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PREDICTING SYSTEM LOADS WITH
ARTIFICIAL NEURAL NETWORKS—
Methods and Results from “The
Great Energy Predictor Shootout”

Mattias B.O. Ohlsson

Thorsteinn S. Régnvaldsson

ABSTRACT

A feed-forward artificial neural network (ANN) proce-
dure has been devised for predicting utility loads; the
resulting predictions are presented for two test problems
given by “The Great Energy Predictor Shootout—The First
Building Data Analysis and Prediction Competition”
(Kreider and Haberl 1994). Key ingredients in this ap-
proach are the multilayer perceptron and a method (3-test)
for determining relevant inputs. These methods are briefly
reviewed, together with comments on alternative schemes
such as fitting to polynomials and the use of recurrent net-
works.

INTRODUCTION

This paper concerns methods and results in making
predictions for two test problems (A and B) given by .“The
Great Energy Predictor Shootout—The First Building Data
Analysis and Prediction Competition” (Kreider and Haberl
1994). The present approach scored first on set B and
second on set A. Both problems were given to the contes-
tants in terms of tables of historic data (dependent and
independent variables). In approaching the two data sets, a
few different strategies were explored. The most powerful
approach for these applications turned out to be based on
the following two key ingredients:

e prior determination of .dependencies in the data by
using the &-test (Pi and Peterson 1993) and
e feedforward artificial neural networks (ANN) for model
. building (system identification).

This approach is of a “black box” nature. However, it is
stressed that prior “expert” knowledge about holidays, etc.,
is essential for good performance.

This paper is organized as follows. In the next two

sections, the &-test approach and the ANN method, respec- *
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tively, are reviewed, with slightly more emphasis on the
former, given that it may not be as well known in the
community as ANN. The results for data sets A and B are
discussed in the following two sections. The last section
contains a brief summary.

THE &-TEST

The behavior of a system is often modeled by analyzing
a time-series record of certain system variables. Using ANN
to model such systems recently has attracted much attention.
The success of such models relies heavily upon identifying
the underlying structure in the time series—it is advanta-
geous to know in advance the embedding dimension, whose
inputs, such as the noise level, etc., are most relevant.
Existing methods for doing this are based either on linear
regression, which limits the analysis to linear dependencies,
or on trial-and-error procedures. The &-test (Pi and Peterson
1993), to be briefly described later, aims to determine any
dependency, be it linear or nonlinear, assuming an underly-
ing continuous function.

Assume that we have sequences of measurements on a
dependent variable (z,) and a set of independent variables
(z}» 23, - + - Z,,). These measurements can correspond to
multivariate time series or to a univariate time series, in
which case z; should be understood as a time-lagged
variable of zy zy(f) = z4(t — k). The question is whether
there exist functional dependencies of the form

Zy = f(21,250032,) +7 (1)

where r represents an indeterminable part that originates
either from insufficient dimensionality of the measurements
or from real noise. If the system is completely deterministic
in terms of the set of independent variables, one has r = 0.
In the case of a univariate time series, the dimension d,,;, =
m + 1 (which is sufficient to minimize r) is called the
minimum embedding dimension.
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The problem is approached by constructing conditional
probabilities in embedding spaces of various dimensions d.
The time series can be represented as a series of N points
z({) in a (d + 1)-dimensional space (d=0,1,2,...):

2(i) = (2(i), 2, (), --» 24(0); s (). ()

In terms of distances /(i) between the kth components of
two vectors z(i) and z(j),

lk(ivj)= Izk(l) _zk(j)la k= 03110--9d’ (3)

one can construct the conditional prohahilities
N . . n(l,se,l<8
Pye|d)=P(l,<e|l<d) = y, )
- n(l <8)
where € and & are positive numbers and n( I<s ) and n(ly <
€, [ $6) are the numbers of vector pairs satisfying the
corresponding distance constraints.! How does the probabil-
ity structure of the dependent variable behave with respect
to the independent variables? In Pi and Peterson (1993), the
following important observations were made.

1. For a completely random time series, there is no
dependency and one has

Py(e) = Py(e|8) = ... = Py(e|8) =.... ©)

IThe notation I'<8 is short for {((4;£8), (L), ..., U <)
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Figure 1

This identity, which should be understood in a statisti-
cal sense, holds for any choice of positive € and o.

2. If a continuous map exists (as in Equation 1) with no
intrinsic noise, then for any e > O there exists a 8c such
that

P,(e|8) =1 for 8 <8, and d2d, (6)

where d, represents some minimum dimension that
covers all the relevant variables. This is a direct conse-
quence. of the definition of function uniform continuity.

3. In the presence of noise r, Pd(els ) will no longer
saturate to 1 as e becomes smaller than the width
(Ar,,,,) of the noise.

The behavior of P(e|8) as a function of -8 and e for
various d is shown schematically in Figure 1. The conse-
quences of randomness (Equation 5) and complete determi-
nation (Equation 6) provide a yardstick with which to
measure the degree of dependency between the variables.
Interesting quantities to examine are the maxima:

Pd(s)sTa:Pd(e 18) = Py(e|8) lyep, - (D

How P () changes with d and € provides basically all
the necessary information (see Figure 1b). To quantify the
dependency on each of the variables, it is convenient to
define a dependability index:

Py(e)
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(a) Py(e | 3) as a function of & for fixed e. Saturation to 1 would be observed if the width of noise is less than

e. (b) Behavior of the maxima Py(e) = maxg , o Py(e| 3) as a function of €. The region saturating to 1 would
be pushed toward smaller ¢ if the dth conditional variable is relevant. The point €, at which the saturation
deviates from 1 can be identified approximately as the width of the noise Ar, ~ ¢,
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[de(Py(e)-P,_i(e))
A2 ,d=1,2,.... &

fde(l ~Py(e))
0

In general, 1 2 Xd 2 0, while xd =1 (or Zxd = 1) signals

a completely deterministic relationship, and A 4 = 0 singles
out irrelevant variables.?

Constructing statistical quantities out of pairs of points
is an efficient utilization of available statistics (N(N-1)/2
pairs out of N points). Nevertheless, limited statistics can be
problematic, especially if noise levels are high. Statistical
errors are estimated as

AP,(e|8) =2 ‘M_ ©))
n(l<d)

This expression is not entirely adequate for correlated data,
but it serves the purpose to signal the onset of statistically
unreliable regions. In case statistics are at a premium, an
option is often utilized such that a variable k, once identified
as irrelevant, is set inactive, which means that the condition
l, < 8 is omitted when computing P(e |8) for d > k. This
option cuts down the loss of statistics due to unnecessarily
restrictive conditions.

FEEDFORWARD ANN FOR
SYSTEM IDENTIFICATION

Feedforward ANNs have turned out to be a powerful
approach for classification problems. A general introduction
to the subject can be found in Hertz et al. (1991). Recently,
system identification problems also have been approached
with these nonlinear techniques. The aim is to realize a
function mapping F; from the input values (x;) to the output
values (y;). For the so-called multilayer perceptron (MLP)
(Rumelhart and McClelland 1986), a particular form of the
function F; is chosen:

yl. = F‘-(xl.xz,...) . g(z(-')','jg(%m}kxk))' (10)
J

which corresponds to the feed-forward architecture of Figure
2. The parameters to be fitted are the “weights” ®'; and Q.
The “transfer function,” g, is often chosen as g(x) o< tanh(x).
The input nodes could be either lagged outputs (e.g., y(t -
1), y(t = 2), . . .) or other independent variables at time .
The hidden layer enables the network to handle nonlinear
dependencies, with threshold behavior given by g(x). In
Equation 10 and Figure 2, one hidden layer is assumed. The
architecture can, of course, be generalized to any number of
hidden layers. Fitting to a given data set (or “learning™)

20ne should keep in mind, however, that these conditions are only
necessary but not sufficient.
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takes place with gradient descent on, for example, a
summed square error:

E = 1X@,-1? (an’

2

with respect to the weights @’; and @, where f; are the
desired (true) output values. This is done by presenting all
the training patterns repeatedly with successive adjustments
of the weights. Once this iterative learning has reached an
acceptable level in terms of a low error (E), the weights are
frozen and the ANN is ready to be used on patterns it has
never seen before. The capability of the network to correctly
reproduce the mapping of these test patterns is called
generalization performance. In the context of utility predic-
tion, the training patterns are historic data and the test
patterns represent the independent variables in the prediction
part.

This MLP functional expansion contains linear model-
ing as a special case (linear output and no hidden nodes). It
differs, however, from polynomial fittings, where each
additional power introduced implies a new dimension in an
orthonormal space. With few training patterns this might
give rise to “overfitting” with a degradation in generaliza-
tion performance. This phenomenon has been observed for
the present data. In contrast, adding additional hidden nodes
in the MLP sigmoidal expansion does not necessarily “open
up” new dimensions—additional hidden nodes may well
duplicate the task of existing ones.

The training phase is often terminated before the global
minimum of the error (Equation 11) has been reached in
order to increase the generalization performance. This is
most easily done by monitoring the error on a validation set
(a subset of the training data that is not used in the training)
and stopping the training when this error stops decreasing.

An alternative method is to use a recurrent network
(Williams and Zipser 1989) that is capable of building an
internal memory of time-lagged states by using feedback
structures. However, the exact nature of these time-lagged
states is difficult to analyze and there is no evidence that

Yi
wi;
hj
Wik
T
Figure 2 A feed-forward neural network architecture

with one hidden layer.
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those states always provide optimum time lags for solving
the problems at hand.

When comparing MLP with recurrent networks, the
former requires preprocessing in terms of choosing appro-
priately time-lagged inputs, while the latter approach is
supposed to select the relevant time lags dynamically. With
the S-test, the appropriate time lags can be efficiently
selected for MLP processing. With such a cautious choice
of input representation, the MLP always outperforms
recurrent networks. Hence, from now on we will use the
MLP.

An additional bonus of the 8-test is that the residual
errors (Equation 11) can be analyzed in terms of dependen-
cy on the input variables—with the appropriate choice of
input representations and an efficient learning procedure,
there should be no such residual dependencies.

DATA SET A

General Properties of Data

This set represents real-world data taken hourly from
September to December 1989. The task is to predict y'(t) for
the subsequent period of January and February 1990 from
the known measurements on x'(¢), where

y; = whole-building electric (WBE) power consumption
kW),

y, = whole-building cold water (WBCW) consumption
(10° Btu/h),

y3 = whole-building hot water (WBHW) consumption
(10° Btu/h),

x; = wind speed (mph),

x, = solar flux (W/mz),

x3 = humidity ratio (water/dry air),

x4 = temperature (°F), and

x5 = hour

The corresponding dates are also provided. The Christ-
mas holiday is extended and the building seems to have
been shut down on December 23, when the power consump-
tion decreases suddenly and sharp transients appear in the
water consumption. This presents a complication when
fitting the data because it occurs toward the end of the
training set and the transfer to “normal” running (assuming
that it is only a temporary state) takes place in January,
which is part of the unknown test set. In order to account
for this and other possible seasonal behavior, we identify the
weekdays and holidays (Thanksgiving, Christmas, New
Year) and introduce two new variables: x; = weekday and
x; = day-code, where the weekday takes values ranging
from 1 to 7 for Monday through Sunday, and the day-code
is +1 for a working day and -1 for a weckend day or a
holiday. For the WBE power consumption, which shows
clear seasonal effects within a weekly cycle and before and
after holidays, we code a weekday as a Sunday if it happens
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to be a holiday, and the two working days immediately
preceding a holiday are coded as Thursday and Friday,
respectively. Furthermore, the day-code is given a value of
-2 for the Christmas recess (December 23-January 1) and
is decreased from its normal value by 0.4 for the first week
in September, January, and immediately before Christmas.
It is also decreased from its normal value by 0.2 for the
second week in September, January, and before Christmas.

This additional encoding of information (x, x7) consti- .
tutes a heuristic departure from the pure “black box”
stratcgy. This encoding is necessary to enable the network
to recognize the different patterns on holidays. If the
building is a commercial building, with people working
inside, one can imagine that the code gives information on
the number of people working the first week after a long
holiday, on the last working day before a holiday, etc.
Ideally, this information should be available to the modeler
in the form of statistics of working hours.

In the test set, one finds President’s Day (February 20,
1990), which causes an ambiguity since, even though it is
an officially observed holiday, it may be ignored by certain
university campus buildings such as sports halls. We have
chosen not to treat it as a holiday. Making a wrong assump-
tion here can change the CV and MBE values (see the
“Results” section) by roughly 5% for power consumption
and 1% for water consumption.

Variable Dependencies

The functions y{¢) = F(x(#)), which are determined from
variables at the same time step only, are said to have a
horizontal dependency only. In cases where there are
dependencies upon the history of variables, one has vertical
(time-lag) dependencies. Prior to fitting the data with an
ANN, we used the d-test extensively to investigate these
dependency structures.

All three consumption variables (power and hot and
cold water) exhibit strong dependencies on x, (solar flux).
Water consumption also shows large dependencies on
temperature, whereas the power consumption appears to
depend largely on the combination of temperature and
humidity. As an example, the dependability indices for the
power consumption variable are shown in Figure 3a. Clearly
the first seven variables listed in the figure can be regarded
as relevant. In particular, the one-lag variable y,(t - 1) is an
important one, while time lags beyond three can be discard-
ed. It is also interesting to estimate the noise level with this
set of variables. It is seen in Figure 3b that P () starts to
deviate from 1 at €5 ~ 0.4 (c.f. Figure 1b). Assuming a
Gaussian distribution for the noise, its standard deviation
can be estimated as oy = €3/3.6 = 0.11. Since the € in
Figure 3b is given in units of the standard deviation (o) of
the WBE series, this means that the mean error one may
achieve is 0.110. Given that ¢ = 149 and the mean = 686
for the WBE data used, the mean error translates into a CV

ASHRAE Transactions: Symposia



Data Set A (WBE)
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Figure 3  (a) Dependency indices xd'for y; (WBE) on x,
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= 0.024 (see Equation 13), a number comparable with the
actual error obtained from an MLP.

MLP Architecture and Parameters

For the WBE prediction, we use an MLP with 7 hidden
sigmoidal units, 1 linear output unit, and 13 inputs:

() = (n(t- 1,y (e-2),
x,(2), %, (1), %4 (1), x, (1),
sin(mxg(¢)/12), cos(w x5(2)/12),
sin(mxg(£)/7), cos(n x5(2)/7),

x7(t)nx7(t - 24)’x7(t + 24)) >

where the last three inputs correspond to the day-codes for
today, yesterday, and tomorrow, respectively.

For the WBCW prediction, we use an MLP with 11
hidden sigmoidal units, 1 linear output unit, and 20 inputs:

x(t) = (yy(t - 1), x,(2), x,(2),
X, (1), x,(0),x, (1 - 1), x,(£ - 1),
x,(t-1),x,(t- 1),
x,(t-2),x,(¢ - 2),
x,(t-2),%,(t-2),
sin (% x5(£)/12), cos (nx5(1)/12),
sin(m x(1)/7), cos(nxg(1)/7),

%, (1), %, (1 - 24),x,(t + 24)) .

Finally, for the WBHW prediction, we¢ use an MLP
with 7 hidden sigmoidal units, 1 linear output unit, and 13
inputs:

(1) = (53¢ - 1), y;,(£-2), x,(8),
x,(2), x;(2), x, (), X, (2 - 1),
sin(mx;(£)/12), cos(rx5()/12), 7 - %5(8),
x,(£), %, (£ - 24), %, (¢ + 24)) .

All input values are normalized to the interval [0,1].
Standard backpropagation, as implemented in Lonnblad et
al. (1992), is used with initial weights randomly distributed
in the interval [~0.1,0.1]. The learning rate and momentum
term are set to 0.1 and 0.0, respectively. The gradient is
sampled over 20 randomly selected patterns for each weight
update.
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Results

The data set includes a total of 4,208 time steps (hours).
The last 1,282 time steps make up the test set in which the
independent variables x(f) are given, whereas the energy
consumption y(f) was withheld by the organizers (Kreider
and Haberl 1994). We thus have at our disposal the data
patterns [1,2926] that can be used to train the networks. The
accuracy in predicting the unknowns in the test set [2927,
4208] is used by the organizers to score the generalization
performances.

We use the usual mean-squared error (MSE),

L3 gw-yor, (12)
t=1

to gauge the network performances. Since the previous
signal value, y(t — 1), is used as input in all three cases, two
types of emrors are to be distinguished. One can make
predictions based on true y(t — 1) values whenever these are
available. The resultant error is then called the single-step
error (S-MSE). Alternatively, one can use the predicted
values of y iteratively to make further predictions by feeding
the predicted output back as an input. The resultant error is
called the multi-step error (M-MSE). The iterative approach
is used for making predictions in the test set.
The networks are trained in two stages:

1. First, a sample of 500 time steps [801,1300] is reserved
from the training set to form a validation set. The
networks are trained on the remaining 2,426 data
points. The multi-step errors are monitored and the
network giving the best M-MSE on the validation set is
picked out. Then, preliminary predictions are made for
the time steps [2927,4208] based on the best network
found.

2. In the second stage, we train the network on the entire
training set (including the 500 time steps previously
reserved), with the condition that the new predictions

may not drift too far from the preliminary predictions.
Specifically, we define a mean-squared deviation
(MSD) between the preliminary and the new predictions
and finally choose the network that minimizes a weight-
ed sum of M-MSE on the training set and M-MSD on
the testing set.

We find that in the stage 1 training, the best M-MSE
selected by the validation process does not always corre-
spond to the best M-MSE for the entire training set. The
stage 2 “fine-tuning” process ensures that we do not get a
solution that badly misrepresents the 500 reserved patterns.

The mean-squared errors from the best networks
achieved are summarized in Table 1.

The organizers have defined the coefficient of variation
(CV) and the mean bias error (MBE) as the following:

1|1 & e
CV = :[—— X () —y(r))z]
N ¢=1

y
and
N
MBE = + 1 T (5(5) -y (13)

¥y Ni-a
where
y(t) = true value of the signal,
$(f) = predicted value, and
y = average of the true value.

The results for these two error measures on the training set
and the test set are given in Table 2.

Figures 4 through 6 show the comparison between the
(multi-step) predictions and the true values. The bottom
plots in the figure are for the test sets in which the true
values became known only after the predictions were made;
they demonstrate the true generalization performance of the
networks. Figure 7 shows the predicted energy consumption
as functions of the temperature.

TABLE 1
Mean-Squared Errors for Single-Step (S-MSE)
and Multi-Step (M-MSE) Predictions -for Various Data
Sets at Stage | and Stage 1l of the Network Training
(The last column [MSD] is the deviation of the stage II
predictions from the preliminary stage I predictions.)

Stage I Stage II
Data Set Learning Validation | Training MSD
(1-800,1301-2926) | (801-1300) [ (1-2926) | (2927-4208)

WBE  S-MSE 228.3 152.3 203.0 5.43
M-MSE 881.9 381.3 726.8 61.15
WBCW S-MSE 0.030 0.034 0.030 0.0009
M-MSE 0.163 0.092 0.128 0.015
WBHW S-MSE 0.047 0.038 0.045 0.0002
M-MSE 0.121 0.056 0.100 0.0044
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WBE (kW)

TABLE 2
Coefficient of Variations (CV) and Mean Bias Errors
(MBE) for the Single-Step and Multi-Step Predictions
and for the Training and Test Sets, Respectively

Training Set Test Set
CcvV MBE cv MBE
S. Step | M. Step S. Step M. Step M. Step [ M. Step
WBE | 0.0215 | 0.0407 | —3.25 x 10~% | —1.26 x 10~° || 0.1178 | 0.105
WBCW | 0.0345 |, 0.0705 | —7.55 x 10-% | —4.86 x 10-2.|| 0.1296 | —0.0595
WBHW | 0.1010 | 0.1512 | —3.08 x 10~% | —1.70 x 10~° || 0.3063 | —0.2733
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Figure 5
in Figure 4.

Validation of the Resulit

As mentioned above, the 5-test can be used to check
whether the network has learned its task properly by
applying the test on the residual error. If the amount of
noise resulting from the 8-test equals the standard deviation
of the residue signal, then it is likely that the prediction is
the best possible prediction (apart from minor ditterences
between different networks). We stress, however, that the &-
test is based on true data values and therefore has. direct
relevance only to the single-step prediction task.
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Hourly steps

Predicted WBCW consumption plotted together with the data and the residues. The notations are the same as

The results from testing the single-step residues indicate
that, for WBE and WBCW consumptions, these networks
have almost reached their limits for learning the tasks, while
for WBHW there may still be room for some improvement.
However, for WBHW the best single-step error does not
necessarily correspond to the best multi-step error. Since the
latter is most relevant for this prediction task, we choose to
ignore the signal of the d-test and accept the network
solution.
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in Figure 4.

DATA SET B
General Properties of Data
This set consists of 3,344 solar radiation measurements

during a nine-month period (August-May). The task is to
predict y(X), where

y = true beam insolation,

x; = decimal date (Julian day + hour/24),
X, = horizontal solar flux (W/m2),

x3 = southeast solar flux (W/mz),

x4, = south solar flux (W/mz), and

Xs = southwest solar flux (W/m?).
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Predicted WBHW consumption plotted together with the data and the residues. The notations are the same as

From a physics point of view, it would be natural if the
horizontal, south, and total solar flux variables were all
peaked around noon. However, visual inspection of the data
according to the description is not consistent with this. Since
the notation of the input values is irrelevant for the results,
we use the “shootout” labels in our description and calcula-
tions.

Variable Dependencies

The solar flux has a stronger dependency on the hour
than on the (Julian) day; therefore, the decimal date column
is split into day and hour columns. Results from applying

the &-test (Pi and Peterson 1993) on this data set are shown
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Figure 7 Predicted WBE, WBCW, and WBHW consumption vs. the dry-bulb temperature.

in Figure 8. The y variable has dependencies on the four
angled measures of solar flux as well as on the hour, as
seen in Figure 8a. However, if the variables are reordered so
that the hour is entered last, as shown in Figure 8¢, one sees
that the hour does not provide information that is extra to
the four solar flux variables. This suggests that if a model
is properly built upon the angled solar flux measures there
may be no need for an explicit dependency on the hour.
There appears to be no dependency on the (Julian) day
either. A striking feature is that the sum of indices gives
0.998 in either Figure 8a or 8c, nearly saturating to 1, which
suggests a high deterministic relationship. This is in contrast
to data set A (Figure 3), where the sum of the indices yields
0.92 and a relatively large noise level is found. From Figure
8b (or Figure 8d), we read €, ~ 0.03, and the noise level G,
= £¢/3.6 = 0.0083. Multiplying by the standard devia-
tion/mean ratio (316/381) of the y data set, the noise would
correspond to an error measure of CV ~ 0.007.

ANN Method

Given that there is a function that fully determines the

total solar flux, we attempted some different ANN architec- -

tures to approximate it. First, we used a small subset of the
training data as a validation set to monitor the performance.
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It turned out that the error on the validation set always
decreased with the error on the training set and that there is
no need to use a validation set. We consequently chose to
use the whole training set for training. The ANN architec-
ture that gave the best performance is a standard MLP with
two hidden layers, a single-output unit, and seven inputs,
where the inputs are

X = (x,,%4,%,, X, day, cos (hour), sin(hour)) .

No time-lagged inputs were used since the &-test suggests
that the function is well determined by just using horizontal
variables. All input values are normalized to the interval
[0,1], and the output value is scaled by a factor of 1,300.
Initial weights are randomly distributed in the interval
[-0.3,0.3]. During learning, weights are updated after
presentation of every 10 randomly selected patterns. All the
calculations have been done using the package described in
Lonnblad et al. (1992). A Langevin updating scheme (see,
for example, Rognvaldsson [1994]) was used, as it often
perfouns better than backpropagation.

Results

In Figure 9, a scatter plot is shown of true and predict-
ed beam insolation for the training data, with a variation

ASHRAE Transactions: Symposia
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coefficient of CV = 0.019 and a mean bias error of MBE =
~0.00032. Note that the CV achieved by the network is
reasonably close to the rough estimate of the 3-test. For the
test data (a set of data in which the answers were withheld
by the organizers), the error measures give CV = 0.027 and
MBE = 0.0017.

Validation of the Result

Applying the &-test to the residue € from the training
set gives

£ = G(day,cos(hour), (14)

sin(hour), v,, ..., V) +Y,

where the noise level y ~ stddev(e). This implies that
another network trained on the residue signal will only be
able to learn within an error of about one standard deviation,
which is no improvement. Hence, we conclude that our
prediction is good enough.

SUMMARY

We have approached the two data sets provided in “The
Great Energy Predictor Shootout—The First Building Data
Analysis and Prediction Competition” (Kreider and Haberl
1994) with an almost “black-box™ procedure based on

‘e the &-test for establishing dependencies and gauging
network performance and

o amultilayer perceptron (MLP) (Rumelhart and McClel-
land 1986) for modeling historic data.

When selecting the appropriate ANN architecture and
learning algorithm, the choices are a standard MLP and/or
arecurrent network (Williams and Zipser 1989). The former
requires preprocessing in terms of choosing appropriately

time-lagged inputs, whereas the latter approach is supposed
to select the relevant time lags dynamically. With the 8-test,
the appropriate time lags can be efficiently selected for MLP
processing. It should be stressed that some “expert” knowl-
edge of holiday structure, etc., is needed for peak perfor-
mance in data set A.
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