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Abstract

A brief review is given for using feedback artificial neural networks
{ANN) to obtain good approximate solutions to combinatorial optimiza-
tion problems. The key element is the mean field approximation (MFT)
The methodology, which is illustrated for the graph bisection and knap-
sack problems, is easily generalized to Potts systems. The latter is related
to the deformable templates method, which is illustrated with the track
finding problem. MFT is based on a variational principle, which also can
be generalized to non-integer problems.

Introduction

Many combinatorial optimization problems are NP-complete, which require
state space explorations leading to O(a”) computations for a system with N
degrees of freedom. Different kinds of heuristic methods are therefore often
used to find reasonably good solutions. The ANN approach falls within this
category. Whereas the use of ANN for pattern recognition and prediction prob-
lems is a non-linear extension of conventional linear interpolation/extrapolation
methods, ANN in the optimization domain really brings something new to the
“table”. In contrast to existing search and heuristics methods the ANN ap-
proach does not fully or partly explore the different possible configurations.
Rather it "feels” its way in a fuzzy manner towards good solutions. This is
done in a way that allows for a statistical interpretation of the results. The key
element in this approach is the mean field approximation (MFT) [1, 2], which
can be regarded as a variational scheme. The three basic steps involved,

Encode problem | — | Linearize MFT dynamics | — | Solve MFT equationsl

will be dealt with briefly using the graph bisection and knapsack problems
as examples. The latter requires some extra care since it contains inequal-
ity constraints. For low dimensional geometrical problems like the traveling
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salesman problem (TSP) and track finding a variant of the "pure” neural ap-
proach, deformable templates, is advantageous to use. Recent efforts to use
variational methods for computing polymer configurations are also discussed.
These optimization problems are not combinatorial but the techniques involved
are strongly related to MFT.

Ising Neurons — the Graph Bisection Problem

The neural approach is particularly transparent for this problem due to its
binary nature. Consider a set of N nodes to be partitioned into two halves such
that the connectivity (cutsize) between the two halves is minimized (see fig. 1).
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Figure 1: A graph bisection problem.

The problem is mapped onto the energy function {3]

E[s] = —% Zwijsisj - %(Z si)? (1)
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where for each node a binary neuron s; = +1 is assigned depending on whether
node ¢ is in the left or in the right position and w;; = 0, 1 encodes whether 7 and
J are connected or not. The first term in eq. (1) minimizes the connections
between partitions, whereas the second penalizes unbalanced configurations
(3 si #0). The imbalance parameter « sets the relative strength between the
cutsize and the balancing term.

The next step is to find an efficient procedure for minimizing eq. (1), such
that local minima are avoided as much as possible. Rather than doing this with
a discrete updating rule using simulated annealing {4], the MFT approxima-
tion is used. This amounts to approximate the stochastic simulated annealing
procedure with iterative solutions to a set of deterministic equations

v; = tanh (—%'f]%) = tanh Z(wij —a)v; /T (2)

J

These represent fixed point solutions to the circuit equations of ref. [1]. It
is advantagous to know in advance the appropriate range in T - the phase
transition temperature 7.. The dynamics of eq. (2) exhibits a behavior with
two phases separated by T' = T: at large enough temperatures (T — oo) the

system has a trivial fixed point vEO) = 0 and as T" — 0 fixed points 'vg*) = =1
emerge representing a specific solution (see fig. 2). The position of T, which
depends on w;; and a, can be estimated by expanding the sigmoid function in

a power series around vEO) = 0 (see fig. 2). For synchronous updating it is
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Figure 2: Fixed points in tanh(u;).

clear that if one of the eigenvalues of the matrix in eq. (2) is > 1 in absolute
value, the fixed point becomes unstable and the solution will wander away into
the nonlinear region. In the case of serial updating the philosophy is the same
but the analysis slightly more complicated [2]. Finding the largest eigenvalue
of the matrix is easy — multiply the matrix with itself a few times. From this
procedure one reads off 7,. One can always add from an encoding point of
view auxiliary diagonal terms in order to modify the eigenvalues and thereby
control the dynamics (i.e. avoid cyclic behavior). This linearized dynamics
analysis thus both gives us means to control dynamics and to remove one free
parameter — the temperature.

The Knapsack Problem

The graph partition problem is characterized by an equality constraint, which is
implemented with a polynomial penalty term. However, in many optimization
problems, one has to deal with inequalities. One such problem category is the
knapsack problem, where one has a set of N items i with associated utilities c;
and loads ag;. The goal is to fill a “knapsack” with a subset of the items such

that their total utility,
U= Zc.-si ) (3)

i=1

is maximized, subject to a set of M load constraints,

N
Zakisisbkrkzlst (4)

i=1

defined by load capacities by > 0. The encoding is in terms of binary decision
variables (spins) s; € {1,0}, répresenting whether or not item 7 goes into the
knapsack. In the class of problems, where a; and c¢; are independent uniform
random numbers on the unit interval [0, 1], while b; are fixed to a common
value b, the most difficult case is given by b = N/4. In the optimal solution to
such a problem, there will be a strong correlation between the value of ¢; and
the probability for s; to be 1. With a simple heuristic based on this observation
near-optimal solutions are easily obtained. One therefore also consider a class
of harder problems with more narrow ¢; distributions — Aomogeneous problems.



The problem is mapped onto an energy function [6],

N

E= Zc,s, + aZ‘I’ (Z QgiSi — bk) ) (5)

i=1

where @ is a penalty function ensuring that the constraint in eq. (4) is ful-
filled. An appropriate choice of ®(z) is z@(z). For alternative slack variable
techniques to deal with inequality constraints see e.g. ref. [7].

Minimizing eq. (5) is done with the MFT equations. Due to the non-
polynomial form of the constraint special care is required here. The derivative
8E/8v; in eq. (2) is replaced by a difference. In fact, this trick can be used to
kill self-couplings for any energy function, not only those containing inequality
constraints.
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In ref. [6] this ANN approach is compared with other approaches. For small
problem sizes it is feasible to use an exact algorithm, Branch and Bound
(BB), for comparison. This tree search technique is accelerated by ordering
the ¢;’s according to magnitude: ¢; > ¢z > .... > cn. For larger problem sizes,
one is confined to other approximate methods, such as Simulated Annealing
(SA) [4], Greedy Heuristics (GH) and simplex based on Linear Program-
ming (LP). With GH one also benefits from non-homogeneous problems by
proceeding from larger to smaller ¢; collecting every item not violating con-
straints. LP is not designed to solve discrete problems like the knapsack one.
However, for ordered non-homogeneous knapsack problems LH gives solutions
with a set of leading 1’s and a set of trailing 0’s, with a window in between con-
taining real numbers. Augmented by greedy heuristics for the elements in this
window, fairly good solutions emerge. In table 1 the ANN, SA, GH and LP ap-

Method [ Scaling [ ¢;=rand[0,1] | ¢;=rand[0.45,0.55] c;=0.5
Perf. [ CPU | Perf. [ CPU Perf. | CPU

BB 2N 1 1 1 1 1 1

ANN NM 0.98 | 0.05 | 0.95 | 0.0005 0.97 | 0.0005

SA NM 0.98 | 0.05 | 0.95 | 0.0005 0.96 | 0.0005

LP N2M2 | 0.98 | 0.006 | 0.93 | 0.0002 0.93 | 0.0002

GH NM 0.97 | 0.001 | 0.88 | 0.00001 0.85 | 0.00001

Table 1: Comparison of relative performance and CPU time consumption for
the different algorithms for N=M=30 problems.

proaches are compared with the exact BB for N=M =30 non-homogeneous and
homogeneous problems. As expected LP and in particular GH benefits from
non-homogeneity both quality- and CPU-wise, while for homogeneous prob-
lems the ANN algorithm performs very well. When comparing the different



approximate approaches for larger problem sizes (50 to 500) the conclusions
are the same — the real strength in the ANN approach is best exploited for
more homogeneous problem. Similar conclusions were drawn in [8], where the
knapsack problem was generalized to the General Assignment Problem, which
contains more than one knapsack and hence involves Potts spins. Also in ref. [8]
a hybrid scheme, where the ANN method is used to resolve the "twilight zone”
that is not populated by integer s; with LP, is found to be quite successful.

Potts Neurons

For problems that are not binary, e.g. graph partition, TSP and scheduling

problems, the Ising neuron procedure above is easily generalized to Potts neu-

rons [2, 5]. The MFT equations for Potts neurons s;, satisfying Y aSia =1
Uia

reads
€
Via = E_be“T (7)

where u;, = 1/T(6E/8vis). Very competitive solution qualities have been
obtained using Potts neurons for realistic scheduling problems [5].

Probability Propagators

For resource allocation problems with non-trivial topologies type airline crew
scheduling, straightforward encodings do not contain a fixed number of neuronic
(probability) factors as e.g. in the graph bisection case (eq. (1)). It is then
convenient to work with propagators P;; in terms of Potts neurons v;; [9]

1
Bij = [1 — v] = 1+ + Z'Uik'vkj + Z'Ug‘k")k]'vlj + .. (8)
i k El

where e.g. v;; is the probability for a crew connecting flight ¢ with j.

Rotor Neurons

A binary (Ising) neuron can be considered as a vector living on a “sphere” in
one dimension. The MFT approach can be generalized to variables defined on
spheres in higher dimensions. Such rotor neurons may be used in geometrical
optimization problems with angular variables ([10]).

Consider the general problem of minimizing an energy function E(3y,...,3y)
with respect to a set of N D-dimensional unit vectors (rotors), 5 € RY,
|8;] = 1, 4 = 1,...,N. Along the same lines as in the binary (Ising) and
Potts cases previously discussed, one derives the corresponding MFT equations

. = N 1 »
7 = g(th) = tug (TV{E('U)> (9)
where 4; = 4;/u;, and g is a modified sigmoid

(u) = log Ip/2(u)
log I(p_g)/2(u)

(10)



I, is the modified Bessel function of order n. For D = 1 the standard sigmoid
(cf. eq. (2)) is recovered. Again eq. (9) is iterated by annealing in the
temperature 7. At high temperature the system is in a symmetric phase,
characterized by a stable trivial fixpoint o; ~ 0. At lower T, this becomes
unstable, and the mean fields ¥; will be repelled by the origin. For low enough
temperature they will stabilize close to the sphere 42 =1 .

The dynamics is thus very different from that of conventional methods,
where moves typically take place on the surface. The ability of exploring an
“off-shell” interpolating state space also here provides an additional dimension
through which spurious local minima can be esccess from. The method was
successfully to configurational problems in ref. [10].

Deformable Templates

For low-dimensional geometric optimization problems it is often advantageous
to use the deformable templates approach, thereby reducing the number of
degrees of freedom. This approach has been successfully applied to TSP [11]
and the particle physics track finding problem [12, 13]. The latter is used here
for illustration.

Track finding is the problem of assigning signal points to smooth curves.
In a pure neural approach one would use Potts neurons s;; = 41 to encode
whether signals i and j are connected or not and construct E(s;;) such that
smooth tracks with no bifurcations correspond to minima. In its basic form
with no heuristics this approach requires N2 degrees of freedom for N signals.
Even though this approach [14, 15] works well it may not be the optimal way
to proceed. The method is more general than what is needed for this problem
since the parametric form of the tracks are known in advance — straight lines
or helices. One should take advantage of this prior knowledge as a human
being would do. This is illustrated in fig. 3 with signal points generated
from 15 straight tracks with 100% noise. One detects the tracks in the noisy
environment by inspecting the image in fig. 3 by holding it up looking for
straight lines. Furthermore, for a problem with N signals and M tracks one
should only need O(M) degrees of freedom.

In the deformable templates approach [12] [13] the observed points are
matched to simple parametrized models, templates, the form of which re-
flects the a priori knowledge about the possible track shapes — helices passing
through the origin (collision point). In addition, the formalism allows for the
data points corresponding to noise to be unmatched. The mechanism involved
is closely related to redescending M-estimators used in Robust Statistics. A
Hough transform is used to give initial conditions for the templates and to
specify the number of templates required. Then this set of M templates de-
fined by the parameters 7, are processed with the elastic arms method that
resolves ambiguities and makes detailed fits to the signals by minimizing

E[vga;‘r—r'a] = Z(M. - )\)'Uia (11)

3,a

where Z; is the position of the i:th signal, M;, is a measure of the (squared)
distance between the i:th signal and the a:th template. In eq. (11) i, is 1
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Figure 3: (a) Signal points from 15 generated straight tracks with 100% noise.
{b) The corresponding solution. From ref. [13].

if the i:th point is assigned to the a:th arm, and 0 otherwise, and subject to
constraint Ea v; = 0,1. Given 7 there should be at most one a such that
v;s = 1. This allows for noise signals not being assigned to any track.

E[viq,7,] is minimized with respect to 7, subject to the modified Potts
constraint Y wvi, = 0,1. A Boltzmann distribution is introduced in order to
avoid local minima. Summing over allowed configurations for v;4, one obtains
the marginal probability

1 -
Py fa] = e PEer ] (12)

Gradient descent on E.g gives for Ar) (k=1,2,3,..)

oF ~ OM;
(k) — _ 27l _ _ E |
M

N e
Via = 14
S S ST £

In the T — O limit these equations are nothing but the k-means clustering
updating equations (apart from the noise factor).

How does this algorithm work? Initially the template arms are placed ac-
cording to the Hough transform. The templates compete for the signals by
means of Gaussian distributions of width 7' = 1/8 centered around the arm
positions. At first each arm can attract many signals. The relative importance
of the different signals is measured by the Potts factor (eq. (14)). As the tem-
perature is lowered the different arms are attracted more exclusively only to
nearby signals. The constant A governs the amount of noise points or outliers
the algorithm allows for. It enters the Potts factor (eq. (14)) like an extra




»null” component contributing to the denominator. The domain of attraction
of the arms is cut off (for small T) at a distance v/A.

The performance of the Elastic Arms algorithm is competitive as compared
to conventional tracking routines.

Non-integer Optimization Problems

The MFT approximation is a variational approach — one approximates the
true energy E with a trial one, Eo(u;), and minimizes the free energy with
respect to the variational parameters u;. In the Ising neuron case the latter are
identified with the local fields Zj w;;vj using the linear ansatz Eo = ), uiv;.
This procedure can be generalized to non-integer problems with appropriate
assumptions for the form of Eq. In particular harmonic trials have turned out
to be profitable. In [16] a variational algorithm for computing correlations in
polymers was developed. For an N-atom polymer with Coulombic self-repulsion
one makes the variational ansatz

1 _ - . =
EOZ‘Z'ZG (@ — di) - (85 — ) (15)
t

with @; and G',-"_?-1 as variational parameters. The results for the important
end-to-end correlations are impressive when compared to the CPU demanding
Monte Carlo method. This method is quite general and can be used in a variety
of situations including Mixed Integer Programming problems.

Summary

Using feedback neural networks to find good solutions to combinatorial opti-
mization problems is an approach which in its nature is very different from other
approximate methods. Appetizing features include automatic prior setting of
parameters and probability interpretation of the resulting MFT neuronic val-
ues. With respect to quality of the solutions the ANN methods give rise to very
competitive results as compared to those of other approximate schemes. The
only exception being TSP, where "classical” algorithms like Lin-Kernighan are
hard to beat [17]. On the other hand TSP may not be a very typical resource
allocation problem. The extensive comparisons with other approaches for the
knapsack problem [6] are particularly interesting since they illuminate under
what circumstances (lack of structure in the problem) the ANN method is a
winner.
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