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Variational methods are used to calculate structural and thermodynamical properties of a titrating polyelectrolyte
in a discrete representation. In the variational treatment, the Coulomb potentials are emulated by harmonic
repulsive forces betweenall monomers; the force constants are used as variational parameters. The accuracy
of the variational approach is tested against Monte Carlo data. Excellent agreement is obtained for the end-
to-end separation and the apparent dissociation constant for the unscreened Coulomb chain. The short-range
screened Coulomb potential is more difficult to handle variationally, and its structural features are less well
described, although the thermodynamic properties are predicted with the same accuracy as for the unscreened
chain. The number of variational parameters is on the order ofN2, whereN is the number of monomers, and
the computational effort scales likeN3. In addition, a simplified variational procedure with only two parameters
is pursued, based on a rigid-rod approximation of the polymer. It gives surprisingly good accuracy for certain
physical properties.

I. Introduction

With increasing computer resources and refined algorithms
it has now become possible to investigate structural and
thermodynamic properties of polymer chains with several
thousand monomeric units using simulation techniques. In
particular, charged polymers have recently received increased
interest and a number of simulation studies have appeared in
the literature.1-8 Most polyelectrolytes will under normal
solution conditions exhibit an acid-base equilibrium; i.e.,
titratable groups in a polymer will exchange protons with the
solution and the polymer net charge will vary as a function of
the solution pH. This extra degree of freedom makes poly-
electrolytes particularly versatile in many technical and biologi-
cal applications.9-15 In simulations, this phenomenon can be
described by coupling the polyelectrolyte to an external proton
bath of fixed chemical potential or pH; such grand canonical
Monte Carlo simulations have been performed by several
groups.16-19

Many polyelectrolytes undergo a dramatic structural change
upon a successive ionization; i.e., the Coulombic repulsion
between charged monomeric units forces the chain to adopt more
extended conformations. This is particularly dramatic at low
polymer and salt concentration. Sometimes the Coulombic
repulsion is counteracted by attractive interactions leading to a
helix-coil transition as a function of pH.20-23 In hydrophobi-
cally modified polyelectrolytes the attractive interactions tend
to dominate and rather modest structural changes are seen upon
ionization. Proteins are a special class of polyelectrolytes,
which, although they may denature, still show rather small
structural changes when going from the isoelectric point to either
high or low pH. The competition between electrostatic mono-
mer-monomer repulsion and specific attractive interactions has
also been studied with simulation techniques.17,24

So far most polyelectrolyte studies have focused on the
behavior of a single chain at infinite dilution. Additional salt
has been introduced in an approximate way via screened
Coulomb interactions. Finite polymer concentration and explicit
salt particles impose considerable constraints on the chain
lengths to be handled. A few studies, however, of nontitrating
polyelectrolytes with explicit salt particles have been presented,
but then only for fairly short chains.4,25-28 Simulations with
finite polymer concentration have also been carried through,
but such studies are at present only feasible for a limited chain
length.27,28 In this paper the accuracy of less computer
demanding nonstochastic approaches is investigated using Monte
Carlo simulations.
A number of approximate models for titrating polyelectrolytes

have been suggested focusing on different phenomena and
applying tools of varying mathematical sophistication. Existing
theories, however, are seldom based on models that incorporate
both a fully flexible chain and a discrete representation of the
monomers. Here we suggest a variational approach, which has
given excellent results for nontitrating polyelectrolytes,29,30based
on a discrete representation of the polymer chain. That is, each
monomeric unit is connected to its neighbors with a harmonic
bond and may carry a unit charge depending on the solution
pH. We apply the variational technique to a linear chain
although the method is perfectly general and can be applied to
any chain topology. The variational solution to the titrating
chain is obtained for different chain lengths and salt concentra-
tions, and the results are compared to results obtained via Monte
Carlo simulations.
The full variational solution is obtained at a much lower

computational effort than is required by simulations. As a
further advantage it also provides the chain free energy. Still,
the numerical procedure leading to the variational result is
nontrivial, and we have also developed a simpler, but of course
less accurate, variational scheme based on only two variational
parameters.
This paper is organized as follows. In section II we describe

the details of the model we use for the titrating polymer. The
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variational technique of refs 29 and 30 is briefly reviewed in
section 3 together with some new numerical results for largeN
for nontitrating chains. In section 4 the variational formalism
is generalized to titrating chains, while the details of the Monte
Carlo calculations can be found in section 5. Section 6 contains
the corresponding comparisons between Monte Carlo and
variational results for chains in a salt-free environment as well
as in salt solutions. Finally a brief summary and our conclusions
can be found in section 7.

II. The Model

The polyelectrolyte is regarded as an infinitely diluted
polyacid in aqueous solution. The monomers form a linear
chain where each monomer represents a titrating site that can
be either protonated or deprotonated, i.e. be uncharged or carry
one unit of negative charge. The chain is freely jointed, with
neighboring monomers connected by harmonic bonds. The
implicit assumption is that the part of the underlying neutral
polymer backbone that separates the neighboring charged groups
obeys a Gaussian distribution for its end-to-end separation. This
is a reasonable approach for a chain where the separation of
neighboring charges is much larger than the persistence length
of the underlying neutral chain.
The solvent is treated as a dielectric continuum with a

permittivity equal to that of water at room temperature. It also
acts as a proton reservoir via a chemical potential given by

where pH is that of the bulk and pK0 is the intrinsic pKa of a
monomer. In the case of a salt solution, an additional effect of
the solvent is a Debye-Hückel screening of the electrostatic
interactions between all charged monomers, and the total
interaction energy forN monomers becomes

where x̃ij is the distance between monomeri and j, e is the
electronic charge,εr is the dielectric constant of the solution
(78.3 in all simulations),ε0 is the permittivity of vacuum, and
Zi is the amount of charge on monomeri (either 0 or-1). We
use the tilde notationẼ, x̃i, etc. for physical quantities in
conventional units and reserveE, xi, etc. for dimensionless ones,
which will be used in the variational formalism below. The
force constant,k, is implicitly given through the input parameter
r̃0 ) (e2/4πεrε0k)1/3, which is the equilibrium distance for a fully
charged dimer, and it is set to 6 Å in all calculations. In the
case of a 1:-1 salt,κ̃ is given byκ̃) (2e2csNA/εrε0kBT̃)1/2, where
cs is the salt concentration (in mM),kB is the Boltzmann
constant,NA is the Avogadro number, andT̃ is the temperature.
A. Dimensionless Formulation with Relative Coordinates.

Using dimensionless coordinatesxi, given byx̃i ) r0xi, we may
define a rescaled temperatureT,

and a likewise rescaled chemical potentialµ,

The negative exponent of the Boltzmann factor can then be
written as

with the rescaled energy given by

where we have replacedZi by the more convenient{0,1}
variablessi ) -Zi.
In what follows, relative coordinates will mostly be used;

instead of the absolute monomer positionsxi, thebondVectors
r i,

will be considered the fundamental variables. In this way
complications due to the translational zero modes are avoided;
in addition, the convergence of the variational algorithm to be
described below becomes considerably faster, especially at high
temperatures. The energy of the chain then takes the form

whereσ runs over contiguous non-nil subchains, with

corresponding to the distance vector between the end points,lσ
and rσ, of the subchain.
B. Apparent Equilibrium Constant. The average degree

of dissociation,R ≡ (1/N)∑i 〈si〉, can be interpreted in terms of
an effective chemical equilibrium constant, pK

Without the interaction, we would have

A simple measure of the effect of the interaction on the chemical
balance is then given by the change in pK:

III. Variational Treatment of Conformational Degrees of
Freedom

A. Generic Formalism. In this section we will focus on
the conformational degrees of freedom, ignoring the titration;
thus we consider a nontitrating polymer, with an energy obtained
from eq 8, by settingsi ) 1 and disregarding theµ term:

A suitable variational approach to such a system is based on an
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effective energy Ansatz29-31

whereai define average bond vectors, around which Gaussian
fluctuations are allowed, described by the symmetric, positive-
definite correlation matrixGij, the matrix inverse of which
appears in the energy.
Using this effective energy, the exact free energyF )

-T ln Z of the polymer is approximated from above33 by the
variational one

whereSV is the variational entropy and〈E〉V is the average of
the true energy in the trial Boltzmann distribution (∝ exp(-
EV/T). The parametersGij andai are to be determined so as to
minimize the variational free energyF̂. The resulting effective
Boltzmann distribution is then used to approximate expectation
values〈 〉 by effective (variational) ones〈 〉V. Thus, we have
e.g. 〈r i〉V ) ai and 〈r i‚r j〉V ) ai‚aj + 3Gij. For potentials
diverging like 1/r3 or worse at short distances,〈E〉V will be
divergent, and the approach breaks down. However, such
potentials are not physical.
At high T and/or smallN, the resultingai will vanish. By

settingai ) 0 in eq 14, a restricted Ansatz is obtained, that in
the screened case yields better results numerically than theai
* 0 case; this restricted version will be frequently used below.
The minimization ofF̂ with respect toGij andai gives rise

to a set of matrix equations to be solved iteratively. These are
considerably simplified, and the symmetry and positivity
constraints onGij are automatic, ifGij is expressed as the product
of a matrix and its transpose:

The interpretation of the local parameterzi is simplesit is a
fluctuation amplitude for theith bond vectorr i. We can write

where each component ofJµ ∈ R3 is an independent Gaussian
noise variable of unit variance.
Similarly, we have for a subchain

whereaσ ) ∑i∈σ ai andzσ ) ∑i∈σ zi. Thus, the noise amplitudes
are additive.
The matrix inverse ofG can be similarly decomposed:

wherewiµ is the (transposed) matrix inverse ofziµ:

Note thatzi, wi, andzσ are vectors inRN-1, not inR3.
In terms ofai and zi, the variational free energy ignoring

trivial additive constants (see ref 30 for details) is given by

where

At high enough temperatures, there is a unique minimum,
having allai ) 0: a purely fluctuating solution. At lowerT,
an additional solution appears, characterized by alignedai * 0;
this becomes the global minimum at low enoughT.
Settingai ) 0 for the unscreened case (κ ) 0), the variational

free energy simplifies to

which very much resembles the energy of an (N - 1)-
dimensional Coulomb chain with bondszi but with an extra
entropyterm (the first) preventing alignment of the ground state.
The equations for a local extremum ofF̂(a,z) are obtained

by differentiation with respect tozi andai,

Due to the use of relative coordinates and of local noise
amplitudes, a simple gradient descent method with a large step
sizeε can be used, that gives fast convergence to a solution of
eqs 24

Further speed is gained by updating the reciprocal variableswi

(arising from differentiating ln detz) using incremental matrix
inversion (the Sherman-Morrison method34,30)sthe increment
in wj due to a change∆zi is given by

The resulting computational demand of the method is∝N3.
The high- and low-T properties of the variational approach

were analyzed in ref 30. In contrast to the case in MC
simulations, the free energy is directly accessible with the
variational method. Furthermore, the approach respects the
virial identity, 2〈EG〉 - 〈EC〉 ) 3(N - 1)T, in the sense that it
holds also for the corresponding variational averages.
B. Nontitrating Variational Results Revisited. The method,

restricted toai ) 0, was extensively confronted with MC results
in ref 30. Very good agreement was found for configurational
quantities in the case of an unscreened Coulomb interaction (the
error is well within the theoretical 11% limit30). In the screened
case the method does not reproduce the MC results equally well
although it gives a qualitatively correct picture of conformational
properties.
Prior to dealing with the titration case, we will augment the

comparisons in ref 30 of the end-to-end distancereewith those
arising from theai * 0 solutions and also with those produced
by the simplest possible variational Ansatz.35 The latter is a
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highly constrained version of eq 14, withzi ) 0 and constant
ai ) a, corresponding to arigid rod. This simplification leads
to simple scaling behavior,35

which seems to be approximately correct in MC calculations;30

it is certainly correct atT f 0. In Figure 1 we compare the
results of the three different variational approaches (ai ) 0, ai
* 0, and the rigid rod) to MC data. The largeN behavior of
the ai ) 0 andai * 0 variational curves is consistent with
approaching the theoretical limits derived in ref 29, 11% and
0%, respectively. The average monomer-monomer distances
are also very well reproduced by both theai ) 0 andai * 0
variational approaches.
The simple rigid rod approach is more or less tailored to

reproduceree but it lacks the degrees of freedom to properly
describe local properties along the chain. A similar approach
was pursued in ref 8, in which good results were reported, at
temperatures significantly higher than those at which the
calculations in this paper are performed. We expect the
accuracy of the rigid rod approximation to increase with
decreasing temperature.
For screened Coulomb chains theai * 0 results do not

compare favorably with MC datasthe chain tends to elongate
more than the screened potentials call for. The same is true
for the rigid rod approximation.

IV. Variational Approach to Titration

A. Variational Treatment of Titratable Charges. So far
the variational approach has been confined to the situation with
fixed identical charges along the chain. Next we generalize to
allowing charge exchange with the solvent, with the total charge
governed by a chemical potential. This amounts to considering
si in eq 8 as dynamical variables, that each can be either 0 or 1.
Thus, suppressing for a moment the coordinate degrees of
freedom, the system is isomorphic to an Ising spin system.

where the chemical potentialµ has been introduced and

coordinate dependencies etc. are lumped into the “couplings”
γij. Such systems have been subject to much attention in the
solid state community, in particular for describing magnetic
properties of so called spin glasses. A powerful alternative to
computing thermodynamic properties of eq 28 by means of MC
techniques is the mean field (MF) approximation. This can be
considered as a variational approach along the lines above, with
the variational energy Ansatz

where the coefficientsui are the variational parameters. Mini-
mizing the corresponding variational free energy, one gets the
MF equations

which can be solved by iteration. Themean fieldsVi have the
interpretation of mean charges〈si〉V, whileui are conventionally
referred to aslocal fields.
We will next merge the variational treatments of relative

coordinates and charges, treating the unscreened and screened
cases separately. For simplicity we limit the presentation to
theai ) 0 solutions. The corresponding expressions for theai
* 0 solutions can be found in section 2.
B. Unscreened Coulomb Chain. For an unscreened

Coulomb chain, the energy expression of eq 8 simplifies to

whereslσ andsrσ are the charges at the left and right end points
of the subchainσ, respectively. With a variational effective
energy Ansatz

including both coordinate and charge degrees of freedom, the
variational free energy becomes, ignoring additive constants,

whereVi and ui are related according to eq 30; the first two
terms give the entropy part-TSV, while the remaining terms
correspond to〈E〉V. The equations for a local extremum of
F̂(z,v) are obtained by differentiation with respect tozi andVi.
One gets

and

Figure 1. Relative difference (∆ ) (Var-MC)/MC) in % for ree
between different variational versions and MC data for unscreened
Coulomb chains as functions ofN. Theai ) 0, ai * 0, and rigid rod
variants of the variational method are denoted by solid, dashed, and
dotted lines, respectively.
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respectively.
C. Screened Coulomb Chain.The variational free energy

for the screened case modifies to

The derivatives then become

D. Properties of the Variational Solution. Apparent
Equilibrium Constant. The variational approximation toR is
simply given by

The local fieldsui can be expressed in terms ofVi (inverting eq
30) as

Thus, the variational∆pK is given by

In the unscreened case (for simplicity), the last expression
amounts to

where the interpretation of∆pK as an average energy cost per
dissociated charge is very clear.
Virial Identity. In the unscreened case, there is, also in the

titrating version, a virial identity,

obeyed by the exact thermodynamic ensemble. By taking the
scalar product of eq 35 withzi and summing overi, we obtain

and by a comparison with eq 34, it is seen that the virial identity

is indeed satisfied also for the variational expectation values.
The same goes for theai * 0 solutions.
Structure of the EffectiVe Energy. By taking the scalar

product of eq 35 withwj, we obtain the effective force constants

while eq 36 gives the effective local fields

Thus, we can rewrite the variational energy, eq 33, as

where the first and the last term reproduce the true bond and
chemical potential terms of eq 32, while the middle term
emulates the effect of the Coulomb interaction on the charges
(by appropriate local fields) and on the conformation (by suitable
repulsive spring forces).
The variational optimization thus forces the effective energy

to have an intuitively appealing (and indeed very reasonable)
structure.
E. Algorithm Implementation. For the numerical mini-

mization of the free energy of eq 34 or 37 with respect to the
variational parameterszi (wi) andVi (ui), a modified gradient
descent is used:

where the use of theV (rather than theu) derivative in the
u-update implies a dynamical step size

which is found to speed up the calculations. Thewi’s are
obtained using incremental matrix inversion (eq 26).
The complete algorithm looks as follows. (1) Initialize all

zi andVi at random. (2) Repeat the following until convergence:
For all i, Updatezi (if i < N) andVi ) g(ui) according to eq 49,
and correct allwj according to eq 26. Then (3) extractGij )
zi‚zj and compute variational averages of interest.
Typical step sizes areεz ≈ 0.15 andεu ≈ 0.5. The number

of computations for each iteration step is proportional toN3.
An N) 80 system converges within about 100 iterations, which
is somewhat slower than in the nontitrating case.
F. Simplified Variational Approach. For a highly charged

polyelectrolyte in the absence of salt, the conformation if
strongly elongated. This fact motivates a simplified variational
Ansatz, based on a rigid rod conformation and a constant degree
of dissociationR along the chain. Such a simplified picture
allows for analytical estimates of quantities of interest like∆pK
and ree. To this end, consider the nonfluctuating limitzi f 0
with ai ) a ) R/(N - 1) for all i, in which the variational
Boltzmann distribution is given by

µ + Tui +x2

π
∑
l*i

Vl

zil
) 0 (36)

F̂ ) -3T ln detz+ T∑
i

{uiVi - ln(1+ eui)} +

3

2
∑
i

zi
2 + ∑

σ

VlσVrσ(x2

π

1

zσ

- κΨ(κzσ)) + µ∑
i

Vi (37)

∂F̂

∂zi
≡ -3Twi + 3zi -

∑
σ3i

VlσVrσzσ

zσ
3 {x2

π
(1- κ

2zσ
2) + κ

3zσ
3Ψ(κzσ)} ) 0 (38)

∂F̂

∂Vi
≡ µ + Tui + ∑

l*i
Vl(x2

π

1

zli
- κΨ(κzli)) ) 0 (39)

R ) 1
N∑Vi ) Vj ) g(u) (40)

ui ) g-1(Vi) ) ln
Vi

1- Vi
(41)

∆pK ln 10) - µ
T

- g-1(g(u)) ≈ - µ
T

- uj (42)

1

NTx2

π
∑
i
∑
j*i

Vj

zij
)

1

NT
∑
i
∑
j*i

〈sjrij〉V (43)

2〈EG〉 - 〈EC〉 ) 3(N- 1)T (44)

-3T(N- 1)+ 3∑
i

zi
2 -x2

π
∑

σ

VlσVrσ

zσ

) 0 (45)

TGij
-1 ) δij -

1

3x2

π
∑
σ3i,j

VlσVrσ

zσ
3

(46)

-Tui ) µ +x2

π
∑
l*i

Vl

zil
(47)

EV({r i,si}) )

1

2
∑
i

r i
2 + ∑

σ x2

π(Vlσsrσ
+ Vrσ

slσ

zσ

-
1

6

VlσVrσ
rσ
2

zσ
3 ) + µ∑

i

si (48)

∆zi ) -εz
∂F̂

∂zi
, ∆ui ) -εu

∂F̂

∂Vi
(49)

ε̃u )
εu

V(1- V)
(50)

Titrating Polyelectrolytes J. Phys. Chem., Vol. 100, No. 1, 1996413

+ +



This is similar to approximating the interactions by an applied
stretching force at the ends of the chain; here, all fluctuations
are killed, however. IdentifyingR with g(u) gives for largeN
the variational free energy

Here the sum∑1
N 1/k has been approximated by lnN + γ,

whereγ is the Euler constant. MinimizingF̂ with respect toR
andR gives for largeN

whereµ has been eliminated in favor ofR. This simplified
model should give good results in the highly charged limitR
f 1, whereas its lack of fluctuations should give rise to poor
performance in theR f 0 limit.

V. Monte Carlo Methods

The Monte Carlo (MC) simulations were performed with the
traditional Metropolis algorithm36 in a semigrand canonical
ensemble. A single polyelectrolyte chain was simulated with
the charges/protons moving between the monomers and an
implicit bulk of fixed chemical potential.
When a proton move is attempted, a monomer is picked at

random and the charge state of the monomer is switched. The
associated (free) energy change,∆E, which determines if the
move is to be accepted or rejected according to the Metropolis
scheme, is the sum of the change∆EC in the intramolecular
Coulomb energy and a term(µ that corresponds to the change
in free energy for the acid-base reaction of an isolated
monomer; the minus sign is used when the monomer is to be
protonated, and the plus sign when it is to be deprotonated.
In a single MC step a proton is only moved from the chain

to the bulk orViceVersa. Adding a step where a proton moves
within the polymer does not affect the averages but increases
the calculation time.
When a conformational change is attempted, the associated

energy change is given by the change in bond energy,∆EG,
plus the electrostatic energy change,∆EC. The sampling of
chain conformations is made highly efficient by using a pivot
algorithm, which allows chain lengths of more than 2000
monomers. The pivot algorithm was first described by Lal,37

and its efficiency for self-avoiding walks has been thoroughly
discussed by Madras and Sokal.38

A traditional move to update the coordinate variables is to
attempt a translation of only one monomer at a time. The
number of interactions that have to be calculated is of the order
N for a highly charged chain, and a large number of attempts
per monomer is needed to generate independent chain confor-
mations. In the pivot algorithm, however, each monomeri
(except the first one) is translated in turn but together with the
remaining semichain (monomersi + 1 toN). Furthermore, the
semichain is then rotated as a rigid body around one of the
coordinate axes with monomeri as origin. The number of

interactions calculated in one step is of the orderN2, but
independent conformations are obtained after only a few
attempted moves, on the order of one per monomer orN in
total. The net effect is a greatly reduced simulation time for a
given degree of precision and a computational cost that grows
approximately asN3. A completely different and even slightly
more efficient procedure has recently been described by Irba¨ck.39

A change in conformation is attempted once in every 20 steps;
in the remaining steps, a change in the charge state is attempted.
The total number of steps is around 108. Every run is preceded
by an equilibration of 105-106 steps, where a change in
conformation is attempted every other step, starting from a
straight line with a charge on every other monomer. The
simulations are faster at highµ̃, since fewer monomers are
charged and thus the number of interactions that have to be
calculated is smaller.

VI. Results and Discussion

A. Unscreened Coulomb Chain. We now compare the
variational and Monte Carlo results forreeand∆pK as a function
of chain length and degree of dissociation. Figure 2 shows an
excellent agreement between theai ) 0 variational results for
reeand MC data, with a maximal relative error of 8% for theN
) 1000 chain atR ) 1, well within the theoretical high-N limit
of 11%. The difference between the variational and MC results
increases withR as expected but is indeed satisfactory for all
cases studied. Theai * 0 variational solution is slightly inferior
to the purely fluctuating solution, except for theN) 1000 curve
at a high degree of ionization. Thus, we find a qualitative
behavior of the two variational solutions similar to that seen in
Figure 1.
The rigid rod approximation suggests thatree/N should

increase linearly withR2/3(ln N)1/3, which seems to be verified
in Figure 3. Similar scaling behavior for an analogous nonti-
trating polyelectrolyte has been derived in the literature.7,8,35

We have, however, made numerical estimates of the exponents
from logarithmic plots ofree/N againstR from both variational
and MC data. For theR dependence we find exponents in the
range 0.80-0.85 from both approaches, which is significantly
larger than the value of2/3 predicted by the rigid rod approxima-
tion. The origin of the discrepancy is unclear. A similar
discrepancy is seen for the lnN exponent, which in the rigid

exp(-EV/T) ) exp(u∑
i

si)∏
i

δ(r i - a) (51)

F̂ ) NT{R ln(R) + (1- R) ln(1- R)} +

R2

2(N- 1)
+ R2

R
N(N- 1)(lnN+ γ - 1)+ NµR (52)

ree) R≈ R2/3N(ln N)1/3 (53)

〈EC〉 ≈ R4/3N(ln N)2/3 (54)

∆pK ≈ 2
T ln 10

R1/3(ln N)2/3 (55)

Figure 2. r̃ee/N as a function ofR for an unscreened polyelectrolyte
chain. Monte Carlo results are denoted by crosses, and theai ) 0 and
ai * 0 variational solutions are drawn as solid and dashed lines,
respectively. The upper curves are forN) 1000, lower curves are for
N ) 80, and the unit of length is Å.
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rod case is given by1/3, while numerical estimates from
variational and MC data suggest a value of 0.6-0.7. One
possible explanation could be that the chain expands via two
different mechanisms. One is the expansion of each monomer
bond, which should give rise to an lnN exponent of1/3;30

Another is the increasing alignment of monomer bonds with
N, which reaches its limit when the coupling becomes strong
and should level off for largeN.
Figure 4 shows the shift in the apparent dissociation constant

upon ionization of the chain, and one finds that theai ) 0
variational results differ significantly from the MC results for
the longer chains. Theai * 0 results, on the other hand, are
always in excellent agreement with the MC data with negligible
differences for all systems studied. The largest error seen is
on the order of one tenth of a pK unit.
The global conformational properties of the polymer depend

on the electrostatic coupling strength via aneffectiVe coupling,
approximately given by

The two variational solutions coincide for a weakly coupled
chain, while at higher coupling two distinct solutions appear.
This is seen in Figure 4, where theai * 0 solution appears at
a lowerR value for the longer chains. Lowering the temperature
(or decreasingr0) would have a similar effect.
The asymptotic behavior in the rigid rod approximation can

be investigated by plotting∆pK againstR1/3(ln N)2/3. Figure 5
shows that theR dependence is not well described by a power
law over the parameter range studied and that it is only for very
largeN andR close to unity that the slope seems to approach
the rigid rod result,1/3. One possible explanation for the lacking
agreement could be the fact thatR is not uniform but varies
along the chain. A similar plot can be made for the lnN
dependence with slightly better agreement and with a linear
relation between ln∆pK and ln(ln N). The slope is ap-
proximately 0.7 forR ) 1.0, in good agreement with the rigid
rod prediction of2/3, but it increases with decreasingR. This
is again consistent with two different expansion mechanisms.
The rigid rod approximation gives an excellent description

of the titration behavior for a highly charged chain, while it
slightly deviates from the MC results for short chains at lowR.

Figure 6 shows that the rigid rod actually gives a better
approximation to the MC data for∆pK at highR values than
the full ai ) 0 variational solution. Similarly good agreement
is found in Figure 7, where the MC and rigid rod numbers are
virtually indistinguishable. The agreement between the rigid
rod and the MC results holds forreeand the apparent dissociation
constant but not for local properties like the monomer-
monomer separation. The rigid rod does not distinguish between
different positions along the chain, and it also strongly
underestimates the average monomer-monomer separation. For
such properties, the more sophisticated variational approaches
are definitely superior and in general in good agreement with
the exact MC results.
B. Screened Coulomb Chain.A discussion of the accuracy

of the screened Coulomb approximation is beyond the scope
of the present communication.4,25 Our principal aim is to
investigate the variational techniqus and we will use the screened
Coulomb potential assuming that it contains the main physical
features relating to screening. We will be primarily interested
in ree and∆pK. These quantities will be functions of chain
length and degree of ionization as before, but they will also

Figure 3. r̃ee/N as a function ofR2/3(ln N)1/3 for different chain lengths
(N ) 20, 320, and 1000) in the case of an unscreened Coulomb
potential. Variational (ai ) 0) and MC results are denoted by solid
lines and crosses, respectively. The unit of length is Å.

R4/3N
T

(56)

Figure 4. ∆pK as a function ofR for different chain lengths with an
unscreened Coulomb potential. Monte Carlo results are denoted by
crosses, and theai ) 0 andai * 0 variational solutions are drawn as
solid and dashed lines, respectively. The chain lengths are, from top
to bottom,N ) 1000, 80, and 20.

Figure 5. ln ∆pK as a function of lnR for unscreened polyelectrolyte
chains. From bottom to top,N ) 20, 80, 320, and 1000. Variational
(ai ) 0) and MC results are denoted by solid lines and crosses,
respectively.
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depend on the screening parameterκ. In a real solutionκ will
contain contributions from added salt as well as any other
charged molecule like the polyelectrolyte chain itself. Here we
will neglect all these complications and we will refer to different
screening conditions by stating the corresponding univalent salt
concentration. Effects of solvent quality will be similarly
neglected. These can be modeled by introducing additional
effective interactions between monomers. (Work along these
lines is in progress at our laboratory.)
A polyelectrolyte chain in a salt solution will be ap-

proximately independent of electrolyte concentration as long
as the screening length is larger than the end-to-end separation,
and the screening will start to play a role whenκ-1 is smaller
than or of the same order asree.
The accuracy of the variational result forree from the purely

fluctuating solution (ai ) 0) deteriorates with increasing chain
length for a given salt concentration. The discrepancy from
the MC data also becomes worse with increasing degree of
ionizationssee Figure 8. With increasing salt concentration,
the accuracy will deteriorate up to some point, whereafter it
improves. In the limit of very high screening the chain becomes

perfectly Brownian, leading to an exact agreement. The
variational predictions forree consistently overshoot; this can
be attributed to an overestimate of the interaction with a
Gaussian Boltzmann distribution.
The variational solution withai * 0 is absent at lowR and

high salt concentration. In the other limit there will always be
two solutions, and we find that the purely fluctuating one is
the most accurate one in predicting the end-to-end separation.
Theai * 0 solution on the other hand predicts a much too large
reessee Figure 8. The failure to describe the global structure
of a screened chain is mainly due to the alignment of the bond
vectorsai, which leads to the wrong asymptotic behavior. The
chain will expand likeN instead ofN3/5, which approximately
seems to describe the MC results. The rigid rod approximation
for the screened chain will of course show a behavior for the
end-to-end separation similar to that of the fullai * 0 solution.
The apparent dissociation constant in the presence of salt (see

Figure 9) is not well described by the fluctuating solution.
Instead we find theai * 0 solution, despite its obvious structural
failure, to be superior and in fair agreement with MC data.
Obviously the coupling between thermodynamic derivatives, like

Figure 6. ∆pK as a function ofR for an unscreened Coulomb chain.
Monte Carlo results are denoted by crosses, and theai ) 0, ai * 0,
and rigid rod solutions are drawn as solid, dashed, and dotted lines,
respectively. The upper curves are forN ) 1000, and the lower is for
N ) 80.

Figure 7. ∆pK as a function ofN for R ) 1.0 for an unscreened
polyelectrolyte chain. Monte Carlo results are denoted by crosses, and
theai ) 0, ai * 0, and rigid rod solutions are drawn as solid, dashed,
and dotted lines, respectively.

Figure 8. r̃ee/N as a function ofR for a screened Coulomb chain with
N ) 320. Monte Carlo results are denoted by crosses, and theai ) 0
andai * 0 solutions are drawn as solid and dashed lines, respectively.
The salt concentrations are, from top to bottom, 0.001, 0.01, and 0.1
M, and the unit of length is Å.

Figure 9. ∆pK as a function ofR for a screened Coulomb chain with
N ) 320. Monte Carlo results are denoted by crosses, and theai ) 0
andai * 0 solutions are drawn as solid and dashed lines, respectively.
The rigid rod results forR ) 1 are indicated with arrows. The salt
concentrations are, from top to bottom, 0.001, 0.01, and 0.1 M.
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the apparent dissociation constant, and the global structure is
rather weak, and it is the local structure and fluctuations that
determine the thermodynamics of a screened chain. The relative
error is the same size as for the unscreened chainstypically on
the order of 10% or less. We find that∆pK is consistently too
large in the variational approximations, in accordance with the
variational overestimate of the interaction.
For the rigid rod approximation, the overall agreement with

MC data is not as good as for the unscreened chain, and∆pK
is predicted to be essentially independent ofR. However, as
seen in Figure 9, the numerical values obtained forR ) 1 agree
very well with simulated numbers, and the salt dependence of
∆pK for the fully ionized chain is accurately reproduced.

VII. Conclusions

The variational calculations accurately reproduce the structural
and thermodynamic properties of a titrating polyelectrolyte
interacting via an unscreened Coulomb potential. For a highly
charged polyelectrolyte we find two distinct solutions to the
Gaussian variational Ansatz, which at weak coupling collapse
into onesa purely fluctuating solution withai ) 0. At strong
effective couplingsi.e. for largeN, low T, and largeRstheai
* 0 solution always gives the lowest free energy, as well as
the best approximation to structural and thermodynamic proper-
ties. At intermediate coupling strength, the purely fluctuating
solution can produce superior structural data, while the apparent
dissociation constant seems to be best described by theai * 0
solution.
With increasing electrostatic coupling, the chain becomes

stiffer and more rodlike and a less extensive variational
approach, like the rigid rod, becomes applicable. This can be
solved analytically and turns out to be fairly accurate both for
thermodynamics and for certain structural properties.
The screened Coulomb potential is more difficult to emulate

with a Gaussian Ansatz, although reasonable predictions for the
end-to-end separations are obtained from the purely fluctuating
solutions. When the bond vectorsai are nonzero, they tend to
align and the end-to-end separation increases linearly withN.
For the purely fluctuating solution on the other hand, the end-
to-end separation increases approximately asN0.6 at high salt
concentration, which is expected for a polymer with short-range
interactions. The apparent dissociation constant is well de-
scribed also for a screened chain, and we find that theai * 0
solution, despite its structural shortcomings, is the best ap-
proximation for this property.
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