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DETERMINING DEPENDENCY STRUCTURES AND
ESTIMATING NONLINEAR REGRESSION ERRORS
WITHOUT DOING REGRESSION

CARSTEN PETERSON *
Department,of Theoretical Physics, University of Lund, Solvegatan 14A
S-228 62 Lund, Sweden

A general method is discussed, the §-test, which establishes functional dependenciesgiven
a table of measurements. The approach is based on calculating conditional probabilities
from data densities. Imposing the requirement of continuity of the underlying function
the obtained values of the conditional probabilities carry information on the variable
dependencies. The power of the method is illustrated on synthetic time-series with
different time-lag dependencies and noise levels. For N data points the computational
demand is N2, Also, the same method is used for estimating nonlinear regression errors
and their distributions without performingregression. Comparing the predicted residual
errors with those from linear models provides a signal for nonlinearity. The virtue of
the method in the context of feedforward neural networks is stressed with respect to
preprocessing data and tracking residual errors.

1. Motivation

Successful regression of a system given tables of data with no access to first prin-
ciples models relies heavily upon identifying the underlying structure ~ embedding
dimension, most relevant inputs and noise levels. Finding relevant inputs is a nat-
ural step prior to any artificial neural networks (ANN) processing. Furthermore,
if the noise variance can be estimated then one knows the optimal performance
limit of the fit in advance. Also, methods for filtering data often require prior esti-
mate of noise variance. To be more explicit, consider a table of data, {(y(i), x(")),
i=1,2,...,N}, where y is the dependent variable and the d-dimensional vector x
denotes the set of explanatory variables. One aims at determining sensitivities upon
the different x-components and the variance of r (02) for

g=F(x)+r (1)

where F represents the optimum model. Conventional procedures for accomplishing
this are model-based. One fits the data to a model, a particular choice of F, and
then interprets the results. In the special case of linear regression models ! where
F takes the form § = ao + ) axzi, the dependencies are simply given by the
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covariances (y, zx) and the sample variance o2 is explicitly given by
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|
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(lk(]/, Ek) (2)
k=1

where o denotes the y-variable variance. With ANN regression methods one first
makes a fit to the data. The dependency on the different input variables is then
extracted either implicitly by including complexity terms in the error term 2 or
explicitly by inspecting e.g. suitable derivatives with frozen weights.

Here we report on a method, the é-test 3%, where the dependency structures
and noise variance are extracted with no modeling involved and no assumption
made about the noise distribution. The estimates from the é-test only relies upon
the assumption that F' is uniformly continuous and that the noise in eq. (1) is
additatively added. Prior approaches to determine dependencies are either based on
entropy measures %, or on elaborate autocorrelation measures "%, Our approach,
has its roots in the latter philosophy. The power of the method is illustrated with
different examples of chaotic time series augmented with noise: the logistic map,

the Henon map and the Ikeda '?map. Other successful applications **!! also exist.

2. Method

We approach the problem by constructing conditional probabilities Py(e}6) for dif-
ferent embedding dimensions d and different choices of positive real numbers € and
6 from pairs of data points as follows

Pae| 6) = P(|Ay] < ¢ | [Ax] < 6) (3)

where |Ax| = max; |z — 2} |. The calculational demand for this is 1/2N(N —1) for
N data points. What does Pj(e| 6) tell us? The following important observations
can be made:

1. For completely random data one has for any choice of ¢ and §
Po(e) = Pi(e]6) = ... = Pa(e]6) = ... (4)
2. In the limit é — 0, one obtains

Py(e) = lim Po(e|6)
= P(F(x)- F(x')+r -] <e|lx—x|—0)
= Prob(|Ar| < ¢), (5)

where the property of function continuity, F(x) — F(x') — 0 for x — %/, is
exploited. Hence in the noiseless case (Ar=0) one has Py(e)=1.

3. In the presence of noise, Py(¢) will no longer saturate to 1 as e drops below
Ar. Eq. (5) establishes a relation between the unknown distribution of the
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residuals p(]Ar]) and Pa{e)

p(|Ar|) = Prob(|Ar'| > |Ar|) = [iPd(e)] . (6)

d
dIATI de e=|Ar|
Thus ((Ar)?) can be computed from Pj(€) using egs. (5, 6) and partial
integration. For independent and identically distributed random numbers
(62 = 1/2((Ar)?) ) one obtains

o? = /0°° de € [1 — Py(e)) (M

How does Py(¢| ) vary as a function of § for fixed €? For § — oo the conditions
have no effect and one has Py{¢|6)|s—oc = Po(€). As § — 0, Py(e|6) should increase
monotonically and saturate to 1 for d > dg, where dy+ 1 is the minimum embedding
dimension. This behavior is shown schematically in fig. la. Pj(€) measures how
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Figure 1: (a). P4(e|8) as a function of 6 for fixed e. (b). The maxima Py(¢) as a
function of €. Saturation to 1 would be observed for d > dy. In the presence of
noise the saturation deviates from 1 around €y ~ Aryaz-

well the dynamics can be modeled in terms of the d variables. To quantify the
dependence on each of the variables, it is convenient to define a dependability indez

_ Pue) - Pay(e)

da€) = S pE, d=12, (8)
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or its average over €, Ay. For a noise-free deterministic map, P;(¢) saturates to 1

for d > dj and one has
d\l d‘l

D =) ale) =1 (9)

The formalism above assumes an infinite amount of data. With limited statistics
very low é-values or large d’s may give rise to a picture not as crisp as the one in
fig. 1. One then estimates errors using the standard methods 2. Note that the
integrand in eq. (7) suppresses the small ¢ region, which is desirable in limited
statistics situations.

3. Applications

We demonstrate the power of the method for three synthetic time series problems
where y = 2z, and 2, = 24_1, ..., Zqg = Zs_g4.
Logistic map data is generated with 4000 time steps according to

2y = ney_1{l — @e_1) + 7y (10)

with 7 = 4. The iterative noise r; is uniformly distributed in [—r, 7]. Two data sets
are generated with » = 0 (A) and r = 0.280 (B) respectively. In order to keep the
series bounded, ry is constrained such that z; € (0,1). One obtains 2 =1for A,
A1 = 0.97 for B and ngz ~ 0. Note that the method yields signals for primary
dependencies, not induced ones. Hence it is satisfying that one gets Xdzz 2 0 in this
case. This is in contrast to covariance and mutual information ® methods. Using
eq. (7) to extract the noise variance gives r = 0 and 7 = 0.27 consistent with the
generated data.

Hénon map data with dependences on larger lags than usual is generated with
4000 time-steps according to

T = 1— a2 — re-2)’ + b(Beg — Te_4) + 7 (11)

with @ = 1.4, and b = 0.3. Again, two data sets are generated with » = 0 (A) and
r = 0.14c (B). One obtains X1_4 = 0.002, 0.886, -0.023, 0.114 for A and 0.052,
0.728, 0.004, 0.128 for B. The dependences on z;_; and z,_4 emerge as large values
of X2 and A4. The two noise levels are reproduced approximately by eq. (7).

The Ikeda map !? describes the evolution of a laser in a ring cavity with a
lossy active medium. In terms of the complex variable z(t) = z(¢) + 2 y(t), the map
is defined by .

1Y
14 |2(t)]?
Sets of N = 2000 data points are generated using eq. (12) with the parameters
p= 10, B =109, £k = 0.4 and a = 6.0, and with Gaussian noise added to the =
component at the each iteration as z(t) = z(t)+r with standard deviations ¢,=0.0,
0.01 and 0.03 respectively. The results from applying the method on the Ikeda map

2(t +1) = p+ B z(t) exp[ix

) (12)
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Figure 2: The Tkeda map shown in its z-y phase space. A Gaussian noise term
with standard deviation o, = 0.0 (a), 0.01 (b), 0.02 (c) and 0.03 (d) is added
iteratively to the z(t)-component.

are shown in table 1. One concludes that the method quite accurately estimates the
noise fraction o, /o using the variable set {z;_;, y;—1}. In the case of o, = 0.0, the
linear regression model gives a noise level 0.887, while the current method identifies
a negligible noise level (0.005). This indicates that the dependency of #; on z¢
and y;_1 is predominantly nonlinear. Such a signature of nonlinearity exists as long
as the noise level is modest — below ¢, = 0.02 in this case. This is consistent with
what can be seen in fig. 2, where the nonlinear structure clearly disappears in (d)
when the noise reaches o, = 0.03.

4. Summary

The é-test is efficient for identifying dependencies in continuous functions. It is not
limited to linear correlations and it determines the embedding dimensions, depen-
dencies and noise levels fairly accurately even in cases of low statistics. Automated
procedures for setting bin sizes, cutoffs etc. and error analysis are feasible and
public domain software exists 3%, It has been profitably exploited in selecting
relevant time lags for ANN processing in connection with sunspot data ¥, in pre-
dicting utility consumptions !© and in analysis of ECG data !!. The method has
been successfully illustrated here with time series examples. The é-test of course
works equally well in cases with “horizontal dependencies” — variables measured at
equal times. The general method for extracting noise variances assumes nothing
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O 0.00 0.01 0.03

o, /o 0.0000 0.0208 0.5621
Variables 6r)or | Grdne || 0 | Gr)yg | (0r)ir | (Br)ny
{none} 1.000 1.003 1.000 1.003 1.000 1.001
{z4_1} 0.997 0.819 0.998 0.792 0.642 0.644
{z¢_1, Ye-1} 0.887 0.0055 0.889 0.021 0.557 0.563

Table 1: Regression errors on z(t) expressed as fractional errors &, for various sets
of variables. The subscripts LR and NL stand for linear regression (eq. (2)) and
the method of eq. (7)) respectively. Due to the effect of the noise, the noise fraction
o, /o varies considerably for differing noise levels.

about the noise distributions — but these can also be extracted *. By comparing

the obtained noise variances with those derived from assumed linear dependencies,

sighals of nonlinearities are obtained.
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