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s and the cri- 

B 0th clinicians and interpretation programs require 
correct data for a correct electrocardiographic inter- 

pretation. Misplacement of electrodes during the elec- 
trocardiographic recording is one situation that results in 
incorrect data. Treatment errors due to lead reversal have 
been reported; misdiagnosis and subsequent lack of 
proper treatment as well as inappropriate treatment due 
to false-positive diagnoses do 0ccur.l To prevent a false 
interpretation, the misplacement should be recognized 
and corrected by the technician who records the elec- 
trocardiogram (ECG). To recognize the lead reversal 
from the appearance of the ECG may be difficult. Even 
trained ECG readers often fail to recognize a lead rever- 
sal.* Therefore, interpretation programs contain algo- 
rithms for detecting the most common type of lead rever- 
sal, the right/left arm lead reversal. Two widely used 
algorithms for the detection of right/left arm lead rever- 
sal are known to have a high specificity but rather low 
sensitivity. Although it is easy for the experienced ECG 
reader to detect an ECG with a lead reversal, improve- 
ment in the algorithms, which are rule-based, is a diffi- 
cult task, even for the expert. Artificial neural networks 
(ANNs) have proved to be very powerful in pattern 
recognition tasks because they can handle almost any 
nonlinear dependence. ANNs mimic, in a very crude 
way, mammal information processing. Input (data are 
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processed through layers of artificial neurons connected 
by weights (Figure 1). ANNs have been used for clas- 
sification of ECGS.~-~ In 1 study, an ANN diagqosed 
myocardial infarction from ECGs better than a conven- 
tional interpretation program,6 and in another study an 
ANN performed on par with an experienced ECG reader.7 
The purpose of this study was twofold: (1) to develop 
ANNs that yield high sensitivity for the recognition of 
right/left arm lead reversal at a very high specificity; and 
(2) to compare the performances of the ANNs with those 
of 2 widely used interpretation programs. 

METHODS 
Study population: The study was based on 11,432 

ECGs recorded in patients who presented at the emer- 
gency ward at the University hospital in Lund during 
1992 and 1993. The 12-lead ECGs were recorded using 
computerized electrocardiographs (Siemens-Elema AB, 
Solna, Sweden). All recordings were obtained digitally 
and averaged heart cycles were calculated. The P, QRS, 
and ST-T measurements used in the criteria and as inputs 
to the ms were obtained from the measurement pro- 
gram of the computerized electrocardiographic recorders. 

As stated, the purpose of the study was to develop 
ANNs that detect right/left arm lead reversal with a very 
high specificity. Because ANNs learn from example, it 
was important that no ECG with right/left arm lead rever- 
sal was used as an example of a correctly recorded ECG, 
and vice versa. Therefore, great care was taken to ex- 
clude ECGs with lead reversal as well as ECGs that were 
technically deficient. In addition, pacemaker ECGs were 
excluded becatise QRS morphology or the ST-T segment 
are not assessed by the programs in these ECGs. The 
exclusion process included both visual inspection of the 
ECGs and computerized methods. Two experienced ECG 
readers examined the ECGs independently. The com- 
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TABLE I Reasons for Exclusion of Electrocardiograms 

Reason for Exclusion 

Right/left arm lead reversal 
Right arm/foot lead reversal 
left arm/foot lead reversal 
Precordial lead misplacement 
Pacemaker ECG 
Technically deficient ECG 
Total 

ECG = electrocardiogram. 

Number of ECGs 

47 
32 
a 

25 
197 
114 
423 

TABLE II Measurements Used in the GRI and Marquette Criteria 
and in the Artificial Neural Networks 

P Waves Present 

Measurement 
Best 

P Waves Absent 

GRI Marquette ANN GRI Marquette 

P axis X X X 

P sum (I, V,) X 

p+, p- W,l X 

QRS axis X X X X X 

QRS area (I) x X X 

QRS area (V,) X X 

Q, R ampl (I) X X X 

S, R’, ST, T+, T- ampl. x X 

(11 R, S ompl. IV,) 

QRS PP (V,) X 

QRS ampl. (35, 40, 45), X 

T sum (I, V,) 
ST, T+, T- ampl. (V,) , x X 

ANN = artifihl neural network; PP = peak-to-peak amplitude; QRS ampl. 
(35, 40, 45) = amplitude 35, 40, and 45 ms after QRS onset; sum = maxi 
mal positive amplitude - /maximal negative amplitude\; + = maximal positiw 
amplitude; - = maximal negative amplitude. 

Input layer Hidden layer Output layer 

FIGURE 1. Schematic diagram of a neural network with 15,5, 
and 1 neurons in the input, hidden, and ou 
tively. The neurons are connected to each o x 

ut layers, respec- 
er by the lines. 

puterized methods included histogramming all the vari- 
ables and a more elaborate method of using an ANN 
density map. 

Technically deficient recordings and pacemaker ECGs 
were excluded. Based on visual and computerized analy- 
sis, ECGs with suspected electrode misplacement or lead 
reversal were scrutinized by the 2 experts together. Elec- 
trode misplacement or lead reversal was verified in most 
cases after a comparison between the suspected ECG 

Correctly recorded Right/left arm 
ECG lead reversal 
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and a previous or later recording from 
the same patient found in the clinical 
database. A total of 423 ECGs were ex- 
cluded (Table I), which left 11,009 
ECGs for the study. 

Each of these 11,009 ECGs was 
used to generate an ECG with right/left 
arm lead reversal. This was performed 
computationally by means of inverting 
lead I, interchanging leads II and III, 
and interchanging leads aVL and aVR 
(note that aVF is not affected by the 
right/left arm lead reversal) (Figure 2). 
This yielded exactly the same ECG that 
would have resulted if the right and left 
arm electrodes had been switched in 
the recording situation. Thus, the final 
material consisted of 22,018 ECGs di- 
vided into 2 groups; 11,009 ECGs re- 
corded with correct electrode placement 
and 11,009 with right/left arm lead 
reversal. 

The interpretation programs use 
different criteria depending on the 
presence/absence of P waves. Similar- 
ly, different ANNs were used if P waves 
were present or absent. Therefore, only 
9,296 pairs of ECGs with P waves 
could be used to test criteria and ANNs 



that use P-wave information. Howev- 
er, all ECGs were used in the analysis 
of criteria and ANNs not requiring P- 
wave data as inputs. This approach is 
justified since the QRS patterns of 
right/left arm lead reversal are not 
dependent on the P waves. 

1 
Specificity (%) Sensitivity f%)- 

Conventional criteria: Performances 
of the neural networks were compared 
with those of 2 conventional interpre- 
tation programs, namely the GRI pro- 
gram developed at the Glasgow Royal 
InIirmary8 and the Marquette prograrn9 
Both programs use rule-based criteria. 
For example, if P waves are detected, 
the following rule is used in the Mar- 
quette program: If the QRS axis is be- 
tween 90” and 270” and the P axis is 
between 90” and 210”, then say “sus- 
pect arm lead reversal.” 

ANN using GRI measurements 
Marquette criteria 
ANN using Marquette measurements 

P waves absent 

ANN using GRI measurements 

ANN using Marquette measurements 

100.00 84.02 
99.94 f 0.026 98.7 * 0.12 

99.87 93.91 
99.92 * 0.022 94.8 + 0.26 
99.95 f 0.017 99.11 * 0.080 

100.00 39.34 
99.92 LIG 0.023 94.5 ziz 0.52 

99.91 30.93 
99.90 ct 0.028 63 * 2.6 

Abbreviations as in Table II. 

All ECGs were processed by the 
Glasgow measurement program and 
these measurements were used as in- 
puts to both interpretation programs. 
The inputs to the 2 programs are pre- 
sented in Table II. 

Neural network: A multilayer per- 
ceptron ANN architecturelO and Lang- 
evin updating procedure” were used. 
A more general description of ANN 
can be found elsewhere.12 The ANNs 
consisted of 1 input layer, 1 hidden 
layer, and 1 output layer (Figure 1). 
The output unit encodes whether the 
ECG is correctly recorded (output val- 
ue = 1) or if a right/left arm lead rever- 1 
sal is detected (output value = 0). The 
hidden layer contained 4 to 6 neurons. 

FIGURE 3. A correctly recorded electrocardiogram from a 50- ear-old patient with 
severe lung and heart disease. The electrocardiogmm was fa sely classified as r 

The number of neurons in the input right/left arm lead reversal by the artificial neuml network and the Marquette pm- 

layer equals the number of input vari- 9mm- 
ables. These are presented in Table II 
for the 5 different networks. The P and QRS axes were validation to train the networks and assess their perfor- 
presented to the networks as sin(axis l n/180) and mantes. The error estimates in Table III result from 25 
cos(axis l r/180). In cases in which the P or QRS axis independent runs for each type of network. 
was undetermined, both the sin and cos values were set During the training process, the connection weights 
to 0. between the neurons were adjusted using the back-prop- 

Similar to conventional criteria, different ANNs were agation algorithm. The learning rate (h) had a start val- 
used if P waves were or were not present. Two networks ue of 0.5. During the training, -q was decreased geo- 
used the same inputs as the GRI program, whereas 2 metrically every epoch using the following equation: q 
other networks used the same inputs as the Marquette = k n with k = 0.998. 
program. Furthermore, selections of the available inputs The momentum (Y was set to 0.7. Updating occurred 
were used to find ANNs that yielded high performance. after each 20 patterns. The Langevin noise was chosen 

The data set was divided into 2 parts: a training set to decrease geometrically from 0.005 and with k = 0.993 
and a test set. The training set was used to adjust the during the training process. The network weights were 
connection weights, whereas the test set was used to initiated with random numbers between -0.025 and 
assess the performance. To get as reliable a performance 0.025. Parameters that were separate for the different 
as possible, a K-fold cross validation was used in which ANNs are presented in Table IV; All calculations were 
the data set was randomly divided into K equal parts. done using the JETNET 3.0 package.13 
For each of the K different test sets, training was per- To achieve as high a specificity as possible, at the 
formed on the remaining (K-1)/K parts of the data. We cost of a lower sensitivity, the following 2 methods were 
used 3-fold cross validation to decide when to terminate used during the training procedure: (1) The correctly 
learning in order to avoid “overtraining,” and 7-fold cross recorded ECGs were presented to the ANN typically 50 
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times more often than the incorrect ECGs. (2) An asym- 
metric error function was used (i.e., the network was 
penalized more for a false-positive case than for a false- 
negative case). 

RESULTS 
The results for the conventional criteria and the 

ANNs are presented in Table III. All criteria and all 
ANNs show very high specificity. One of the few cor- 
rect ECGs classified as right/left arm lead reversal by the 
ANNs and the Marquette criteria is shown in Figure 3. 
This ECG was also classified as possible lead reversal 
by both experts independently. After a comparison with 
previous ECGs from the patient in a clinical database, it 
was shown that the ECG was correct and the atypical com- 
plex in lead I was due to severe lung and heart disease. 

..: :.. 
.,,,, : ? -‘.‘.. i. 
B .:: ,-: ,.A. :.‘- 

: .: 

In the presence of P waves, conventional criteria 
show high sensitivity. However, with use of the ANNs, 
the sensitivity was even higher. Figure 4A shows an 
example of right/left arm lead reversal that was missed 
by the GRI criteria. The networks correctly detected the 
ECG as a lead reversal, which is obvious for the expe- 
rienced ECG reader. The conventional criteria had a 
much lower sensitivity in the absence of P-wave data: 
30.9% and 39.3% for the Marquette and GRI criteria, 
respectively. The corresponding sensitivity for the ANN, 
which used the same variables as the GRI criteria, was 
94.5%. One example of lead reversal missed by both cri- 
teria and detected by the ANNs is shown in Figure 4B. 

To check to what extent our database was sufficient 
in size, the ANNs were trained and tested using half of 
the material. No significant difference was observed. 

DISCUSSION 
One objective of the present study was 

to develop ANNs with high sensitivity for 
the recognition of right/left arm lead 
reversal at very high specificity. The 
importance of high specificity could be 
illustrated by the following example: The 
specificity of the best networks were as 
high as 99.95% (i.e., 1 false-positive ECG 
of 2,000 ECGs). A right/left arm lead 
reversal occurs only in 1 out of 100 to 400 
ECGs depending on the experience of the 
recording technician. In considering a set 
of 2,000 ECGs, 5 to 20 of these will have 
a right/left arm lead reversal, and 1 cor- 
rect ECG will falsely be reported as incor- 
rect using this neural network. With a sen- 
sitivity of approximately 95%, most of the 
incorrect ECGs will also be reported. 
Consequently, most of the ECGs that the 
neural network classifies as right/left arm 
lead reversal will actually be a case with 
lead reversal (i.e., the positive predictive 
value will be high). 

Ideally, the network would never re- 
port lead reversal for a correct ECG. The 
network learns from example and it is 
therefore very important that the training 
set does not include such examples (i.e., 
a correct ECG labeled as a lead reversal). 
This would happen if an ECG with 
right/left arm lead reversal was included 
in the data set of 11,009 ECGs labeled as 
correct. Therefore, great care must be tak- 
en in purification of the database. In this 
study, ANNs were used as a complement 
to the visual examination of the ECG ex- 
perts in this process. 

FIGURE 4. Two electrocardi 
with P waves present @j an 3 

rams (ECGJ with right/left arm lead reversal, 1 
1 without P waves (II]. Both ECGs were detected 

by artificial neural networks, whereas the GRI criteria missed them and the 
Marquette criteria missed the ECG without P waves. 

The performance of an ANN is de- 
pendent on the size and composition of. 
the database used for training. Therefore 
the ECGs of the training set should be rep- 
resentative for routine ECGs processed by 
computerized ECG recorders. To accom- 
plish this, a database of >ll,OOO ECGs 
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was selected. Training and testing 
ANNs using only half the material did 
not impair the performance, which 
shows that the size of the material was 
sufficient. The ECGs used to train the 
ANNs were recorded at an emergency 
ward (i.e., in a clinical setting where 
the ANNs could be of greatest help). 

A second purpose of the study was 
to compare the performances of the 
ANNs with those of 2 widely used 
interpretation programs. Both pro- 
grams and ANNs showed very high 
specificities, but sensitivities were 
much higher for the ANNs. Consider- 
ing that over 100 million ECGs are 
recorded annually in the U.S.14 and 
probably another 200 million in the 
rest of the world, this difference in sen- 
sitivity could result in 100,000 to 

- 
TABLE IV Network Structure For Different Input Data Set 

Number of Neurons 
- 

Neural network Input Hidden Output SR AE Errmin <Epochs> 
- 

P waves present 
ANN using GRI 21 5 1 40: 1 1 0.020 148 

measurements 
ANN using Marquette 4 4 1 70: 1 1 0.030 325 

measurements 
Best ANN 16 5 1 2O:l 10 0.022 125 

P waves absent 
ANN using GRI 15 5 1 70: 1 1 0.030 170 

measurements 
ANN using Marquette 4 6 1 5O:l 5 0.075 500 

measurements 
- 

AE = the p parameter in the asymmetric error function [AE = 1 is the normal squared error func- 
tion); <Epochs> = the average number of epochs, where 1 epoch is completed when the some nu~m 
ber of patterns have been presented to the network os the number of patterns in the training set; 
Err,i, = error level in the training set at which the training is stopped; SR = sampling ratio between 
correctly recorded electrocardiograms and electrocardiograms with right/left arm lead reversal; oth- 
er abbreviations os in Table II. 

- 

400,000 right/left arm lead reversals being detected by 
ANNs but not by conventional interpretation programs. 
It has been shown that even cardiologists fail to recog- 
nize right arm/leg lead reversal.2 The right/left arm lead 
reversal is probably also overlooked by many ECG read- 
ers. Therefore, the detection of lead reversal in inter- 
pretation programs is a very important type of quality 
control. 
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