reliably for larger polymers, and to extend the cal-
culations to proteins which contain orders of magnitudes
more degrees of freedom, is highly desirable. Hence a
fast deterministic approach which well approximates the
system is called for.

In Refs. [2,3] the variational method of Refs. [4,5] was
revisited in this context. (Variational schemes have been
used in the past for polymer studies [6] and in particular
for polyelectrolytes [7].) The approach is based on an
effective energy ansatz Ey, given by

1 -
Ey/T = 520 L% — &) - (x5 — a5), (4)
ij
where a; define average atom positions, around which
Gaussian fluctuations are given by the symmetric positive
definite correlation matrix Gj;.
Using the effective energy, the exact free energy F' =

—TIn Z of the polymer is approximated from above [4]
by

F=F0+<E_EO>02F7 (5>

where Fo = —T'InZj, and ( )o refers to averages with
respect to the trial Boltzmann distribution exp(—Ey/T).
(For potentials more singular than 1/r2?, (E)¢ will be
divergent. Such potentials are not physical and we do not
consider this limitation of the approach a serious one.)
The parameters G;; and a; are to be determined such
that the variational free energy F' is minimized. The
resulting effective Boltzmann distribution is then used
to approximate expectation values (f) by effective ones
(o

In general the variational approach is expected to be
most accurate at high dimensions [2,5]. Apparently, this
has discouraged the community from pushing the ap-
proach for three-dimensional polymers into a numerical
confrontation. Also, using the method in a naive way
would give scaling behavior like N4, which makes the
method intractable for large sizes. We have also found
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empirically that such a naive implementation is plagued
with bad convergence properties.

In this Letter an algorithm is developed that lowers the
computational costs to N3 with controlled and nice con-
vergence properties. To this end we start by simplifying
the formalism. The symmetry and positivity constraints
on G;; are automatic if G;; is expressed as the product

7, are a set of independent Gaussian noise variables of
unit variance. (Note that z, are vectors not in R3 but in
RN-1)) In terms of a; and z;, the variational free energy
becomes (ignoring the trivial constant (Eg)o)

1
—3Tlndetz + Z(3zz2,i+1 +ali41)

of a matrix with its transpose: + Z 2 erf( Q5 ) (7)
N-1 i<y V22
G = Z ZipZip = Zi - Zj . (6)  Equations for a local extremum of F' are obtained by
u=1 differentiation with respect to z; and a;,
The interpretation of the local parameter z; is simple: it _3_151 . @ —0 8)
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In Egs. (9) and (10) w;, is the (transposed) matrix in- |
verse of z;,. o Nag(N) ) (14)

Note that Egs. (9) and (10) are consistent with a; =
0. Such a solution does indeed exist, and provides the
global minimum for high enough 7. For this solution the
equation for z; simplifies to

Z;
—3T'w; + 3(22; — Zi4+1 — Zi— 1) — V Z - (11)

J(#l)
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Empirically and theoretically it is advantageous to
work with relative coordinates, x§’) = Xiy1 — Xi, az(-r)
a;+1—ay, and z( - z;+1—2;. A simple gradient descent
method with a large step size € can then be used,

oF Aal® e, oF ’
Bagr)

Azgr) = —€ az(r) ) i
7

(12)

that gives fast convergence to a solution of Egs. (8). The
reciprocal variables w ( ) are updated using incremental

matrix inversion [8]—the change due to Azgr) is given by

wi(w” - A7)

(r _ _
1+ wgr) . Azgr)

AWJ

(13)

to be applied in parallel for j. As a by-product, the
denominator (1 + W(T) Azgr)) gives the multiplicative
change in det z{") needed to keep track of F.

The number of computations in each iteration step for
this procedure is proportional to N3. The number of
iterations required for convergence is a slowly growing
function g(IN). In total the execution time 7 of the algo-
rithm scales like

For the exact thermal distribution, Eq. (2), the follow-
ing virial theorem holds, due to the scaling properties of
the energy [Eq. (3)]:

2(Eg) —

where E¢ and E¢ are the Gaussian and Coulomb parts
of the energy, respectively—the temperature factor 3(N-
1) reflects the number of degrees of freedom. The virial
theorem provides a partial thermalization check in Monte
Carlo simulations. A nontrivial result of the scaling prop-
erties of the effective energy Ey (8] is that the virial the-
orem is respected by the variational approach.

As mentioned above, at high enough temperatures the
global minimum of F is characterized by a; = 0, to be
referred to as a purely fluctuating solution. This type
of solution is a local minimum also at lower T', where,
however, also a rigid (a; # 0) solution exists. Below a
certain critical temperature 7, the latter gives the global
minimum, indicating a first order phase transition. This
is probably an artifact of the variational approach—the
original system shows no sign of having a phase transi-
tion. It turns out that for realistic choices of T one is in
the region where a; = 0 gives rise to good results (see Fig.
1 below). Hence we will consistently use the a, = 0 solu-
tions in the numerical explorations. This implies faster
performance since only the z( ) equations in Eq. (12) are
needed.

In the high T limit, the variational results can be ex-
panded in 1/7". Thus, for the expectation value of the
Gaussian part Eg of the energy, the first two terms of
the expansion yield

(Ec) =3(N-1)T, (15)
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FIG. 1. (a) (rZ)? and (b) (r2,,.)'/? versus temperature
from Monte Carlo (solid) and from the variational calculation
(dashed), for N = 40. In this case, T, ~ 2.
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(Eg)o = (16)

which agrees with the exact result to the order shown—
the first discrepancy occurs in the O(T~2) term. The
same holds for any quadratic expectation value (x; - x;).
By the virial theorem, this also holds for the Coulomb
energy (E¢), and thus for the total energy as well.

In the low T limit, the exact result for the total internal
energy, expanded in powers of T', is

(3N —-5)T
2
where E is the classical (T' = 0) energy and 3N —5 is the
number of degrees of freedom, modified for symmetry. In

this limit, the variational free energy is minimized by the
rigid solution, for which the corresponding expansion is

(3N — 3)T
2

(E) = Eq + +0(T?), (17)

(E)o = Eq + +0(T?), (18)
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TABLE L. (r2,.)? and (r2)'/%in units of 1o = 6 A as
computed with the variational method (V) and Monte Carlo
(MC). The errors originating from the Monte Carlo runs are
estimated to be O(0.1%).

N 20 40 80 160

Tmm \% 2.173 2.266 2.351 2.428
MC 2.093 2.172 2.238 2.305

diff. 3.8% 4.3% 5.1% 5.3%

Tee \' 20.33 46.17 105.3 237.5
MC 19.83 46.67 100.7 230.1

diff. 2.5% 1.0% 4.6% 3.2%

where the first term is the correct one and the second
term is qualitatively correct for large N. For the purely

fluctuating variational solution, the low T result would
be

(E)o = (6/m)/3Eq + O(T), (19)

which is off by 24% already in the first term. The same
factor results for any quadratic expectation value (and
for any single term in (E¢)) in this limit. Thus, for
rms atom-to-atom distances, (rZ)'/2, this amounts to an
error of 11%.

Thus the variational approach is exact in both 7" limits,
and can be expected to give a reasonable approximation
also at finite temperatures. In Fig. 1 we give a qualitative
picture of the approximation as a function of T for both
types of solution.

To evaluate the accuracy of our method, Monte Carlo
calculations (Metropolis) utilizing translational and rota-
tional symmetries (cf. the pivot method in Ref. [1]) were
performed for sizes ranging from 20 to 160 (see Table I) at
a fixed T' = 0.838 (corresponding to 298 K). The result-
ing comparisons with variational calculations for nearest
neighbor ((r2,,,)%/?) and end-to-end ((r2,)!/?) distances
are shown in Table I. The results from the variational
approach are impressive—the deviation from the MC re-
sults is well below the 11% bound discussed above. Sim-
ilar judgment can be made on the correlations between
the first link and the others as shown in Fig. 2. The
algorithm is extremely fast: only O(100) iterations are
needed for convergence, which corresponds to approxi-
mately 30 CPU minutes on a DEC 3100 workstation for
an N = 160 problem.

We have presented a very cost effective and accurate
deterministic approach for computing atom-to-atom cor-
relations in polymer chains. This paper only concerns
the unscreened Coulomb case. The case of screened po-
tentials is presently being investigated. At low tempera-
tures the performance of the approach is inferior to the
pure Coulomb case. However, using an anisotropic low-T"
variational ansatz should improve the situation [8]. The
variational approach is also directly applicable to more
general topologies. Proteins could also be treated in this
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FIG. 2. Link correlations (v - v;), where v; = X;41 — X;.
Full line: variational result; dashed line: Monte Carlo.

way provided the traditional Lennard-Jones potentials
are replaced by forms that are less singular at the origin.
One should point out that in this approach the free
energy is naturally available in contrast to the case in
Monte Carlo calculations.
A potential improvement strategy that should be ex-

10. 20. 30. 40.

plored is to perform Monte Carlo calculations using vari-
ables adapted to the variational effective energy [9].
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