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Abstract

A package written in C for identifying variable dependencies in tables of data is presented. The key ingredient is the 8-test,
which establishes dependency structures by exploiting the properties of continuous functions using conditional probabilities
formed out of the data. The method estimates most relevant variables, embedding dimensions and noise levels. The program,
which is self-contained, also includes optional graphical output.

PROGRAM SUMMARY

Title of program: Delta 2.0

Catalogue number: ACVP

Program obtainable from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this issue);
anonymous ftp at thep.lu.se in directory pub/LundPrograms
- delta.tar.Z and delta.readme respectively

Licensing provisions: none

Computer for which the program is designed: DEC Alpha, DEC-
station, SUN, NeXT, VAX, IBM, Hewlett-Packard, and others with

a C compiler

Computers: DEC Alpha 3000; Installations: Department of Theo-
retical Physics, University of Lund, Lund, Sweden

Operating systems under which the program has been tested: DEC
OSF 13

Programming language used: ANSI C
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Memory required to execute with typical data: ~ 170k words for
a data file of 4000 lines

No. of bits in a word: 32
Peripherals used: terminal for input, terminal or printer for output

No. of lines in distributed program, including test data, etc.: 2950
excluding the Xplot graphic package

Keywords: data analysis, dependencies, correlations, non-linear
systems, embedding dimension, artificial neural network

Nature of physical problem

Analysis of experimental data for determining dependencies among
the measured variables and establishing noise levels. This is a fre-
quently occurring task in natural sciences. Standard methods for
these problems are typically limited to linear dependencies like us-
ing correlation matrices. Many problems in physics are non-linear
by nature and hence require analysis methods that are not limited
to linear approximations.

Method of solution

The core of the algorithm is based on the é-test [1], which es-
tablishes dependency structures by exploiting the properties of
continuous functions. The method, which in contrast to standard
correlation methods is not confined to linear dependencies, forms
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conditional probabilities from data tables, which are then extrap-
olated to the infinite resolution limit. From these limit values one
reads off relative dependencies, noise levels and embedding di-
mensions. The method is very useful when it comes to single out
most relevant input variables for artificial neural network process-
ing. Also, in this case the approach can be used to track residual
dependencies of the output errors. The degree of non-linearity is

Restrictions on the complexity of the problem

The only restriction of the complexity for an application is set
by available memory and CPU time. A table of M variables with
N measurements each requires a storage of M x N double pre-
cision numbers. The corresponding CPU time grows like M2N.
For a problem with M = 5 (one dependent and 4 independent
variables) and N = 1000 this amounts to 35 CPU seconds on a

DEC Alpha 3000/300.
For users equipped with X11 some of the informative results
can be displayed with interactive graphics.

estimated by comparing the 8-test noise reading with the variance
of the residuals of the linear multiple regression model.

LONG WRITE-UP

1. Introduction

A system is often modeled by analyzing records of certain system variables. Such modeling could range
from parametric approaches to non-parametric ones like Artificial Neural Networks (ANN). The success of
such models relies heavily upon identifying the underlying structure in the input space - it is advantageous to
know in advance which inputs are most relevant, the embedding dimension in the case of a time series, noise
level, etc. Existing methods for doing this are based either on linear regression, which limits the analysis to
linear dependencies, or on trial-and-error procedures. The 6-test [1], to be briefly described below, aims at
determining any dependency, be it linear or non-linear, assuming an underlying continuous function.

2. The 6-test

Assume that we have sequences of measurements on a dependent variable zp and a set of independent
variables z{, 22,...,zm. These measurements can correspond to multivariate time series, or to a univariate time
series, in which case z; should be understood as a time-lagged variable of zo: zx(t) = zo(? — k). The central
question is whether there exist functional dependencies of the form

Z():f(Zl,ZZ,---,Zm)"‘ry (1)

where r represents an indeterminable part, which originates either from insufficient dimensionality of the

measurements or from real noise. There is of course no crisp borderline between these two interpretations of 7.
We approach the problem by constructing conditional probabilities in embedding spaces of various dimensions

d. The data can be represented as a series of N points z(i) in a (d + 1)-dimensional space (d =0,1,2, )

z(i) = (20(8), 21() 5 .., 7k (D) 5 -5 2a(d) ). (2)
In terms of distances I;(i, j) between the kth components of two vectors z(i) and z(j)
lk(ivj)=lzk(i)_zk(j)|a k=0,1,~--adv (3)

one can construct the conditional probabilities

Pi(e|8) =P < €|l < 5):'—1—(—l°—§i§—l, (4)
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Fig. 1. (a). Py(e| 5) as a function of & fgr fixed €. Saturation to 1 would be observed if the width of noise is less than €. (b). Behaviour
of the maxima P;(€) = maxgs.g Py(€|8) as a function of e. The region saturating to 1 would be pushed toward smaller € if the dth
conditional variable is relevant. The point €p at which the saturation deviates from 1 can be approximately identified as the width of the
noise Armax ~ €p.

where € and § are positive numbers and n(f < & ) and n(lp < e, I < 5) are the number of vector pairs satistying
the corresponding distance constraints3. The probability structures of the dependent variables with respect to
the independent ones carry the following important information [1]:

1. For a completely random time series there is no dependency and one has

Po(€) =Py (€] &) =...= Py(e| &) = ... (5)

This identity, which should be understood in a statistical sense, holds for any choice of positive € and 6.
2. If a continuous map exists as in Eq. (1) with no intrinsic noise, then for any € > 0 there exists a 8, such
that

Pi(e|8) =1 for §<8&. and d>dp, (6)

where dy represents some minimum dimension which covers all the relevant variables. This is a direct
consequence of the definition of function uniform continuity,
3. In the presence of noise r, Py(€| 5) will no longer saturate to 1 as € becomes smaller than the width Ar,,,,
of the noise.
The behavior of P;(el 5) as a function of & and € for various d are shown schematically in Fig. 1. The
consequences of randomness (Eq. (5)) and complete determination (Eq. (6)) provides a yardstick with which
to measure the degree of dependency between the variables. Interesting quantities to examine are the maxima

Py(€) = max Py(e| 8) = Pa(e| §) lsa.. Q)

How P;(€) changes with d and € provides basically all the information we need (see Fig. 1b). To quantify
the dependency on each of the variables, it is convenient to define a dependability index

1= I de (Pa(€) — Pa_1(€))

f0°°de(1—Po(e)) d=1,2,.. (8)

3 The notation i’ < § is short for {(h<£8),(Lh<¥d),...Ua <}
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In general 1 > Ay > 0, while A; =1 (or 3] A4 = 1) signals a completely deterministic relationship and A4 ~ 0
singles out irrelevant variables* .

Constructing statistical quantities out of pairs of points is an efficient utilization of available statistics
(N(N — 1) /2 pairs out of N points). Nevertheless, limited statistics can be problematic, especially if noise
levels are high. Statistical errors are estimated as

APy(e|§) =2, [Pal = Fa) 9)
\ n'<d

This expression is not entirely adequate for correlated data, but it serves the purpose to signal the onset of
statistically unreliable regions. When statistics are at a premium a variable k once identified as irrelevant is set
inactive, which means that the condition /;, < & is omitted when computing P, (€| 5) for d > k. This variable
elimination option cuts down the loss of statistics. Another option useful for low statistics data set is the single
variable analysis, which computes A4 with only the dth variable as the conditional variable.

3. Nonlinear versus linear dependencies

Eq. (1) is reduced to the usual multiple regression (MR) model if f is restricted to be linear,
m
io=ao+ZZi- (10)
i=1

The term 7 is then the residual of the MR predictor Z;. The coefficient of determination, defined as the ratio of
the explained variation {(%y — Z¢)2) over the true variation ((zo — Z0)?), is given in the MR model as

i—1 Ai\20, Zi
DMR=_______Z'-‘ 2( 0. %) (11)
0-7.0

where (z,z;) is the covariance and o7, is the standard deviation of the dependent variable. The standard
deviation of the residual r is related to the coefficient of determination by

§=\/1—DMR. (12)

20

It is convenient to transform all the variables to have zero mean and unit standard deviation. In what follows
and in the numerical implementations, we regard z; as the transformed variables.

In an optimized non-linear model, the residual r should resemble white noise. A quantitative estimation of
its variance can be obtained in the d-test by considering the behavior of P;(€) in Fig. 1b. At the region € ~ €
where P;(€) starts to drop off from one, we expect

P;i(€) =~ 1 — Prob(Ar > €) = Prob(Ar < €). (13)

If the noise is a flat distribution extending from —R to R with standard deviation o, = R/ V3, we obtain

Prob(Args)=%(1—15). (14)

4 One should keep in mind, however, that these conditions are only necessary but not sufficient.
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Correspondingly for Gaussian distributed noise,
E/ \/_za'r
1 2
Prob(Ar < €) = — / e "2 du. (15)
V2
—e/V2a,
It is possible to fit P;(€) to Eq. (14) and (15) in order to determine whether the noise distribution is uniform,
Gaussian, or neither. We use Eq. (14) to obtain a conservative estimate on o, as
€9

o, = (16)
" 2v3(1 - T- PaCeo)
(o < 1 should be imposed), which leads to an estimate on the coefficient of determination
Ds=1—c2. (17

If dependencies are predominantly linear, Ds should approximate Dyg. The amount of Ds being larger than
Dyr reflects the degree of non-linearity in the data.

4. Variable ordering

While the ordering of the variables will not affect the dependency on the set of variables as a whole, it
affects the value of the dependability index on individual variables. There might also occur situations where
the variables have very different distributions, and a “wrong” ordering of a particular variable before the others
can severely cut the available statistics and render the test unable to detect dependencies on the subsequent
variables. In all these cases one should run the é-test on a number of different variable orderings in order to
gain a better picture of the dependency structure.

The lack of statistics often becomes evident when a large number ( 2 10) of variables are to be analysed. The
following heuristics may be helpful to reduce the number of reorderings needed and to improve the statistics.
1. With an arbitrary ordering run the &-test in the SVA (single variable analysis) mode. The resulting A, is a

measure of certain non-linear correlation between the dependent and the dth variable.

2. Divide the variables into subgroups according to the size of the A; (SVA). The variables in each subgroup,
having similar value of A4 (SVA) or other characteristics, are likely to be mutually correlated.

3. Turn off SVA and run d-test on each of the subgroup of variables (a few reordering may again be worth
experimenting with), the variables having insignificant A; may be regarded as irrelevant and removed from
further consideration.

4. The remaining variables may then be ordered according to descending values of A; (SVA). Run &-test
again and eliminate irrelevant variables having diminishing A;. One should however inspect the figures to
make sure that the zero dependability index is not simply because the very lack of statistics. The variable
elimination is not sustained if figures of the type Fig. 1a show unacceptable statistics in the plateau region.

5. In general one should not allow a front variable to cut statistics to the extent that the analysis of the
subsequent variable becomes impossible. Whenever this happens reorder this variable to be the very last.
This may enable one or two irrelevant variables to slip through, but it avoids the elimination of relevant
variables due to low statistics.

5. Restrictions

The delta test is a statistical method and it relies on accumulating good statistics. Obviously the method will
fail if the data are very few. The minimum number of N depends on the individual problem. Generally the
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program should not be used for N < 100. The upper limit of N is subject to the available space for memory
allocation and also the user’s tolerance on CPU consumption.

6. Program installation

Most of the information in this section can be found in delta.readme.
The entire code is packed in delta.tar.Z. The program, which is self-contained, can be compiled with two
options:
o An X version which generates useful interactive graphics. This option requires a X11 system.
e A “plain” version which produces no graphics.
The installation takes the steps as follows.

6.1. Unpacking

The ftp transmission of delta.tar.Z must have been done in the binary mode. The UNIX utilities zcat or
uncompress and tar must be available for unpacking:

% zcat delta.tar.Z | tar xvf -
% cd delta

6.2. Compiling with Xplot

Xplot is an X-Window based graphic package written by Anders Nilsson. Delta 2.0 uses Xplot to produce
interactive graphics of the type in Fig. 1.

6.2.1. Installation of Xplot
The executable codes of Xplot should be placed in a permanent directory. Edit the directory path in
Imakefile.Xplot to specify where Xplot will be stored, and then do the following

% cp Imakefile.Xplot Imakefile
% xmkmf
% make

6.2.2. Compilation of Delta

If the previous step is successful, an executable Xplot should have been produced in the given directory.
This same directory path must then be written in Imakefile.delta. Edit the directory path for Xplot in
Imakefile.delta and perform

% cp Imakefile.delta Imakefile
% xmkmf
% make

A successful compiling will produce an executable delta. At this stage one may wish to test the installation
of Xplot by (assuming your C compiler is referred to by cc)

% cc Xexample.c xplot.o
% a.out

If this fails to generate some graphics, Xplot does not function on your platform and you will have to either
run delta with the -x option or recompile the program without Xplot.
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6.3. Compiling without Xplot

If a X11 system is not available or if for some reason step 2 does not work Delta 2.0 has to be compiled
without the Xplot graphics.
Set XWXPLOT to O in Imakefile.delta, and then do

% cp Imakefile.delta Imakefile
% xmkmf
% make

6.4. The alternative to Imake

If xmkm f is unavailable or if it fails in the above procedures, ignore the Imakefiles and use Makefile.orig
instead. Copy Makefile.orig to Makefile and read it carefully, follow the instructions to make changes if
necessary, and then do

% make clean

% make Xplot

% make deltax (for the X version), or
% make delta (for the plain version)

6.5. Clean up files

Only the two files delta and delta.txt are needed for running the program. All others can be removed.
This can be done by
% make -f Makefile.orig cleanall

7. Executing the program

The program is executed by the command
% delta -[options] input.filename
where the options are

-set Creates an input file and assists in setting up the major input
parameters. Instructions on formatting the data file are also given.

-run Runs d-test if the input file has already been set.

-pro Processes the existing &-test outputs (for graphic or numerical
display) only, assuming a é-test run has been done.

-x  Used in combination with the options above to suppress the interactive
X-plots. (This option exists in the X version only.)

Sample usages are shown in Section 8.
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8. Sample applications

Executing the Delta 2.0 involves: (1) preparing the raw data file, (2) setting up the input parameters and
(3) interpreting the results. Rather than describing these steps in general, we demonstrate the procedure by
applying the program to two problems: the logistic map and a random series. These problems represent two
extremes with respect to being deterministic versus completely random. Also shown are the graphics output
available for systems with X11.

8.1. Logistic map

The data file

We generate data from the logistic map x, = 4x,(1 — x,—). The data are stored in logist.dat. The format
of the data file can be rather arbitrary with the general rule that the data must be organized in “lines” and
“columns”. A “line” is an entry terminated by the newline character (a carriage return). The data entries on
each line must be separated by spaces. These data entries form “columns” with each column representing one
variable. The first few lines of logist.dat look as follows:

x_t x_t-1 x_t - x_t-1
1 0.10492 0.26957E-01 0.77965E-01
2 0.37566 0.10492 0.27073
3 0.93815 0.37566 0.56250
4 0.23208 0.93815 -0.70607
5 0.71288 0.23208 0.48080
6 0.81872 0.71288 0.10584
7 0.59366 0.81872 -0.22507
8 0.96491 0.59366 0.37125
9 0.13543 0.96491 -0.82949

The input file
There are problem specific parameters that must be set before execution. These parameters are stored in an
input file, which is named logist.inp in this example.
Two options can be used to run delta:
1. If the input file does not exist, use
% delta -set logist.inp
This option prompts the user for the mandatory inputs and generates the named input file.
2. If the input file exists and one only wishes to make minor changes to the parameters, edit the input file and
run delta using
% delta -run logist.inp

The -x option can be used in combination with either one of the above to suppress the Xplot graphics.
The file logist.inp generated by the -set option looks as follows.

datafile logist.dat --name of the data file

nskip 1 --# of header lines to be skipped in datafile
nline 1000 --# of data lines to fetch in (if 0, take all)
order[5] 200 201 202 203 204
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///// Don’t forget to set the number of elements of order in [J!! ///
///// Normally only the above parameters need to be set by user ///

speriod 0 --1/0, if on, exclude periodic (repetitive) patterns from P(0]0).

sva 0 --1/0, single variable analysis mode on/off

velim 0 --1/0, variable elimination mode on/off

lammin 0.020000 --A variable is eliminated if Lambda<lammin and velim=1
mdout 51 --Binary output of P_d(eps|delta) suppressed for d>mdout
epsplot  0.500000 --The epsilon for which P_d(eps|delta) are to be plotted
minstat 50 --Minimum statistics for computed P_d to be acceptable

bineps 30 --# of bins in loglO(epsilon)

bindelt 30 --# of bins in logl0(delta)

epsmin 0.005000 --The lowest epsilon bin

epsmax 4.000000 --The highest epsilon bin

deltmin 0.000050 --The lowest delta bin

deltmax 4.000000 --The highest delta bin

//// (Lines beginning with // are comment lines.) ////
*kkkkkkk Adjust parameters above this line skskkidokkkkk
**x*The following parameters will automatically be set by
*x**xDelta if order[] has been set properly.

ncol 2 --# of columns in datafile

niva 4 --# of independent variables

301

Only the first four parameters datafile, nskip, nline, order[] are mandatory. Among the others,
apart from the occasional use of velim (variable elimination option) and sva (single variable analysis), there

is in general no need for adjustment.

The array order[n] specifies the ordering of the variables, where n must be specified to reflect the total
number of variables. order[0] always gives the dependent variable, and the others represent independent

variables. A variable is indexed by its “column number” and “time lag” in the data file:

order[] = (column number)x100 + (time lag).

In our example, all the variables refer to column 2, which is x,. order[1] = 201 means the column-
2 variable with 1 time lag, and so on. Thus the variables specified by order[] in this example mean

{xh Xr—1,X1—2,X1—3, xt—4}-

The output

Delta 2.0 generates output to the terminal, to a set of output files, and to graphics displaying X-Windows.

The graphs are shown in Figs. 2 and 3.

The following is the terminal output, which gives an explanation on the notations. The lines such as [

P_2(2001201,202) ] keep track on the set of variables involved in computing P;(€|6).
>>>> Delta Test, Version 2.0(X) <<<<

Delta writes to the following files:
logist.bin --Binary output for the full set of P_d(eps|delta)
logist.ded --ANSI output for a limited set of P_d(eps|delta)

logist.dee --P(eps), Lambda(eps), and others as a function of epsilon
logist.del --The Lambda indices (a copy of the screen output)
logist.log --A log file that collects miscellaneous items

Notations:
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Fig. 2. P4(¢€|8) as a function of log & for a fixed ¢ for the logistic map. The numbers marked on the curves are d. The low statistics points
marked by squares have not been used for the purpose of identifying the maximum P;.

Lambda_d: The integrated dependability index for the d-th variable.

Err_Lamb: Estimated error on Lambda_d.

Sum_Lamb: The sum of the Lambda_i, i=1,2,...d.

Err_sum: Estimated error on the sum.

LinCorr: The simple linear correlation.

CD_Lin: The Coefficient of Determination for (linear) multiple regression.

CD_Delt: The Delta-test estimated Coefficient of Determination achievable
by non-linear models.

1000 lines of data fetched from logist.dat.

d Lambda_d Err_Lamb Sum_Lamb Err_sum LinCorr CD_Lin CD_Delt
[ P_1(200]201) ]

1 1.0000 0.0030 1.00000 0.00301 0.0271 0.00073 1.00000
[ P_2(2001201,202) ]

2 0.0000 0.0062 1.00000 0.00692 0.0275 0.00145 1.00000
[ P_3(200/201,202,203) ]

3 0.0000 0.0091 1.00000 0.01142 0.0294 0.00223 1.00000
{ P_4(200]201,202,203,204) ]

4 -0.0000 0.0097 1.00000 0.01499 -0.0427 0.00425 1.00000

The dependability index A4 is 1 for d = 1 and O for the rest, clearly indicates that x, depends on x,_,
only. The sum of A, equals to 1, indicating there is no noise in the function dependence. The same can also
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Fig. 3. P4(e) (maximum of Py(€|8)) as a function of log € for the logistic map. The variable index d is marked on the curves.

be said from the fact that CDDelt = 1 - a perfect determination coefficient. The fact that the coefficient of
determination CD_Lin from the linear regression is much smaller than CD_Delt signals that the dependency is
predominantly non-linear.

All the evaluated quantities are saved in files so that information can be re-extracted in the future without
having to rerun the &-test. If one uses the plain version, applying a graphic tool to the numerical tables in these
files is also the only way to produce figures of the type Fig. 2 and 3. We briefly describe the contents of the
output files here.
logist.log contains the means and variances and the correlation matrix of the variables. It also reports the

number of identical vector pairs. If this number is large as a fraction of the total pairs one must aware that

the data may actually be periodical.

logist.del saves a copy of the terminal output.

logist.dee lists quantities as function of € for each d. These quantities include P;(€) and its error estimate,
which can be used to plot out Fig. 3, A(€), the Grassberger-Procaccia correlation integral [2], and the

dependence index as defined by Savit and Green [3].
logist.ded contains P;(e|8) versus € and & for a fixed d. This file is generally not useful unless one wishes to

make a 3-D plot of P,.
logist.bin is a binary record of the entire set of P;(€|8). Running delta with the -pro option, one can extract

out P;(€|d) for a particular d and ¢, the resulting numerical table can be used to plot out Fig. 3.

8.2. Random series

Next we illustrate Delta 2.0 on a pseudo-random number series. Since the procedure is identical to the
previous example we only list the steps.



304 H. Pi, C. Peterson / Computer Physics Communications 83 (1994) 293-306
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Fig. 4. P4(¢|8) as a function of log 8 for a fixed € for the pseudo-random series. The numbers marked on the curves are d. The squares
mark the low statistics points that have been ignored in the program.

The data file
The data file is now named rand.dat and the first few lines are the following.
x_t x_t-1 Xt - x_t-1

1 0.47890E-02 -0.72961 0.73440
2 0.57268 0.47890E-02 0.56789
3 0.40136 0.57268 -0.17131
4 0.71001E-01 0.40136 -0.33036
5 -0.92903 0.71001E-01 -1.0000

The input file
We denote the input file rand.inp and its top section is shown here (the rest of the file is identical to
logist.inp shown before).

datafile rand.dat --name of the data file
nskip 0 --# of header lines to be skipped in datafile
nline 4000 --# of data lines to fetch in (if 0, take all)

order[5] 200 300 202 302 204

The specification of the order[] now involves the 3rd column. Since the column 3 in the data file is just
the 1-lag variable x,_i, the specification above is in fact equivalent to order[] = {200, 201, 202, 203,

204}.



H. Pi, C. Peterson / Computer Physics Communications 83 (1994) 293-306 305

P_d(eps)
L ]

0.1 } B

o , . . 10g10(eps)

=2 -1.5 -1 -0.5 0 0.5

Fig. 5. P4(e) ( maximum of P;(€|8)) as a function of log e for the pseudo-random series. The variable index d is marked on the curves.

The output
Portions of the screen output is shown below.

>>>> Delta Test, Version 2.0(X) <<<<

Delta writes to the following files:

4000 lines of data fetched from rand.dat.

d Lambda_d Err_Lamb Sum_Lamb Err_sum LinCorr CD_Lin CD_Delt
[ P_1(200]201) 1]

1 0.0128 0.0128 0.01277 0.01277 0.0051 0.00003 Q.00000
[ P_2(2001201,202) ]

2 -0.0059 0.0240 0.00692 0.02722 -0.0135 0.00021 0.00000
[ P_3(2001201,202,203) ]

3 0.0035 0.0275 0.01046 0.03866 -0.0078 0.00027 0.00000
[ P_4(2001201,202,203,204) ]

4 0.0218 0.0596 0.03231 0.07102 -0.0002 0.00027 0.00000

The dependability indices are all small, indicating there is essentially no dependency structure between
the variables specified. The coefficients of determination are negligible for either linear or non-linear models,
consistent with the fact that the data is entirely noise.
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The two graphs generated by Delta are shown in Figs. 4 and 5. All curves are very much lying on top of
each other, reflecting the independence of the dependent variable on the independent variables.
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