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We present a general method, the &test, which establishes functional 
dependencies given a sequence of measurements. The approach is 
based on calculating conditional probabilities from vector component 
distances. Imposing the requirement of continuity of the underlying 
function, the obtained values of the conditional probabilities carry in- 
formation on the embedding dimension and variable dependencies. 
The power of the method is illustrated on synthetic time-series with 
different time-lag dependencies and noise levels and on the sunspot 
data. The virtue of the method for preprocessing data in the context of 
feedforward neural networks is demonstrated. Also, its applicability 
for tracking residual errors in output units is stressed. 

1 Introduction 

The behavior of a dynamic system is often modeled by analyzing a time 
series record of certain system variables. Using artificial neural networks 
(A") to model such systems has recently attracted much attention. 
The success of such models relies heavily upon identifying the underly- 
ing structure in the time series-it is advantageous to know in advance 
the embedding dimension, most relevant inputs, noise level, etc. In this 
paper we devise a simple and easy-to-use method based on continuity 
requirements on statistical measures for identifying such essential prop- 
erties in a time series record. Even though the language is that of time 
series the approach applies to any continuous function mapping problem. 

Time series can have a wide range of behavior ranging from being 
entirely random and uncorrelated to being completely deterministic. In 
reality one is often in between these two extremes. Existing approaches 
to determine dependencies are either based on entropy measures (Kol- 
mogorov 1959; Farmer 1982), or on elaborate autocorrelation measures 
(Russell et al.  1980, Grassberger and Procaccia 1983; Brock et al. 1988; 
Savit and Green 1991). Our approach, which has its roots in the lat- 
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ter philosophy, aims at determining the embedding dimension, pinning 
down sensitivity on the various variables and establishing noise levels. 

Brock et al. (1988) have devised a method (the BDS test) to test the 
null hypothesis of whether or not a sequence of numbers is IID (inde- 
pendently and identically distributed random numbers). This test was 
further developed by Savit and Green (1991) into a conditional probability 
approach in which the degree of variable dependence may be quantified. 
Although the latter method has its merit in brevity, the message it gives 
is not without ambiguities. 

Inspired by the work of Savit and Green (1991) we propose a method 
(the &test) from a different viewpoint, which exploits the definition of 
function continuity. This definition, which can be easily connected to 
the behavior of the conditional probabilities, gives clear signatures (apart 
from ambiguities arising from insufficient statistics) with respect to vari- 
able dependencies and the embedding dimensionality. To our knowledge 
the proposed method does not exist in the literature despite its conceptual 
simplicity. 

The existing approaches mentioned above in general aim at establish- 
ing some invariant fractal dimensional measures. The numerical imple- 
mentations usually involve some box counting algorithms. Meaningful 
interpretations of the outcome from these algorithms as the box size is 
reduced rely heavily on a scaling assumption. The estimate of embed- 
ding dimension can be viewed as a byproduct from estimating fractal 
dimensions using these algorithms. In this paper we do not attempt to 
establish yet another invariant nonlinearity measure. Rather our aim is 
to pick out variable dependencies and identify the minimum embedding 
dimension directly from the data. By exploiting the properties of contin- 
uous functions we need no scaling assumption. Whereas the traditional 
line of approach leads naturally to the BDS statistic that tests against 
the null hypothesis of an IID sequence, the &test tests the hypotheses at 
both the extremes: IID or a deterministic map. In a large class of models, 
in particular the neural network models for time series prediction and 
system identification problems, the existence of a function mapping is 
inherently assumed. The 6-test provides good measures on the truthful- 
ness of such assumptions and gives an estimate on how successful these 
models can be in reproducing the sequence of data. This is the strength 
the traditional approaches are lacking. 

Successful explorations are made on different maps with and without 
noise and with a variety of time-lag dependencies. Also, the underlying 
dynamics of a sunspot series is studied. 

The relevance of the method for feedforward network training is illus- 
trated with the sunspot series, where it is shown that feeding the network 
with the established minimum embedding dimension vectors gives rise 
to state-of-the-art generalization performance. Also, the method can be 
used to track residual dependencies of the output errors in a Multilayer 
Perceptron (MLP). 



Variable Dependencies in Time Series 511 

2 General Formulation 

Consider a discrete-time system, manifested as a time series xt ,  f = 
1,2,3,  . . . , N, where we are interested in knowing if there exists a contin- 
uous map relating future values to the past ones (i.e., if it is possible to 
identify a state equation)' 

(2.1) 

The "noise"-term Y, represents an indeterminable part that originates ei- 
ther from insufficient dimension of the measurements or from real noise. 
In general rf should decrease with d. If the system is completely deter- 
ministic, Tr should vanish entirely as d exceeds the minimum embedding 
dimension d,,,. 

For a map given as a sequence of measurements, one wants to know 
(1) the minimum embedding dimension dmin, (2) the sensitivjty of Xr with 
respect to each of the dependent variables, and (3) an estimate of the size 
of the noise. By "variable dependence" we mean the primary depen- 
dence, not the induced ones. If xf  = f ( x t - 1 )  = f ( f ( x f - 2 ) )  we say that 
xt-l is the primary dependent variable, the induced dependence on x t - 2  

is of no interest. Variables with no primary dependence are denoted 
"irrelevant." 

We approach the problem by constructing conditional probabilities 
in embedding spaces of various dimensions d. The time series in equa- 
tion 2.1 is represented as a series of N points z(i) in a ( d +  l)-dimensional 
space (d = 0,1,2, . . .I 

(2.2) 

where q ( f )  = x f - k .  The distances between the kth components of two 
vectors z(i) and z(j) are defined as 

(2.3) 

Given a set of positive numbers, t and 6 = (61,. . . ,6d), one can construct 
the following joint probabilities from the data 

X t  = f(xt-1, x f - 2 .  . . . X 1 - d )  + Yt 

z(i) = (zO(i),zt(i). . . . .zk(i), . . . , z d ( i ) )  

I k ( i ,  j )  = Izk(i) - zk(j)I, k = 0,1,. . . , d  

(2.4) 

I 
P(15  6) = -n(l i 6) 

Npair 
(2.5) 

where Npair is total number of vector pairs, and n(20 5 f,1 5 6) and 
n(1 5 6) are the number of the pairs satisfying the corresponding distance 
constraints. Throughout this paper we freely use the notation 1 5 6 for 
( ( I 1  5 bl), ( I 2  5 b2) ,  . . . , ( I d  5 6 d ) ) .  Also we set Si = 6 for all i. 

'The series is assumed to be bounded and stationary and x ,  can take either red or 
complex values. 
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Next we form the conditional probabilities 

(2.6) 

How is P(l0 5 c 1 1 I 6 )  expected to vary under different conditions? The 
following important observations can be made: 

1. For a completely random time series one has 

This identity, which should be understood in a statistical sense, 
holds for any choice of positive 6 and 6. 

2. If a continuous map exists as in equation 2.1 with no intrinsic noise, 
then for any 6 > 0 there exists a 6, such that 

P d ( f  16) = 1 for 6 5 6, and d 2 do (2.8) 

The smallest integer do for which equation 2.8 holds is identified 
with (dmi,, - 1). 

3. In the presence of noise r, pd(f I 6) will no longer saturate to 1 as E 

becomes smaller than the width Armax of the noise. 

Equation 2.8 is a direct consequence of the definition of function con- 
tinuity, which states that if zo = f(zl,. . . , zd),  then for any t > 0 there 
exists a h > 0 such that the conditions Izl - z;I < 6,. . . , Izd - 221 < 6 
guarantee 120 - zbl < 6 .  With the presence of noise, however, 120 - zbl = 
If(zl,. ..) - f (z ; ,  . . .) + r - r’l, which as 6 .--t 0 cannot be made smaller 
than Ar = Ir - JI. This justifies the statement number 3. If we assume 
a flat noise distribution extending from -r to r with standard deviation 
u, = r/&, we get Armax = 2r = 2ficrrl which gives an upper limit 
estimate on ur knowing Armax. 

How does P,+(E 1 6 )  vary as a function of 6 for fixed c? For 6 + 00 the 
conditions have no effect. Hence one has p d ( 6  I 6 ) 1 ~ + ~  = Po(t). As 6 + 0, 
pd(t I 6) should increase monotonically and saturate to 1 for d 2 do. This 
behavior is shown schematically in Figure la.  The approach of Savit and 
Green (1991) was based on the identity Pd(t I 6)6=, = Pd-l(f I 6 ) b Z c ,  and 
establishes variable dependence when this identity is violated. However, 
ambiguities arise whenever irrelevant variables induce sizable changes in 
pd - pd-1 at 6 = 6 .  This effect often occurs due to nonuniform curvatures 
of trajectories. For this reason we examine the maxima 

P d ( c )  = maXPd(6 I 6 )  = Pd(6 I 6)16<6, (2.9) 
6>0 
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E 

Figure 1: (a) Pd(E I 6) as a function of 6 for fixed E .  (b) The maxima Pd(E) as a 
function of E .  Saturation to 1 would be observed for d 2 do. In the presence of 
noise the saturation deviates from 1 around EO N Armax. 

Saturation of the maxima as d increases singIes out the irrelevant vari- 
ables. How the maxima Pd(6) change with d and E provides basically all 
the information we need (see Fig. lb). 

Pd(€) measures how well the dynamics can be modeled in terms of 
the d variables. To quantify the dependence on each of the variables, it 
is convenient to define a dependability index2 

and its average over F 

(2.10) 

(2.11) 

For a noise-free deterministic map, Pd(f) saturates to 1 ford 2 do and one 
has 

(2.12) 

2This is similar to the index defined by Savit and Green (1991) but with different 
definition of P , ~ ( E )  and normalization. 
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A variable is considered irrelevant if its inclusion in the condition 
does not raise the conditional probability to a higher plateau (Id M 0). 
In the approach of Savit and Green (1991) negative indices of statistical 
significance complicate the issue of identifying dependent variables. In 
our case it can be shown that Ad=, 2 0, Ado > 0, and &,do = 0. Thus 
negative indices for d > do can arise only from statistical fluctuations. 
For 1 < d < do we expect that negative Ad to be largely due to limited 
statistics in the maximization procedures. Anything beyond statistical 
problems can easily be clarified by inspecting whether the saturation to 
1 is affected by treating the variable irrelevant. 

So far the formalism has assumed an infinite amount of data. With 
limited statistics very low &values or large ds may give rise to a picture 
not as crisp as the one in Figure 1. To estimate the errors we use the 
standard estimator 

(2.13) 

This error expression is not entirely adequate when correlations exist 
in time series. It nevertheless serves the purpose to signal whenever a 
statistically unreliable region is crossed into. 

Theoretically P ~ ( F  1 6) is expected to be a smooth and monotonically 
decreasing function of 6. It is generally flat near 6 = 0 and has a plateau 
that extends to a finite 6,. Finding its approximate maximum is not 
difficult, provided that there is a reasonable amount of statistics to probe 
the plateau region. In cases with very limited statistics it is advantageous 
to set an irrelevant variable k inactive, which means that the condition 
Ik 5 d is omitted when computing P d ( F  I 6) for d > k. By removing 
the unnecessary restrictive conditions in this way, improved statistics are 
obtained without affecting the evaluation of P , ~ s  in higher dimensions. 

3 Implementation Issues 

Next we give a systematic procedure following the above on how to 
read off the key properties of Pd( f  1 6) given a data set. We propose the 
following scheme: 

0. Compute P o ( f ) .  

1. Starting with d = 1 compute P d ( t  I 6) and find the maxima P d ( F ) .  

2. Evaluate the dependability index Id. 
3. (Optional) Variable elimination: if the dth variable is irrelevant (3, N 

4. Increment d by 1 and repeat steps 1-3 until Pd(t) salulurc's. 

O(O)), set it inactive. 
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5. Identify do for which P d ( f )  begins to saturate, and also the point 
for which Pdo (6) begins to deviate from 1. The minimum embedding 
dimension is then do + 1, and the noise width is estimated as fa.  

If option 3 is used, the dependability index in equation 2.10 is modified 
according to Ad(€) = ( P d ( € )  - Pd,(~))/(l - PO(€)), where d' 5 d - 1 is the 
nearest active variable and the summations in equation 2.12 are restricted 
to active variables only. 

In what follows t and 6 are expressed in units of o, the standard 
deviation of the data set. To obtain a map of P d ( l 0  5 f . 1  5 6) one can 
go through the data set and recount the statistics every time 6 and S 
are changed, or one can discretize the 6-6 plane, record the statistics in 
each bin, and then sum up contents in all bins progressively such that 
P(l0 5 t, 1 5 6) are obtained for a grid of 6-8 values by going through the 
data only once. We adopted the latter approach for the sake of computing 
speed and discretized the In €-In 6 plane by 30 x 30 bins with In 5 
In€ 5 ln4 and ln10-4 5 ln6 5 1114. A lower cut t,in = 0.1 is used for 
the €-integrations in equation 2.11. These parameters are not critical to 
the outcome of the method. It is possible to design algorithms without 
them. 

4 Applications 

We apply the method to two synthetic time series and the sunspot data 
problems. 

For the Logistic map we generate 4000 time-steps according to 

xf  = qxf-l(l - x ~ - ~ )  + rt (4.1) 

with q = 4 giving o = 0.35. The iterative noise rf consists of random 
numbers uniformly distributed in ( - r , r ) .  Two data sets are generated 
with r = 0 (1) and r = 0.28o (2), respectively. In order to keep the series 
bounded rf  is constrained such that x t  E (0, l ) .  

In Figure 2a we show Pd(cl6) versus 6 at E = 0.085 for various d. We 
observe a saturation of Pd(fl6) to 1 for d 2 1 in case (I), as expected 
for a one-dimensional noise-free map. The conditional probabilities still 
saturate in case (2) but only to N 0.55, which indicates the presence 
of noise. In Figure 2b the maximized conditional probability P I ( € )  is 
shown as a function of F for various dimensions d. For the noise-free 
data I'd(€) saturates to 1 for d 2 1 in the entire 6 range. For the noisy 
data I'd(€) still saturates approximately for d 2 1 but the saturation value 
starts to fall off from 1 somewhere between 0.3 and 0.7, implying a noise 
level r = lAmax[/2 between 0.150 and 0.350, which is consistent with the 
generated noise level. Calculating the dependability indices gives XI = 1 
for the r = 0 data, XI = 0.97 for the noisy data and &2 z 0. 
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Figure 2: Logistic map: (a) P d ( c  I 6) as a function of h for noise-free ( r  = 0)  and 
noisy data ( r  = 0.28). The curves represent d = 0 (solid), d = 1 (dashed), d = 2 
(dash-dotted), and d = 3 (dotted), respectively. (b) P d ( t )  as a function of c .  The 
curves correspond to noise-free data (same notation as in a) and the points to 
the noisy data. The upper curve displays the fall-off of P $ ( E )  from unity on an 
enlarged scale. 

For the Henon map we generate 4000 time-steps according to 

x f  = 1 - a(x , .2  - r f . -2)2  + b(xf -4  - r f P 4 )  + rf (4.2) 
with a = 1.4, and b = 0.3 giving CT = 0.723. This is the usual Henon 
map with the dependencies stretched to larger lags and with the noise 
additively applied. Again we will use two data sets with Y = 0 (1) and 
- r = 0.140 (2). The variable elimination option is used here. We obtain 
A1-4 = 0.002, 0.886, -0.023, 0.114 for (1) and 0.052, 0.728, 0.004, 0.128 for 
- (2). The dependencies on xf-2 and xt -4  emerge as large values of x2 and 
A4. For (1) X2 + J4 = 1, indicating a noise-free map, whereas for (2) the 
value is 0.86 signaling the presence of noise. 

The sunspot data (Priestley 1988) contain the annual averaged sunspot 
activities from 1700 to 1979 (280 points). This is a very limited statistics 
data set. The resolution limit, from which to extrapolate t + 0 behavior, 
is set by 6 x 0.95. For that reason we explore two different input rep- 
resentations, linear and logarithmic-different sensitivities may give rise 
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Figure 3: P d ( E  I 6) for the sunspot data together with estimated errors shown as a 
function of 6 for E = 0.957 and various dimensions d (marked on the curve); (a) is 
for the embedding (xI,xt-1,. . .) and (b) is for the embedding (xl,ln(l+xt-l). . . .). 
The ds for which the plateau fail to rise are omitted. 

to a more complete picture. Using the variable elimination option Pd(f16) 
are shown in Figure 3 for the two cases. From Figure 3a we see that 
the probability with conditional variables xt-l, xt-2, ~ ~ - 3 ,  ~ ~ - 9 ,  and xt-10 

approximately saturates to 1, whereas in the logarithmic representation 
(Fig. 3b) the variables xt-l, xf-2, ~ ~ - 3 ,  and xf-4 show up  to be relevant. 
Probing into smaller E with more statistics would clarify the situation. 
Based on the results of Figure 3 we approximately determine the embed- 
ding dimension to be around 7 with xt-1, ~ ~ - 2 ,  xf-3, ~ ~ - 4 ,  xf-9 and xt-lo as 
the most important variables, and we find the sunspot data are masked 
by large noises with amplitude on the order of 0.470. 

5 Impact on Neural Network Learning 

Feeding an MLP with redundant variables should be avoided since fitting 
to noise increases the difficulty of learning and may give rise to poor 
generalization. In Weigend et al. (1990) an MLP with a layer of 8 hidden 
nodes is trained with the sunspot series data. The authors experiment 
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with different number of time-lags as inputs, 6, 12, and 24, and conclude 
on the basis of generalization performance that 12 is optimal and hence 
that this number reflects the embedding dimension. We instead use the 
b-test results above as a guide for the relevant input variables. 

Following the procedures (without weight elimination) of Weigend 
et al. (1990) we have trained MLPs with 8 sigmoidal hidden units and 
1 linear output unit and various number of input units. With x f - l ,  ~ ~ - 2 ,  

xt-3, ~ ~ - 4 ,  ~ ~ - 9 ,  ~ ~ - 1 0  as inputs, we find for a 6-8-1 MLP the ratio of the 
mean square error to the variance3 (ARV) 0.073 on the test data from 1921 
to 1955. This performance is as good as the one achieved by Nowlan and 
Hinton (1992) using more sophisticated algorithms. In Figure 4 we show 
the learning curves of the 6-input network together with the ones of a 
network using 12 lag variables as used by Weigend et al. (1990). It is also 
interesting to notice that after training the network with weight elimi- 
nation, Weigend et al. (1990) find large connections to the hidden nodes 
from the inputs ~ ~ - 1 ,  ~ ~ - 2 ,  and ~ ~ - 9 ,  consistent with the 6-test findings. 

The 6-test is also very powerful when it comes to analyzing the resid- 
ual error of output units in MLP learning. With perfect training the b-test 
should identify the residual series as an independent random series. If 
this is not the case the test singles out the relevant input units from which 
information has not been fully extracted by the network. 

6 Summary 

We have devised a general method, the 6-test, for identifying dependen- 
cies in continuous functions. It is not limited to linear correlations and 
it determines the embedding dimensions, dependencies, and noise levels 
fairly accurately even in cases of low statistics. Automated procedures 
for setting bin sizes, cutoffs, etc. and error analysis are feasible. 

Being based on conditional probabilities our approach at first sight 
appears very similar to that of Savit and Green (1991). However con- 
ceptually the two are rather distinct. The latter is based on Grassberger 
and Procaccia correlation integral using d = E .  In contrast our method 
is based on the fundamental property of functional continuity (6 -+ 0). 
With the Savit and Green approach there are mainly two problems (Pi 
and Peterson 1993): (1) induced dependencies can show up in the index 
if nonuniform curvature is present in the function map; (2) there is not 
a saturation measure to indicate the critical embedding dimension and 
there is not an indication to quantify the noise level. We are able to extract 
information unambiguously from the region where Pd( €16) is maximized. 
There are also similarities between the Kolmogorov entropy method (Kol- 
mogorov 1959) and ours in that both methods examine the behavior of a 
certain set of conditional probability distributions. However, evaluating 

?The sunspot series has a variance u2 = 1495. We use u2 = 1535, a value quoted by 
Weigend et al. (1990), in order to compare our ARV with established results. 
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Figure 4: Learning curves for the sunspot data shown as ARV versus training 
epochs for a 12-8-1 network (a) and a 6-8-1 network (b). The solid lines are 
for the training set (1700-1920), the lower dotted lines are for the test set I 
(1921-1955) and the upper dotted lines are for the test set I1 (1956-1979). Large 
fluctuations on the curves have been filtered out. 

entropy for a high-dimensional joint probability distribution requires a 
huge amount of statistics in contrast to the present method. 
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