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Abstract:

We devise a feed-forward Artificial Neural Network (ANN) procedure for predicting
utility loads and present the resulting predictions for two test problems given by “The
Great Energy Predictor Shootont - The First Building Data Analysis and Prediction
Competition® [1]. Key ingredients in our approach are a method (8 -test) for de-
termining relevant inputs and the Multilayer Perceptron. These methads are briefly
reviewed together with comments on alternative schemes like fitting to polynomials

and the use of recurrent networks.
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1 Introduction

This paper concerns methods and results in making predictions for two test problems
(A and B) given by "The Great Energy Predictor Shootout - The First Building Data
Analysis and Prediction Competition” [1]. The present approach scored # 1 on set
B and # 2 on set A. Both problems were given to the contestants in terms of tables
of historic data (dependent and independent variables). In approaching the two data
sets a few different strategies were explored. The most powerful approach for these
applications turned out to be based on the following two key ingredients:

o Prior determination of dependencies in the data by using the 5-test [2].

# Feedforward Artificial Neunral Netwarks {A.NN:I for madel huilding [E]rut.m iden-
tification).

This approach is of “black box” nature. However, it is stressed that prior “expert”
knowledge about holidays ete. is essential for good performance.

This paper is organized as follows. In sections 2 and 3 we very briefly review the
b-test approach and ANN method, respectively, with slightly more emphasis on the
former, given that it may not be as well known in the community as ANN. The results
for data set A and B are discussed in sections 4 and 5. Section 6 contains a brief
SUmMmMmAry.

2 The bH-test

The behavior of a system is often modeled by analyzing a time series record of certain
system variables. Using ANN to model such systems recently has attracted much
attention. The snceess of such models relies heavily upon identifying the underlying
structure in the time series - it is advantageous to know in advance the embedding
dimension, which inputs are most relevant, noise level, etc. Existing methods for
doing this are based either on linear regression, which himits the analysis to linear
dependencies, or on trial-and-error procedures. The -test [2], to be briefly described
below, aims at determining any dependency, be it linear or nonlinear, assuming an
underlying continuous function.

Assume that we have sequences of measurements on a dependent variable z; and
a set of independent variables 2, 25,...2,. These measnrements can correspond to
multivariate time series, or to a univanate time series, in which case z, should be
understood as a time lagged variable of 25 z.(t] = z3(t — k). The question is whether
there exist functional dependencies of the form

& = lf(31?391..-:3m}+1' I:J':I

where r represents an indeterminable part, which originates either from insufficient
dimensionality of the measurements or from real noise. If the system 15 completely



deterministic in terms of the set of independent variables one has » = 0. In the case of
a univariate time series, the dimension dmin = m 4+ 1, which 1s sufficient to minimize
r, is called the minimum embedding dimension.

We approach the problem by comstructing conditional probabilities in embedding

spaces of various dimensions d. The time series can be represented as a series of N
points (1) in a (d 4 1)-dimensional space {(d =0,1,2, )

#(1) = (20(1), 21(2), -, 2l1), -, 2al7))- (2)

In terms of distances (i, 7] between the k:ith components of two vectors 2(i) and
#(j)

le(1,7) = |=uld) = ze7)], k=0.1,...d (3)

one can construct the conditional probabilities
. - lh<el<é
Palel §) = P(ly < e|T< §) = M =&lZ8) (4)
a(l<5)
where ¢ and § are positive numbers and m[f'g cﬁ and n(l; < E?Eﬁ_f cﬁ are the number
of vector pairs satisfying the corresponding distance constraints®. How does the prob-
ability structure of the dependent variable behave with respect to the independent
variables? In ref [2] the following important abservations were made:

1. Far a completely random time series there is no dependency and one has
Po(€) = Pi(e| 8) = ... = Pale| 8) = .. (5)

This id:ntitj, which should be understood in a statistical HETIES, halds for any
choice of positive e and §.

2. If a continuous map exists as in eq. (1) with no intrinsic noise, then for any ¢ > 0
there exists a §, such that

Pelf)=1 for §<6, and d=d, (6]

where dy represents some minimum dimension which covers all the relevant vari-
ables. This is a direct consequence of the definition of function uniform continu-
ity,

—

3. In the presence of naoise v, Fy(e| 6] will no longer saturate to 1 as e becomes
smaller than the width Ar .. of the noise.

The behavior of Fyle| E} as a function of & and ¢ for various d are shown schematically
in fig. 1. The consequences of randomness (eq. (5]) and complete determination
(eq. (B)) provides a yardstick with which to measure the degree of dependency between
the variables. Interesting quantities to examine are the maxima

Pu{e) = max Pa(el 8) = Palel §)lscs.. (7)

I The motatlon < £ s shart for {(I, < &), (2 < &), ..., [[a < &)}
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Figure 1: (a). Pyle|&) as & fanction of & for fived ¢. Saturation to 1 would be obeerved
if the width of noiss is less than £ (b). Behavior of the maxima Pyle) = maxg,, Pyle| )
as a funetion af & The region satarating to 1 would be pushed toward smaller ¢ if the
d:th eonditional variable i relevant. The point ¢, at which the saturation deviates from
1 zan he identified approximately as the width of the noise Ar . ~ &;.

How FPy(e] changes with d and ¢ provides basically all the information we need (see
fiz. 1b). To quantify the dependency on each of the variables, it is convenient to
define a dependabilily indez

T, = Jo© de (Fale) = Faa(e))
o de(l = Fyle)) 7

d=1,2,.. (8)

In general 1 = Id_E 0, while Ay =1 {or Ay = 1] signals a eompletely deterministic
relationship and Ay = 0 singles out irrelevant variables™.

Constructing statistical quantities out of pairs of points is an efficient utilization of
available statistics (N{ WV = 1]/2 pairs out of N points). Nevertheless, limited statistics
can be problematic, especially if noise levels are high. Statistical errors are estimated

TOme should keep in mind however that these sonditlons are only necessnry bat nob suffielent.



Fa(l = Fy)
\ nl<8)
This expression is not entirely adequate for correlated data, but it serves the purpose
to signal the onset of statistically unreliable regions. In case statistics are at a pre-
minm an option is often utilized such that a variable k once identified as irrelevant
is gt inactive , which means that the condition I, < & is omitted when computing

Fale| E] for d > k. This option cuts down the loss of statistics due to unnecessarily
restrictive conditions.

APy (e F) =2 (9]

3 Feedforward ANN for System Identification

Feedforward ANN have turned out to be a very powerful approach for classification
problems. A general introduetion to the subject can be found in ref. [4]. Recently also

system identification Prl::l:lln:ma have been u.pprl::u.f.hl:d with these nonlinear l:n::r.hniqm:a.

The aim is to realize a function mapping F; from the input values zi to the output
values y;. For the so-called Multilayer Perceptron (MLP) [3] a particular form aof the
function F; is chosen

¥y = Fi(z1,21,...] = g (E w:ng[gwﬂz*]) (10}
)

which corresponds to the feed-forward architecture of fig. 2. The parameters to be

fitted are the “weights” wi; and wgu. The “transfer function” g is often chosen as
g(z) = tanh(z). The input nodes could be either lagged outputs {eg. y(t = 1),

Ty

Figure 2: A one hidden layer feed-forward neural network architecture.

y(t = 2),..] or other independent variables at time {. The hidden layer enables the



network to handle non-linear dependencies with threshold behavior given by g{z). In
eq. (10) and fig. 2 one hidden layer is assumed. The architecture can of conrse be
generalized to any number of hidden layers. Fitting to a given data set {or “learning”)
takes place with gradient descent on 2.g. a summed square error

E = %E{gﬁ - #)? (11)

with respect to the weights wi; and wye, where ¢; are the desired (true] ontput values.
This is done by presenting all the training patterns repeatedly with successive
adjustments of the weights. Onee this iterative learning has reached an aceeptable
level in terms of a low errar E, the weights are frozen and the ANN is ready to be
used on patterns it has never seen before. The capability of the network to correctly
reproduce the mapping of these test patterns is called generalization performance.
In the context of utility prediction the training patterns are historic data and the test
patterns represent the independent variables in the prediction part.

This MLP functional expansion contains linear modeling as a special case (linear
output and no hidden nodes). It differs, however, from polynomial fittings where
each additional power introduced implies a new dimension in an orthonormal space.
With few training patterns this might give rise to “overfitting” with degradation
in generalization performanee. This phenomenon has been observed for the present
data. In contrast, adding additional hidden nodes in the MLP sigmoidal expansion
does not necessarily “open up” new dimensions - additional hidden nodes may well
duplicate the task of existing ones.

The training phase is often terminated before the global minimum of the error (eq. (11))
has been reached, in order to increase the generalization performance. This is most
easily done by monitoring the error on a validation set (a snbset of the training
data which is not used in the training) and stop the training when this error stops
decreasing.

An alternative method is to use a recurrent network [5) that is capable of building
an internal memory of time lagged states by using feedback structures. However, the
exact nature of these time lagged states is difficult to analyze and there is no evidence
that those states always provide optimum time lags for solving the problems at hand.

When comparing MLP with recurrent networks the former requires preprocessing
in terms of choosing appropriately time-lagged inputs while the latter approach is
supposed to select the relevant time-lags dynamically. With the b-test in our hands
the appropriate time-lags can be efficiently selected for MLP processing. We find
that with such cantious chaice of input representation, the MLFP always outperforms
recurrent networks. Hence from now on we will stick to the MLP.

An additional bonus of the 5-test is that the residual errors (eq. (11)] can be analyzed
in terms of dependency on the input variables: With appropriate choiee of input
representations and an efficient learning procedure, there should be no such residual
dependencies.



4 Data Set A

4.1 General Properties of Data

This set represents real world data taken hourly during Sept. - Dec. 1989, The task
is to predict yit) for the snbseqnent period of Jan. - Feb. 1990 from the known

measurements on £(¢), where

31 = whole building eleciric (WBE) power consumption (kW)

y2 = whole building cold water (WBCW) consumption (10* Btu/hr)
ya = whole building hot water (WBHW) consumption (10° Bin/hr)
z; = wind speed (miles /hr)

z3 = solar flux (W /m?)

z3 = humidity ratio (water/dry air)
z4 = temperature ["F)
2z = hour

The corresponding dates are also provided. The Christmas haliday 15 extended and
the building seems to have been “shut down™ on the 23:rd of December when the
power consumption decreases suddenly and sharp transients appear in the water
consumptions. This presents a complication when fitting the data sinee 1t oceurs
towards the end of the training set and the transfer to “normal” running (assuming
that it is only a temporary state) takes place in Jannary, which is part of the unknown
test set. In order to account for this and other possible seasomal behavior we identify

the weekdays and holidays (Thanksgiving, Christmas-New Year) and introduce two
new variables

zgy = weekday
z; = day-code

where the weekday takes values ranging from | to 7 for Monday throngh Sunday, and
the day-code 18 41 if it is a working day and <1 for a weekend day or a holiday. For
the WBE power consumption, which shows clear seasonal effects within a week cyele
and before and after holidays, we code weekday as a “Sunday™ if it happens to be
a holiday, and the two working days immediately preceding a holiday are coded as
“Thursday” and “Friday" respectively. Furthermare, the day-code is given a value of
~2 for the Christmas recess (Dec. 23 - Jan. 1] and is decreased from its normal value
by 0.4 for the first week in September, Jannary and immediately before Christmas.
It is also decreased from its normal valne by 0.2 for the second week in September,
January and before Christmas.

This additional eneoding of information (24, 27), constitutes a heuristic departure
from the pure “black box" strategy. This encoding is necessary to enable the network






