7

Artificial neural networks

Carsten Peterson, Bo Soderberg
University of Lund, Lund

1
2

1

Local Search in Combinatorial Optimization
Edited by E. Aarts and J. K. Lenstra
© 1997 John Wiley & Sons Ltd.

INTRODUCTION

ARTIFICIAL NEURAL NETWORKS

2.1 Background

2.2 Basic ANN ingredients

2.3 Feedforward networks

2.4 Feedback networks

PURE ANN APPROACH TO OPTIMIZATION: BINARY CASE
3.1 Basic encoding

3.2 Minimizing E

3.3 The mean field equations

3.4 The mean field neural approach
3.5 Analysis of the dynamics

3.6 The graph bisection problem
OPTIMIZATION WITH POTTS NEURAL NETWORKS
4.1 Potts spins

4.2 Potts mean field equations

4.3 Mean field dynamics

4.4 A black-box procedure

4.5 The graph partitioning problem
4.6 The traveling salesman problem
4.7 Scheduling problems
OPTIMIZATION WITH INEQUALITY CONSTRAINTS
5.1 Dealing with inequality constraints
5.2 The knapsack problem
DEFORMABLE TEMPLATES

6.1 The traveling salesman problem
6.2 Track finding

ROTOR NEURONS

7.1 Mean field rotor neurons

7.2 Applications

SUMMARY AND OUTLOOK

INTRODUCTION

173
174
174
175
177
178
181
181
181
182
183
184
185
186
187
188
189
191
191
193
194
198
199
199
204
204
207
210
210
211
211

The use of artificial neural networks (ANNs) to find good solutions to combina-
torial optimization problems [Hopfield & Tank, 1985; Peterson & Soderberg,
1989; Durbin & Willshaw, 1987; Peterson, 1990a] has recently caught some

173

174 7 Artificial neural networks

attention. Whereas the use of ANNs for pattern recognition and prediction
problems constitutes a nonlinear extension of conventional linear interpolation/
extrapolation methods, ANNSs in the optimization dosuain teally bring some-
thing new to the table. In contrast to existing search and heuristics methods, the
ANN approach does not fully or partly explore the different possible configura-
tions. Rather it ‘feels’ its way in a fuzzy manner towards good solutions. This is
done in a way that allows for a statistical interpretation of the results. The ANN
approach is therefore conceptionally and technically very different from conven-
tional approaches. Two basic steps are involved when using ANNs to find good
solutions to combinatorial optimization problems:

e Formulate the problem as the minimization of a feedback ANN energy
function E(s,, ..., sy), where the neurons s; encode possible solutions.

e Find an approximate solution by iteratively solving the corresponding mean
field (MF) equations.

This procedure often produces high-quality solutions, as will be demonstrated
below. The neural approach has the additional advantage that the MF equations
are isomorphic to VLSI (very large scale integration) RC equations, which makes
hardware implementations straightforward. It is rare to have such tight bonds
between algorithms and hardware.

This chapter aims to give a self-contained introduction to the use of ANNs for
finding good approximate solutions to combinatorial optimization problems.
Each theoretical description is illustrated by one or more examples. The chapter
is organized as follows. Section 2 gives a general introduction to both feed-
forward and feedback networks. Section 3 discusses how to map an optimization
problems onto a system of binary (Ising) spins, derives the corresponding mean
field (MF) equations, and analyzes the resulting neural dynamics. The approach
is illustrated with the graph bisection problem. An analogous path is followed in
Section 4 for the more general multistate (Potts) neurons. Here the examples are
graph partitioning, the traveling salesman, and scheduling problems. Optimiza-
tion problems with inequality constraints require special care, dealt with in
Section 5. An alternative procedure for low-dimensional geometrical problems, the
deformable templates approach, is discussed in Section 6. This method is illus-
trated with the traveling salesman and track finding problems. In Section 7 we
discuss the generalization to rotor neurons in order to deal with the optimization of
systems with angular variables. Section 8 contains a brief summary and outlook.

2 ARTIFICIAL NEURAL NETWORKS

2.1 Background

The introduction of artificial neural networks was inspired by the structure of
biological neural networks and their way of encoding and solving problems. The
human brain contains approximately 10'2 neurons. They can be of many different
types, but most of them have the same general structure. The cell body or soma

2 Artificial neural networks 175

receives electric input signals to the dendrites, signals carried by ions. The interior
of the cell body is negatively charged against a surrounding extracellular fluid.
Signals arriving at the dendrites depolarize the resting potential, enabling Na™
ions to enter the cell through the membrane, producing an electric discharge from
the neuron — the neuron fires. The accumulated effect of several simultaneous
signals arriving at the dendrites is usually almost linearly additive, whereas the
resulting output is a strongly nonlinear, all-or-none type process. The discharge
propagates along the axon to a synaptic junction, where neurotransmitters travel
across a synaptic cleft and reach the dendrites of the postsynaptic neuron.
A synapse that repeatedly triggers the activation of a postsynaptic neuron will
grow in strength; others will gradually weaken. This plasticity, which is known as
the Hebb rule, plays a key part in learning.

The connectivity (number of neurons connected to a neuron) varies from ~ 1 to
~10°. For the cerebral cortex ~10° is an average. This corresponds to ~10!3
synapses per brain. Synapses can be either excitatory or inhibitory of varying
strength. In the simplified binary case of just two states per synapse the brain thus
has ~21°" possible configurations! The neural network consequently stands in
sharp contrast to a von Neumann computer both with respect to architecture and
functionality.

The von Neumann computer was originally developed for ‘heavy duty’ nu-
merical computing, but has later also turned out to be profitable for data
handling, word processing and the like. However, when it comes to matching the
vertebrate brain in terms of performing ‘human’ tasks, it has very strong
limitations. There are therefore strong reasons to design an architecture and an
algorithm that show more resemblance to the vertebrate brain.

The philosophy of the ANN approach is to abstract some key biological
ingredients from which to construct simple mathematical models that exhibit
most of the appealing features we have just considered; for a general textbook on
ANN see Hertz, Krogh & Palmer [1991]. In physics one has good experience of
model building out of major abstractions. For example, details of individual
atoms in a solid can be lumped into effective ‘spin’ variables in such a way that
a good description of collective phenomena (phase transitions, etc.) is obtained. It
is indeed the collective behavior of the neurons that is interesting from the point
of view of intelligent data processing.

2.2 Basic ANN ingredients

The basic computational entities of an ANN are the neurons v, which normally
can take real values within the interval [0,1] (or [—1,1]);i=1,2,...,N is an
index labeling the N individual neurons. Sometimes even simpler, discrete
neurons s; are used, with s,€{0, 1} (or {—1,1}), simplifications of the biological
neurons described above. Common to most neural models is a local updating rule

”i:g<§, wij”j_0i>- (1)

j=1

176 7 Artificial neural networks

><"

[¢]
—

Figure 7.1 (a) Neuron updating and (b) sigmoid respons

functions of equations (1) and
(2) for different temperatures ¢

where the weights (synapses) w;;€R are nonzero only for neurons v; that feed to
the neuron v, These weights can have both positive (excitatory) and negative
(inhibitory) values. The 6, term is a threshold, corresponding to the membrane
potential in a biological neuron. The nonlinear transfer function g:R—[0,1] is
typically a sigmoid-shaped function like

g(x) =3 (1 + tanh(x/c)), @

where the ‘temperature’ ¢ >0 sets the inverse gain: a lower temperature gives
a steeper transfer function (Figure 7.1(b)). The limit ¢—>0 produces a step
function corresponding to discrete neurons. This simple artificial neuron mimics
the main features of real biological neurons in terms of linear additivity for the
inputs and strong nonlinearity for the resulting output. If the integrated input
signal is larger than a certain threshold 8,, the neuron will fire. There are two
different kinds of architecture in neural network modeling: feedforward (Figure
7.2(a)) and and feedback (Figure 7.2(b)); we will describe them below.

(a) (b)

Figure 7.2 (a) Feedforward and (b) feedback architectures

2 Artificial neural networks 177

2.3 Feedforward networks

Feedforward networks process signals in a one-way manner, from a set of input
units in the bottom to output units in the top, layer by layer using the local
updating rule (1). Feedback networks allow information to go both ways — the
synapses are bidirectional. How can the power of these networks be exploited?
Feedforward networks have two major areas of application, somewhat overlap-
ping; they are feature recognition and function approximation.

Feature recognition

Feature recognition (or pattern classification) is about categorizing input
patterns xeR™ in terms of different features o,. .-,0y. An input pattern
X =(Xy,X3,...,Xy) Is fed into the input layer (receptors), and the output nodes
represent the features. For the architecture in Figure 7.2(a), with one intermediate
(or hidden) layer of N, neurons, o; depends on x (cf. (1)) as

Nh Nl'
oi(x)=g<z coE?g(Z wﬁ)xk>>,i=1,...,Nf, (3)

j=1 k=1
where wf) are the weight parameters between layers / and I+ 1. Equation (3) may
be generalized to any number of layers. (The thresholds, or bias terms, 0,
appearing in (1) have in (3) been transformed into weights by adding to each layer
an extra dummy unit, which is constantly equal to 1.)

Fitting o to a given set of input patterns (learning) takes place with gradient
descent on a suitable error function. In this process the training patterns are
presented over and over again with successive adjustments of the weights — back-
propagation of the error [Rumelhart & McClelland, 1986]. Once this iterative
learning has reached an acceptable level, in terms of a low error rate, the weights
are frozen and the ANN is ready to be used on patterns it has never seen before.
The capability of the network to correctly characterize these test patterns is called
generalization performance. This procedure is somewhat analogous to ‘normal’
curve fitting, where a smooth parameterization from a training is used to
interpolate between the data points (generalization).

Function approximation

Rather than having a logical’ output unit (0;) with a threshold behavior described
by (1) and (2), one could imagine having an output representing an unrestricted
real number, obtained e.g. by replacing the sigmoid in (1) and (2) with a linear
transfer function for the output units. In this case one adjusts the weight
parameters to parameterize an unknown real-valued function. Such an approach
can be useful in time-series predictions, where one aims at predicting future values
of a series given previous values [Lapedes & Farber, 1987; Weigend, Huberman
& Rumelhart, 1990], e.g.

X =F (X1, %254),

178 7 Artificial neural networks

where x, is the real-valued output node and x,_;, X, _,,... are the values of the
series at previous times.

2.4 Feedback networks

In contrast to the feedforward networks, the activation in feedback networks
continues until a steady state has been reached. Feedback networks appear in the
context of associative memories using the Hopfield model [Hopfield, 1982] and
difficult optimization problems [Hopfield & Tank, 1985; Peterson & Soderberg,
19897, which is the focus of this chapter, but also in feature recognition applica-
tions using the Boltzmann machine [Ackley, Hinton & Sejnowski, 1985] and its

JUURSY o N L . S S, Pay 1
mean field approximation [Pcterson & Hartman, 1989]. Simple models for

magnetic systems have a lot in common with feedback networks, so they have
been the source of much inspiration. We therefore start this section by familiar-
izing the reader with Ising models for magnetic systems.

Magnetic systems

The Ising model describes a magnetic system in terms of a set of binary spins
s;e{—1,1},i=1,...,N, which are effective variables for the individual atoms,
assumed to be positioned on a lattice. The two spin states at each site i represent
the possible magnetization directions. The model is governed by an energy
function E(s) (from here on we use the convention that a symbol stripped of its
indices represents the whole collection of variables denoted by the indexed
symbol), given by

E(s)=—7 z SiSjs 4

where the sum runs over pairs i, j of neighboring sites. Thus the neighboring spins
interact via a constant attractive coupling of strength J > 0. The lowest energy
state is reached by iterative updating of the spins according to

5, =sgn (J) sj>, (%)
s

where the sum runs over the neighbors j of i, and sgn is the algebraic sign function.

Eventually, a state is reached where all spins point in one of the two possible

directions (Figure 7.3(a)). If the system is embedded in a thermal environ-

ment (Figure 7.3(a) characterizes ¢ =0), fluctuations will appear subject to the

Boltzmann distribution

P(s) oc exp(—E(s)/c),

which can be simulated by replacing the dynamics of (5) by some stochastic
procedure leading to fluctuating configurations (Figure 7.3(b)).

For large N the behavior of the average magnetization M = {5),§ = >N s/N,
depends on c. Above a phase transition point, ¢, there is no global alignment, and

2 Artificial neural networks 179

I

*—
o—»
o—
«—»
*—
-
-—
«—

.—

Ol
o]

s=+1 I I

-—
a—s +—au
-~

!

=t bbb N
@ (b)
Figure 7.3 (a) The two possible ¢ = 0 states for the Ising model and (b) two typical ¢ > 0
configurations
M
order disorder
t c

I
\ﬁ critical temperature ¢

Figure 7.4 Average magnetization M as a function of ¢, illustrating a phase transition

M = 0. At very high temperatures there is no alignment whatsoever — all the spins
are completely random. A phase transition between an ordered phase and
a disordered phase is depicted in Figure 7.4. Indicators of phase transitions such
as M (order parameters) represent global properties of the system. Following the
evolution of individual spins does not tell us very much. The transition into an
ordered phase will play an important role in the applications of feedback
networks described below; this is because information is related to order.

Similar behavior can be found in a more realistic modeling of magnets. It is
interesting that the effective description given by the spin models suffices for
capturing the global properties of such magnetic systems; all atomic physics
details are lumped into effective spin variables and their energy function E.

An interesting generalization of the Ising model is a spin glass system (which
can model certain alloys like AuFe), obtained by allowing for:

e nonlocal interactions, i.e. terms ocs;s; in E for all j # i;
e pair-dependent (symmetric) couplings w;; = w;; between s; and s;.

Thus (4) is replaced by

H)==5 3 ©)

NI»—

180 7 Atrtificial neural networks

f A IT' Figure 7.5 Frustration: four spins connected by differently
signed couplings

Allowing also for negative couplings produces frustration, a situation with
conflicting interests (Figure 7.5). Not all the energy terms can be minimized
simultaneously, which leads to many almost degenerate ‘ground states’. For
a Gaussian random distribution of couplings e;; there exist ~e®?" such low
energy states for an N spin system. This suggests the possibility of exploiting such
a system for information technology — a feedback network.

The Hopfield model

The Hopfield model [Hopfield, 1982] is based on the energy function of (6) with
binary neurons s; = + 1. By appropriate choice of w;; the idea is to let the system
function as an associative memory. A dynamics that locally minimizes (6) (cf. (5))
is given by

si=sgn<z w,.jsj>. 0
J#i
Given a set of N, patterns x?=(x®, x¥,....x{), p=1...,N, with
x{Pe{—1,1}, the Hebb rule [Hebb, 1949]

1

I (P)+(P)
cu,.j—Np p;l a2

is used for learning. With this choice of w,; one can show [Hopfield, 1982] that,
under certain conditions and when initiated at some starting value s{*, the
updating rule of (7) brings the system to the closest stored pattern x{”, which is

a local minimum of E. One has an associative memory.

Combinatorial optimization

Many combinatorial optimization problems are known to be NP-complete.
Exact solutions to such problems require state-space exploration of one kind or
another, leading to a growth of the computational effort with the size of the
system that is exponential or even factorial. Different kinds of heuristic method
are therefore often used to find reasonably good approximate solutions. The
ANN approach, which is based on feedback networks, falls within this category.

3 Pure ANN approach to optimization: binary case 181

It has advantages in terms of solution quality and a ‘fuzzy’ interpretation of the
answers through the MF variables. Furthermore, it is inherently parallel, facili-
tating implementations on concurrent processors, and custom-made hardware is
straightforward to design for MF equations. The ANN approach differs from
optimization and most other approximation methods in the sense that it has no
trial-and-error mechanism; it ‘feels’ its way to a good solution.

There are two families of ANN algorithms for optimization problems:

e The ‘pure’ neural approach is based on a system of either binary [Hopfield
& Tank, 1985] or multistate [Peterson & Soderberg, 19897 neurons with mean
field equations for the dynamics; it is a very general approach.

e Hybrid approaches, such as ‘deformable template’ algorithms [Durbin &
Willshaw, 1987], supplement the neural variables with problem-specific
variables, e.g. geometric variables.

Hybrid approaches are appropriate for low-dimensional geometrical problems
like the traveling salesman problem (TSP), whereas the more general approach of
pure neural networks is suitable for generic multiple-choice problems, like
assignment or scheduling problems. The following sections describe both ap-
proaches illustrated by relevant applications.

3 PURE ANN APPROACH TO OPTIMIZATION: BINARY CASE

3.1 Basic encoding

In the simplest neural approach to an optimization problem we assume that the
problem at hand can be formulated in terms of a system of Ising (binary) spins
s;==x1,i=1,...,N, as the minimization of an objective (energy) function E(s).
This may take the form of (6),

E(S _% i: Wi S; j’ (8)

with a suitable choice of couplings w;; so as to represent the particular problem.
Note that in this approach the couphngs (or, more generally, the parameters of
E(s)) are fixed once and for all for each problem instance; they are not adaptive as
in some other domains of ANN application.

No approximations have yet been made; everything so far amounts to a par-
ticular mathematical encoding of the problem.

3.2 Minimizing E

The next step will be to devise an efficient procedure for minimizing E(s), such that
spurious local minima are avoided as much as possible. In the neural approach,
this is done by employing the mean field (MF) approximation, to be defined
below. It will turn out to be very powerful in this respect. Before arriving at the
MF equations, we will touch upon some related approaches.

182 7 Artificial neural networks

A straightforward method for minimizing E is to update s; according to a local
optimization rule,

si=sgn<z co,-js)->. 9)

With this procedure the system typically ends up in 4 local minimum close (o te
starting point, which is not desired here.

Instead, a stochastic algorithm might be employed, which allows for uphill
moves. One such possibility is simulated annealing (SA) [Kirkpatrick, Gelatt
& Vecchi, 1983]; see also Chapter 4. This method consists of generating con-
figurations via neighborhood search methods according to the Boltzmann
distribution

1
[P’ E(s)/c
(9)=>¢

where Z is the partition function

Z=Y e Ek, (10)

Here, ¢ >0'is the temperature of the system, and the sum runs over the allowed
values +1 of all the spins s, When ¢ is small, the distribution should be
concentrated around the global energy minimum. By starting at a finite ¢ and
generating configurations at successively lower ¢ (annealing), the final configura-
tion is less likely to get stuck in a bad local minimum. But this procedure can be
very time-consuming.

3.3 The mean field equations

The MF approach aims at approximating the stochastic SA method with a
set of deterministic equations. The derivation has two steps. First, the parti-
tion function of (10) is rewritten in terms of an integral over new continuous
variables u; and v, Second, Z is approximated by the maximum value of its
integrand.

To this end, embed the spins s; in a linear space R, introduce a new set of
variables v, living in this space, one for each spin, and set them equal to the spins
with Dirac delta functions. Then we can express the energy in terms of the v, and
Z takes the form

z=Yy Jdve‘E"’)/c [T 6(s; — vy
s i

Next Fourier expand the delta functions, introducing a set of conjugate variables
u; to produce

VA ocz jdv Jdue Ew)e]_[ehilsi

3 Pure ANN approach to optimization: binary case 183

Finally, carry out the original sum over s:
Z oc J‘dv J‘due—E(v)/c—;u,«v,-+/lZlogcosh W — J‘dv fdue—Ee"(u,v)/c. (1 1)

The original partition function is now rewritten entirely in terms of the new
variables u;, v, with an effective energy E,.(u, v} in the exponent. So far no
approximation has been made. We next assume that Z in (11) can be approxi-
mated by the contribution from the maximal value of the integrand, the saddle-
point approximation. For the position of the saddle point we obtain

U= — aE(U)/C, (12)
O,
v; =tanhu,. (13)

Combining (12) and (13) we obtain the mean field equations

v, = tanh(_EBw / c>. (14)
v,

For the energy of (8) this gives the familiar

v; =tanh (Z a)ijvj/c>.
i

The mean field variables v; can be interpreted as (approximate) thermal averages
{s;». of the original binary spins. We thus recover the local updating equations (1)
and (2). What we have obtained is a set of deterministic equations emulating the
stochastic behavior. They correspond to an approximation where each spin feels
the others only via their averages.

An alternative derivation of the MF equations can be done in a variational
approach, where the free energy is minimized with respect to the coefficients of
a linear Ansatz for an approximate energy.

3.4 The mean field neural approach

The MF equations define a feedback neural network, if v; is interpreted as
a neuron with u; as its input, acted upon by the transfer function tanh(-). The
neural approach for binary systems consists in solving the MF equations (14)
iteratively, either synchronously (in parallel) or serially (one v, at a time), starting
at a finite ¢ and slowly letting ¢ — 0 (annealing).

For this approach to work well in the low ¢ limit, it is desirable that E(s) contain
no self-couplings of the form s;s;, or more generally, that dE/ds; not depend on s,
This can always be arranged (e.g, s;s; can always be replaced by 1). Then in the
¢—0 limit, tanh(-/c), will turn into a step function, and (14) will reduce to local
optimization of the original spin system (cf. (9)).

184 7 Artificial neural networks

The basic advantage of the MF approach is that, at finite ¢, the mean field
variables can evolve through a continuous space not accessible to the original,
discrete spin variables.

3.5 Analysis of the dynamics

The dynamics of this kind of feedback ANN typically exhibits a behavior with
two phases (similar to Figure 7.4): at large temperatures the system relaxes into
a trivial fixpoint, which is zero for the quadratic objective function (8). As the
temperature is lowered, a ‘phase transition’ occurs at a critical temperature ¢ = ¢,
where the trivial fixpoint turns unstable, and as ¢—0 nontrivial fixpoints
o = + 1 emerge, representing a suggestive solution to the optimization problem
in question (Figure 7.6).

The position of ¢ depends on w,;, and can be calculated by expanding the
sigmoid function tanh(:/c) in a power series around the origin (Figure 7.6). In this
approximation the dynamics is linear, and the v; evolve according to

1
V== W, (15)
¢

For synchronous updating it is clear that, if the modulus of one of the eigenvalues
of the matrix w/c in (15)is greater than 1, the trivial fixpoint becomes unstable and
the system can begin exploring the nonlinear region. This happens when ¢ de-
creases past the larger of (a) the largest positive eigenvalue of w, or (b) minus the
largest negative eigenvalue of w. Case (a) is desirable, since case (b) leads to
oscillating behavior due to a negative destabilizing eigenvalue. To enforce case
(2), a positive self-coupling is sometimes needed to enable synchronous updating;
this might overstabilize the dynamics at low ¢, leading to lower-quality solutions
[Peterson & Soderberg, 1989].

In the case of serial updating the philosophy is the same but the analysis slightly
more complicated; we refer the reader to Peterson & S6derberg [19897 for a more
detailed discussion. The result is simple though (and encouraging): ¢ is always

Vit Q)

\) u;

%, (9

Figure 7.6 Fixpoints and tanh u;

3 Pure ANN approach to optimization: binary case 185

given by the largest positive eigenvalue of w, which corresponds to case (a). No
self-coupling is needed to stabilize the dynamics.

Finding the largest eigenvalue presents no computational difficulty. For
problems where the coupling matrix contains random parts, knowledge of the
average coupling and the corresponding standard deviation often suffices to
produce a good estimate of £. Such an analysis is also important in foreseeing and
avoiding oscillatory behavior with synchronous updating.

Given a method of estimating ¢ in advance, one can devise a reliable,
parallelizable ‘black-box’ algorithm for solving problems of this kind (cf.
Section 4.4).

3.6 The graph bisection problem

An application of the approach described above is the graph bisection (GB)
problem. The neural approach is very transparent in this case, since the problem
has an intrinsic binary structure. The GB problem is defined as follows (Figure
7.7(a)). Partition the N nodes of a given graph into two subsets of equal size (N/2)
such that the number of connections between the two halves, the cutsize, is
minimized. The graph is defined by the connection matrix, J,, i,j=1,...,N,
where J;; is 1 if nodes i and j are connected, and 0 otherwise.

The problem 1s mapped onto an Ising spin system by the following representa-
tion. For each node i, assign a binary neurons; = + 1, signifying whether the node
belongs to one half or the other. Then s;s; =1 whenever i and j are in the same
partition, and —1 otherwise. Neglecting an unimportant additive constant, the
cutsize is then proportional to

1 N
connz_z Z Ulj

However, minimization of E_,,, alone will lead to the result that all nodes are
forced into one partition. To enforce the global constraint of even partition, we
need a constraint term that penalizes situations where the nodes are not evenly
partitioned. Since) ;s,=0 precisely when the partition is balanced, a term

ijs

hY ~ ~ 1,
e

X

(@) () ©

Figure 7.7 (a) A graph biscction problem; (b) a graph partitioning problem with K = 4;
and (c)a TSP with N=4

186 7 Artificial neural networks

proportional to (3);s;)* will obviously increase the energy for an unbalanced
partition. After a final removal of diagonal terms, a possible energy function for
graph bisection takes the form

1 N o N 2 N

E@)=—%) Jijsl-sj+—<<z si) -3 sf), (16)
2 i,j=1 2 i=1 i=1

where the constraint coefficient o > 0 sets the relative strength between the cutsize

and constraint terms. Note that the energy in (16) has precisely the form of (6) with

w;; = J;; + a(d;;— 1). The corresponding MF equations are

1 N
ui=tanh<— Y. (Jl-j—oc)vJ-)
Cj=1G#d
which are to be iterated, serially or in parallel, under annealing in ¢, until

convergence.
Note the generic form of (16),

E =‘cost’ + ‘global constraint’,

which is typical when casting combinatorial optimization problems onto neural
networks. The difficulty inherent in this kind of problem is very transparent here:
the system is frustrated in the sense that the two terms (‘cost’ and ‘global
constraint’) are competing with each other. Just as for spin glasses, such frustra-
tions often lead to many local minima.

Our treatment of constraints resembles penalty function methods such as
Lagrangian relaxation, but differs from straightforward heuristic approaches. In
the case of graph bisection one often starts in a configuration where the nodes are
equally partitioned and then proceeds by swapping pairs subject to some
acceptance criteria; the constraint of equal partition is respected throughout the
updating process. This is in contrast to the neural network technique, where the
constraints are implemented in a ‘soft’ manner by a penalty term. The final MF
solutions could therefore sometimes suffer from a minor imbalance. This is easily
remedied, cither by applying a greedy heuristic to the solutions, or by reheating
the system and letting it reanneal.

Peterson & Anderson [1988] used serial updating to achieve good numerical
results for the graph bisection problem on random graphs of a fixed connectivity
and graph sizes N ranging from 20 to 2000. Their quality is comparable to
solutions obtained by the time-demanding simulated annealing method. This
technique has a time consumption lower than other methods, and it becomes
more competitive if the intrinsic parallelism is exploited on dedicated hardware.

4 OPTIMIZATION WITH POTTS NEURAL NETWORKS

For a large group of combinatorial optimization problems, it is natural to choose
an encoding in terms of binary elementary variables. However, there are many
problems where this is not the case. One kind of complication arises when the

4 Optimization with Potts neural networks 187

natural elementary decisions are of the type one-of-K with K > 2, rather than
one-of-two.

Early attempts to approach such problems by neural network methods were in
terms of neuron multiplexing, where for each elementary K-fold decision, K binary
0/1 neurons were used, with the additional constraint that precisely one of them
be on (equal to 1). These syntax constraints were implemented in a soft way as
penalty terms. As it turned out in the original work on the traveling salesman
problem [Hopfield & Tank, 1985], as well as in subsequent investigations for the
graph partitioning problem [Peterson & Soderberg, 19891, this approach does
not produce high-quality solutions in a parameter-robust way.

As was demonstrated by Peterson & Soderberg [19897, an alternative encod-
ing using Potts neurons (sec Wu [1983]) is the way to go because the syntax
constraint is built-in,

4.1 Potts spins

A K-state Potts spin is a variable that has K possible values (states). Such
a variable can be represented in many ways; for our purposes, the best way is as
a vector in the Euclidean space &;. Thus, denoting a spin variable by
S =(8,$,,...,5g), the ath possible state is given by the ath principal unit vector,
defined by s, = 1, s, = 0 for b # a. These vectors point to the corners of a regular
K-simplex (Figure 7.8 shows the case of K=3). They are all normalized and
mutually orthogonal, and also fulfill 3,5, = 1.

We assume that an optimization problem has been given, and encoded in terms
of a set of N distinct K-state Potts spins s; = (s;,...,8;x), i = 1,..., N, together with
an objective function E(s) to be minimized. Often E(s) can be written in the form

E(s)=—% i ;;8;"S;. (17

i,j=1

Figure 7.8 The volume of solutions corresponding to the neuron-multiplexing encoding
for K = 3; the shaded plane corresponds to the solution space of the corresponding Potts
encoding

188 7 Artificial neural networks

As in the case of Ising spins, it is desirable (and always possible) to choose E(s) not
to contain any self-couplings (i.e, w; =0,i=1,.. ., N).

4.2 Potts mean field equations

We next derive the MF equations corresponding to K-state Potts spins. Again we
start off with the partition function

Z=Y e EWk,
S

where the sum runs over the allowed states of the whole set of Potts spins.
Proceeding along the same lines as the binary case, the partition function is
transformed into

VA fdudv exp(— E(v)/c— Z ui~vi> Y exp <Z ui-s,-).
Performing the s; sums, we are left with |
Zocjdudv exp(—E(v)/c—Zu,.-v,- + ZlogZe"‘"). (18)
The MF approximation to ¢s;) is again given by the value of v; at a saddle point

of the effective energy of (u, v) in the exponent of (18). Differentiating, we obtain
the Potts MF equations (cf. (12), (13)):

... / : (19)
E}nfu
euiu
e 20
e)

where indices a and b denote vector components.

The set of Potts neurons v, defines a Potts neural network, with the dynamics
given by iteration of (19) and (20), Equation (20) defines a kind of vector sigmoid
function, acting on the input u,, and it follows trivially that

0,>0,) v, =1
a

One can thus think of the neuron component v;, as the probability for the ith
Potts spin to bein state a(fuzzy logic). The state space available to v;is the interior
of the K-simplex spanned by the allowed states for the Potts spin s;. For K =3
this is a triangular area (Figure 7.8).

In particular, for K =2 we recover the formalism of the Ising case, pro-
vided that we make the following identification for the Ising mean field variable

v

4 Optimization with Potts neural networks 189

equivalent to
v =(1+v)/2
vy = (1 - 0/2).

The Potts MF formalism thus provides a natural generalization of the MF
approach from binary to general multistate systems.

4.3 Mean field dynamics

High temperature

Again one can analyze the linearized dynamics as in Section 3.5 in order to
estimate the critical temperature é. The value of the critical temperature depends
on the couplings and on precisely how the updating is done. In serial mode, the
Potts neurons are updated one by one, using fresh values of previously updated
neurons. In synchronous mode, all neurons are updated in parallel, using only old
values as input.
At large enough temperatures the system relaxes into a trivial fixpoint v(%,
which is a completely symmetric state, where all v;, are equal:
1
() —
o= (21)
As the temperature is lowered, a phase transition is passed at c =¢, and as ¢ -0
nontrivial fixpoints v{* emerge which are characterized by £ — 1, where

1
ZEﬁgviz

is the saturation, which measures the degree to which the neurons are forced into
the corners of the accessible state space. Figure 7.9 illustrates this for a graph
partitioning problem with K =4, N =100 (see Section 4.5). The trivial fixpoint
corresponds to the symmetry point of the nonlinear transfer functions in (20),
where the dynamics is almost linear (Figure 7.6). Let us consider fluctuations
around the trivial fixpoint

via = UES) + gia‘
First, from (20) and (21} it follows that

Y &,=0,

so the fluctuations will always be perpendicular to (1,1,1,...). In a linear
approximation (suppressing the index a) the perpendicular components of ¢,
evolve according to

190 7 Artificial neural networks

100
—t + > C
2.5 2.0 1.5 1.0 0.5 0
z
14
> C
2.5 2.0 1.5 1.0 0.5 0

Figure 7.9 (a) Internal energy E(v;,) as a function of ¢ for a graph partitioning problem
with K =4 and N = 100; also shown is an approximation to ¢ based on a statistical
estimate; (b) the saturation Y as a function of ¢ for the same problem.

(cf. (15)). This is almost identical to the situation for binary neurons. Thus,
provided Kc is substituted for ¢, the discussion of ¢ following (15) in Section
3 applies in every detail. The result of the analysis follows.

For synchronous updating, ¢ is given by the larger of (a) 1/K (largest positive
eigenvalue of w) and (b) — 1/K (largest negative eigenvalue of w). In (a) a positive
eigenvalue is responsible for the destabilization of the trivial fixpoint; this is to be
preferred. In (b), which pertains for some problems, a negative eigenvalue is
involved, leading to oscillatory behavior. Case (b) can be avoided by adding an
artificial self-coupling term to the objective function, but this can have the side
effect of overstabilizing the dynamics at low ¢, leading to a lower expected
solution quality.

For serial updating, we always have case (a), so this mode of updating is safe to
use for all kinds of problems, and no self-coupling is needed.

4 Optimization with Potts neural networks 191

Low temperature

At low temperature, any difference between the components u;, of a neuron’s
input will be strongly magnified. As a result, we have a winner-take-all situation,
where one neuron component will be almost one, and the others close to zero.
The dynamics turns discrete, and a kind of local optimization results as ¢ — 0.
Eventually the network should settle at a fixpoint close to an allowed state of the
Potts spin system, representing a suggested solution to the optimization problem.

A self-coupling is sometimes needed with synchronous updating, to stabilize
the high-c dynamics. Adding a self-coupling term, (—f/2)>,, vZ, has a clear
impact at low c; a positive § value tends also to stabilize bad decisions (positive
feedback), whereas a negative value destabilizes even a good solution, and can
lead to cyclic or even chaotic behavior.

For serial mode, there is never a need for self-coupling, so serial mode will be
understood where not otherwise stated. For some problems, implicit self-cou-
plings are difficult to avoid; a general method to deal with such complications will
be discussed in Section 5.

4.4 A black-box procedure

For most problems, the proper value of ¢ can be calculated or estimated in
advance. The complete neural network algorithm for a generic K-state Potts
system (the Ising system is just a special case) will then look as follows.

A generic Potts neural network algorithm

1. Choose a problem instance=>{w,;}.

2. Calculate (or estimate) the phase transition temperature ¢ by linearizing (20).
(For synchronous updating: add a self-coupling 6;; to w;;, if necessary, and
modify ¢ accordingly.)

3. Initialize the neurons v;, with 1/K + random values, and set ¢ = ¢.

4. Until £ > 0.99, do:

update all v;: v;, = e"n/>", e"*, with u,, given by (— JE(v)/dv,,)/c;
anneal: c=0.9 x c.

5. Finally, if needed to correct for violations of softly implemented constraints,
perform a greedy heuristic on the obtained solution.

4.5 The graph partitioning problem

A generalization of the graph bisection problem is graph partitioning (GP):
an N-node graph, defined by a symmetric connection matrix J;=0,1,
i#j=1,...,N, is to be partitioned into K subsets of N/K nodes each, while
minimizing the cutsize, i.e., the number of connected node pairs winding up in
different subsets (see Figure 7b).

192 7 Artificial neural networks

Potts representation

This problem is naturally encoded in terms of K-state Potts spins as follows: For
eachnodei=1,..., N,a Pottsspin variables; = (s;;, . .. , ;x) is assigned, such that
the spin component s;, takes the value 1 or 0 depending on whether node i belongs
to subset a or not. A suitable energy function (cf. (16)) is given by

LW o N 2 N
E=—E Z JijSi'sj‘l‘E((Z si) . Z s?),

ij=1 i=1 i=1

where the first term is a cost term (cutsize) and the second is a penalty term with
a minimum when the nodes are equally partitioned into the K subsets.

%

A
100 + GRAPH PARTITION
K=10 N=100
Neural Network
(Nyyee = 57
50
/]‘ + b + += cutsize
250 300 350 400 450 SUU
% .
A GRAPH PARTITION
160l K-10 N-100
Simulated Annealing
[0 Random Distribution
50+
| } b "_IJ_LH—' { > cutsize
250 300 350 400 450 500

Figure 7.10 Comparison of Potts neural network solutions versus simulated annealing

and random partitions for a graph partitioning problem with K =10 and N = 100. The

histograms are based on 50 problem instances for the neural network and simulated
annealing algorithms and 1000 for the random partition.

4 Optimization with Potts neural networks 193

Results from numerical experiments

Figure 7.10 compares the performance of the Potts neural network with
simulated annealing. The graphs were generated by randomly connecting the
node pairs with probability P = 10/N, and the critical temperature ¢ could be
estimated by statistical methods. The results are impressive. The neural network
algorithm performs as well as, sometimes better than the simulated annealing
method with its excessive annealing and sweep schedule [Peterson & Soderberg,
1989]. This is accomplished with between 50 and 100 iterations. In fact, the
number of iterations needed was found empirically to be independent of problem
size [Peterson & Soderberg, 1989].

4.6 The traveling salesman problem

In the traveling salesman problem (TSP) the coordinates x;cR? of a set of N cities
are given. A closed tour of minimal total length is to be chosen such that each city
is visited exactly once. To encode it we define an N-state Potts neuron s, for each
cityi=1,..., N, such that the component s,, (a = 1,...,N)is 1 if city i has the tour
number a and 0 otherwise. Let d;; be the distance between city i and j. Then
a suitable energy function is given by

N N o N 2 N
E= % d;) SiaSja+ 1y T3 <<) s,.> = Si2>,
i,j=1 a=1 i=1 i=1
where the first term is a cost term, and the second a soft constraint term penalizing
configurations where two cities are assigned the same tour number. In the first
term, a+ 1 is to be taken mod N. Note that E does not have the form of (17). (An
alternative encoding results from interchanging the roles of the labels i and the

components a of the Potts spins.)

Problem instances are generated by positioning the cities at random in
a square. As in the graph partitioning case, the energy is minimized by iteratively
solving the Potts MF equations, (19) and (20), using the generic prescription of
Section 4.4. Again the linearized dynamics can be analyzed to estimate ¢.
Peterson & Soderberg [1989] explore the Potts approach for the TSP numeri-
cally for problem sizes up to N =200, again with encouraging results. The
average neural network solution has a quality comparable to simulated anneal-
ing, and as in the graph partitioning case, there are no really bad solutions.

As for convergence time, we have observed no dependence on N for the
problem sizes probed. The comparisons with simulated annealing concern
quality only. When discussing the total time consumption one has to distinguish
between serial and parallel implementations. With serial execution, the time
consumption of the Potts neural algorithm is proportional to N* for the TSP.
This should be compared with N?g(N) for simulated annealing, where
a(N) > O(N) is the total number of sweeps needed. A further speed increase may
be obtained by exploiting the parallelism inherent in the neural approach, which
would give constant time on a general-purpose parallel machine or custom-made

194 7 Artificial neural networks

hardware. The TSP may also be tackled by deformable templates, a hybrid
approach discussed in Section 6. See also Chapter 8, Section 7.

4.7 Scheduling problems

A Potts neural network formulation is almost ideal for scheduling problems
because they lend themselves to a natural formulation. In its purest form,
a scheduling problem consists entirely of fulfilling a set of basic constraints, each
of which can be encoded as a penalty term that will vanish when the constraint is
obeyed. Thus, the minimum energy is known (0), and one can recognize exact
(legal) solutions a posteriori by inspection. But in many applications there exist
additional preferences within the set of legal schedules, preferences which lead to
the appearance of cost terms.

First we will discuss a synthetic problem, where the principles of the neural
mapping are very transparent. Then we will briefly discuss how to deal with the
additional complication in a real-world problem [Gislén, Soderberg & Peterson,
1992b], in this case a Swedish high school.

A synthetic example

Gislén, Soderberg & Peterson [1989] map a simplified scheduling problem,
where N, teachers lecture N, classes in N, classrooms at N, time slots, onto
a Potts neural nctwork. In this problem one wants solutions where every teacher
p gives a lecture to each of the classes ¢, using the available rooms x and the
available time-slots ¢, with no conflicts in space (classrooms) or time. This defines
the basic constraints that have to be satisfied; various preferences regarding
continuity in classrooms, etc., were also considered.

There is a very transparent way to describe this problem that naturally lends
itself to the Potts neural encoding, where events, defined by teacher—class pairs
(p, 9), are mapped onto space-time slots (x,) (Figure 7.11). The basic constraints
in this picture are as follows:

1. An event (p, g) should occupy precisely one space—time slot (x, ?).

2. Different events (p,, q,) and (p,, 4,) cannot occupy the same space—time slot
(x,1).

3. A teacher p cannot take part in more than one event at a time.

4. A class g cannot take part in more than one event at a time.

A schedule fulfilling all the basic constraints is said to be legal.

The obvious encoding is in terms of Potts spins s,; the component s,,.,, i
defined to be 1 if the event (p, q) takes place in the space—time slot (x,) and
0 otherwise. Thus we need N,N, distinct K-state Potts spins, with K = N_N..
Then the first constraint is trivially satisfied through the usual Potts condition

Y Spgt = 1 (22)
X,t

4 Optimization with Potts neural networks 195

#q //_\“x

P 4

.
-

| 4

Figure 7.11 Mapping of events (p,q) onto space—time slots (x, t)

for each event (p, q). The other three constraints are implemented using energy
penalty terms as follows:

1

2

32 (Zspen)
x,t P.q

1 2

EPT = E Z <Z qu;xt) ?
q,%

Dyt

1 2
Egr :§Z<Z qu;xt>)

q.t \p.x

Eyr=

The energy E to be minimized is the sum of these terms, with all diagonal terms
subtracted.

Again, mean field variables v, ., ~ (s, ... are introduced, and the corre-
sponding MF equations (cf. (19) and (20)) read

1 OE
u =——
pa;xt ’
¢ Wign
e”pq;x!
v

pq; xt Mpo oy
e pa; x't
Zx’t'

With the usual annealing, a very efficient algorithm results.

However, an important simplification can be made. With the above encoding,
it turns out that the MF equations produce two separate phase transitions, one in
x and onein t. In other words, the system spontaneously factorizes into two parts.
It is therefore economical to implement this factorization at the encoding level.
This can be done by replacing each spin s, by the direct product of two spins: an
N .-state Potts spin sj,’;‘ for assigning classrooms, and an N,-state Potts spin
sir! for assigning time-slots,

o)

Spq;x! pgix T pg;t?

with separate Potts conditions replacing (22):

X) _—
Z Spgix = 1
x

196 7 Artificial neural networks

and
(Ty —
Z Spgt = 1
t

respectively. This reduces the dimensionality from N ,N,N N, to N N (N, + N,
so the sequential execution time goes down; the solution quality is not affected.
Note that the factorization brings a situation where the Potts neurons will have
different numbers of components. Also this situation can be dealt with when
analyzing the MF dynamics in terms of fixpoints and ¢.

The performance of these algorithms was investigated by Gislén, Soderberg
& Peterson [1989] for a variety of problem sizes and for various levels of
difficulty, as measured by the ratio between the number of events and the number
of available spacetime slots. Legal solutions were consistently found with very
modest convergence times for problem sizes (N, N, =(5,5),...,(12,12). By
convergence time we mean the total number of sweeps needed to obtain a legal
solution, no matter how many trials it takes. And very good solutions were
obtained when preferences were introduced, e.g., for having subsequent lessons in
the same room.

High-school scheduling

The synthetic scheduling problem contains several simplifications as compared
to realistic problems. Gislén, Soderberg & Peterson [1992b] explored real-world
problems from the Swedish high-school system, which required an extended
formalism. Here is a list of complications that must be handled by such an
extended formalism:

1. A week—day partition of the time range, with a one-week periodicity, occa-
sionally extended to two- or four-week periodicity.

2. In the toy example each teacher had each class exactly once. In the real world
the teacher has to give lessons in certain subjects to a subset of the classes a few
hours a week.

3. In the earlier paper it was assumed that all classrooms were available for every
event. This is not true in reality; many subjects require purpose-built spaces.

4. Many subjects are taught for two hours in a row (double hours).

5. For some optional subjects the classes are broken up into option groups,
temporarily forming new classes.

6. Lunch events have to appear within three hours around noon.

7. Various preferences have to be considered.

Item 1 presents no problem: the time index ¢ is simply subdivided into weekdays
(d) and daily hours (k). For item 2 we cannot use p and g as independent spin
labels. Instead we define an independent label i (event index), to which p and g are
attributes, p(i) and q(i). Other event attributes are the subject, and whether the
hours are double or single; they are stored in a table containing all the a priori
information relevant for each event i.

4 Optimization with Potts neural networks 197

E hard
S—— T Nsweep
50
21‘
T Nsweep
50
Zy
_/ Nswcep
50
4
' - — Noweop
50

Figure 7.12 Energy (E,,q), saturations (X5, Yy) and temperature (c) as functions of
Nyweep fOr one run with a Swedish high-school problem; the estimated phase transition
temperature ¢ is indicated

198 7 Artificial neural networks

To facilitate the handling of double-hour events, their t-neurons must be

substituted in the energy with effective ones, §{7’, defined as

§D =D+).

Items 5 and 6 are syntactic constraints, which can be taken into account by
restricting the Potts index ranges for the relevant events.

We encounter three kinds of preferences when scheduling Swedish high schools:

e Thedifferent lessons for a class in a particular subject should be spread as much
as possible over the weckdays.

e The class schedules should have as few ‘holes’ as possible; lessons should be
glued together.

e Teachers may have various individual preferences.

These preferences have to be accommodated by appropriate penalty terms; see
Gislén, Soderberg & Peterson [1992b].

High-school scheduling problems typically have ~90 teachers, ~ 50 weakly
hours, ~45 classes, and ~ 60 classrooms, which corresponds to ~ 10*¢°° possible
choices. In the factorized Potts formulation these are handled by ~10° neural
variables.

In spite of the above complications, an automated implementation of the MF
algorithm can be made along the lines of the generic prescription defined in
Section 4.4, and high-quality solutions emerge [Gislén, Sdderberg & Peterson,
1992b]. Figure 7.12 shows a typical evolution of the basic constraint part of
the energy, the separate neuron saturations, and the temperature c.

A revision capability is inherent in the neural formalism, which is useful when
encountering unplanned events once a schedule exists. Such rescheduling is
performed by clamping those events not subject to change and heating up and
cooling the remaining dynamical neurons.

One should keep in mind that problems of this kind and this size are so
complex that even several staff months of human planning will in genetal not
yield solutions that will meet all the requirements in an optimal way. We have not
been able to find any algorithm in the literature that solves a real-world problem
of this complexity. Existing commercial software packages do not solve the entire
problem. The problem is solved with an interactive user taking stepwise deci-
sions.

5 OPTIMIZATION WITH INEQUALITY CONSTRAINTS

The application areas dealt with earlier (traveling salesman, graph partitioning,
and scheduling) are characterized by having low-order polynomial equality
constraints. Hence they can be implemented by polynomial penalty terms.
However, in many other optimization problems, especially resource allocation,
one has to deal with inequalities. The objective of this section is to develop
a method to deal with this kind of problem in the MF approach. We illustrate
resource allocation by the knapsack problem, a typical example.

5 Optimization with inequality constraints 199

Figure 7.13 The penalty function C ®(C) of equation (23)

5.1 Dealing with inequality constraints

In a neural formalism, an equality constraint C=0 with C some function of
the spins, can be taken into account by adding an appropriate penalty term to the
objective function. This can be chosen as a suitable function ®(C) of the
constraint variable, the obvious choice being ®(C) = C2.

With an inequality constraint, C <0, we need a ®(C) that only penalizes
configurations for which C>0. A possible choice is

®(C) = CO(C), (23)

where © is the standard step function. This penalty function (Figure 7.13),
multiplied by a suitable coefficient, gives a penalty in proportion to the degree of
violation of the constraint.

Even if C happens to be a polynomial function of the spins, the nature of
® ensures that the constraint term is not a polynomial function, and special care is
needed when implementing the MF approximation. As shown by Ohlsson,
Peterson & Soderberg [1993], this can be done by replacing the derivative 0E/dv;
in the MF equation (we assume binary + 1 neurons):

OE
v, =g o, c
JE

1
a_ui_)E(E(v)l”':l — E@)]y= ~1)- 24
This is equivalent to assuming that E is a linear function of v; between the extreme
values = 1. This trick also has the desirable side effect of killing all self-couplings,
and can be used for any energy function, not necessarily with inequality con-
straints. It can easily be generalized to Potts systems, too.

by a difference:

5.2 The knapsack problem

In the knapsack problem one has a set of N items i, each with an associated utility
u; >0 and a set of loads a,;>0, k=1,..., M. The goal is to fill a knapsack with

200 7 Artificial neural networks

a subset of the items such that their total utility,

N
U=)Y us, (25)

i=1
is maximized, subject to a set of M load constraints,

N
a,s;<b, k=1,....M, (26)
i=1
defined by load capacities b, > 0. The encoding is in terms of binary decision
variables (spins) s;e{1,0}, representing whether or not item i goes into the
knapsack.

We will consider a class of problems, where a,; and u; are independent uni-
form random numbers on the unit interval [0, 1], and b, are fixed to a common
value b. With b > N/2 the problem becomes trivial; the solution will have almost
all s;=1. Conversely, with b« N/4 the number of allowed configurations will
be small and an optimal solution can easily be found. We pick the most difficult
case, defined by b= N/4. The expected number of items used in an optimal
solution will then be about N/2, and an optimal solution becomes inaccessible for
large N.

In the optimal solution to such a problem, there will be a strong correlation
between the value of u; and the probability for s; to be 1. With a simple heuristic
based on this observation, one can often obtain near-optimal solutions very fast.
We will therefore also consider a class of harder problems with narrower u;
distributions, homogeneous problems. The extreme case is when u; is independent
of i, and the utility proportional to the number of items used.

We note in passing that the set covering problem is a special case of the general
problem, with random a,;€{0, 1}, and b, = 1. This defines a comparatively simple
problem class, according to the above discussion, and we will stick to the
knapsack problem in what follows.

Neural approach

A suitable energy function for the problem defined in (25) and (26) is

E(s)= — % u;s; + o %l: <I><§: ak,.si—bk>, (27
i=1 k=1 \i=1

where the first term measures the utility, and the rest are constraint terms, with

® the penalty function of (23) ensuring that the constraints in (26) are fulfilled. The

coefficient a governs the relative strengths of the utility and constraint terms.
Minimizing (27) is achieved with the mean field equations,

OE
vi=g| —5-¢)

though with differences substituted for derivatives, as in (24), and modified for

5 Optimization with inequality constraints 201

N
—(I)< akjvj—bk>)
=1 j=1 %=0

The modified MF equations are solved iteratively by annealing in ¢. Again there
exists a more or less automated scheme for solving them (cf. Section 4.4). The
high-c fixpoint analysis is somewhat more difficult in this case; we refer the reader
to Ohlsson, Peterson & Soderberg [1993] for a discussion of this point.

[0, 1] neurons. This leads to

M N
a—E—>—ui+o¢ Y <(I>< Y akjvj—bk>
v =1

i k=1

Performance comparisons

Ohlsson, Peterson & Soderberg [1993] compare the neural network (NN)
approach with several other methods. The branch-and-bound (BB) method is an
optimization algorithm and consists of going down a search tree, checking
bounds on constraints or utility for entire subtrees, thereby avoiding exhaustive
search. In particular, for nonhomogeneous problems, this method is accelerated
by ordering the utilities according to magnitude:

Uyp > Uy > > Uy (28)

In a naive implementation, this implementation approach is only feasible for
small problem instances. The greedy heuristic (GH) is a fast and dirty approxi-
mation method applicable to nonhomogeneous problems. Proceeding from
larger to smaller u; (cf. (28)), collect every item that does not violate any
constraint. Simulated annealing (SA) [Kirkpatrick, Gelatt & Vecchi, 1983] is
a stochastic method, implemented in terms of attempted single-spin flips, subject
to the constraints. Linear programming (LP) based on the simplex method [Press
et al,, 1986] applies only to a modified problem with s;e[0, 1]. For the ordered (cf.
(28)) nonhomogeneous knapsack problem it gives solutions with a set of leading
I’s and a set of trailing 0’s, with a window in between containing fractional
numbers, Faitly good solutions emerge when augmented by greedy heuristics for
the elements in this window.

Table 7.1 Comparison of performance and time consumption for the different
algorithms on a knapsack problem with N =M = 30; the time consumption refers to
a DEC3100 workstation

Algorithm u; = rand[0, 1] u; = rand[0.45,0.55] u;=0.5

Perf. CPU time Perf. CPU time Perf. CPU time

BB 1 16 1 1500 1 1500

NN 0.98 0.80 0.95 0.70 0.97 0.75
SA 0.98 0.80 0.95 0.80 0.96 0.80
LP 0.98 0.10 0.93 0.25 0.93 0.30

GH 0.97 0.02 088 0.02 0.85 0.02

202

Performance

Performance

1.03

1.02

1.01

0.99

0.98

1.03

1.02

1.01

0.99

0.98

7 Artificial neural networks

(a)

NN/SA ro—
LP/SA +—i 4

i

; Py
g $ 3
I

100 200 300 400 500 600
Problemsize N
I I I ' ‘ NN/SA ro—
B LP/SA +— -
(b)
3 k3
3 3 ¢ %
_§ -
; : 1
a i I)
i
100 200 3(l)0 42)0 5(I)0 600

Problem size N

Figure 7.14 Performance of the neural network (NN) and linear programming (LP)
approaches normalized to simulated annealing (SA) for problem sizes ranging from 50 to
500 with M = N: (a) u; = rand[0.45, 0.55] and (b) #; = 0.5

5 Optimization with inequality constraints 203

L} L T 1 T
10000 | NN o A
LP +
(@ i + SA @O
1000 ¢ + .
g
@ +
£ 8
o 100 | + :
& Py
8
B
10F E
2
2}
I + L L L 1 1
100 200 300 400 500 600
Problem size N
L} L) L} L T
10000 F B NN o 3
LP +
(b) SA B
I
1000 | E
©
o]
© +
=]
5 . ’
=} 100 | e
o) i 8
.]
[}
(U S o
)
5]
+
l 'l L 1 L 1
100 200 300 400 500 600

Problem size N

Figure 7.15 Time consumption of the neural network (NN) and linear programming

(LP) approaches normalized to simulated annealing (SA) for problem sizes ranging from

50 to 500 with M = N: (a)} u; =rand[0.45, 0.55] and (b) u,=0.5; the times are for
a DEC3100 workstation

204 7 Artificial neural networks

First of all, the NN, SA, and LP approaches are compared with the exact BB
for N =M =30, on homogeneous and nonhomogeneous problems; the results
are shown in Table 7.1. Performance is measured as average utility normalized to
BB (for large problems, normalized to SA).

LP and GH obviously benefit from nonhomogeneity in terms of quality and
time (BB benefits on time), whereas the NN algorithm wins on homogeneous
problems [Ohlsson, Peterson & Soderberg, 1993]. We cannot use BB for larger
problem sizes, so only the approximative approaches are compared. The con-
clusions from problem sizes N = M = 50 to 500 arc thc same as above. The real
strength of NN is best exploited for more homogeneous problems. Figures 7.14 and
7.15 show the performance and time consumption for Ne[50, 500] with M = N.

In summary, the MF approach is competitive compared to other approxi-
mative methods for the hard homogeneous problems, both with respect to
solution quality and time consumption. It also compares well with exact solu-
tions, and the accessibility of an exact solution depends on the problem size. The
ability to find good approximate solutions to difficult knapsack problems opens
up several application areas within the field of resource allocation.

6 DEFORMABLE TEMPLATES

The above optimization problems were all treated as pure assignment problems —
all variables were logical (neurons). In some areas it is advantageous to take a
parametric assignment approach, which produces a hybrid picture where MF Potts
decision variables are supplemented by geometric template variables. The TSP
[Durbin & Willshaw, 19871 and particle physics track finding [Yuille, Honda &
Peterson, 1991; Ohlsson, Peterson & Yuille, 1992; Gyulassy & Harlander, 1991] are
examples where it pays to use the deformable templates approach. In the context of
the TSP, this approach is often called an ‘elastic net’ [Durbin & Willshaw, 1987].

The deformable template formulation is rather application specific. Hence we
will illustrate derivations, etc., using the TSP and track finding examples. Our
presentation follows a general probabilistic path rather than the more intuitive
approach in the original elastic network [Durbin & Willshaw, 1987].

6.1 The traveling salesman problem

Denote the N city positionsin a TSP instance by x;eR?,i =1,..., N. Theideais to
use a template trajectory, consisting of a closed chain of M > N ordered points
y,cR? a=1,..., M, in addition to a set of N distinct M-state Potts spins s, The
role of the Potts spins is to assign a point a in the chain to each city i, by s;, = 1.
The template coordinates y, and the Potts spins s; are to be chosen so as to
minimize the chain length, while for each city i forcing the assigned y, to match x;.
In order to accomplish this the following energy expression is used:

E@S,Y) =Y Sl X = Yol * + 7 X1 ¥a = Yauu | (29)

6 Deformable templates 205

The first term in (29) enforces matching: it is minimized when each x; coincides
with that y, for which s,, = 1. The second term minimizes the tour length while
preserving an even spacing between the template points. The parameter y governs
the relative strength between the matching and tour length terms, and should be
suitably chosen depending on M, N and the typical distances in the problem. In
order to avoid getting trapped in local minima when minimizing E, noise is added
by using the Boltzmann distribution for the system

— Efs.yle

Z 5

P(s,y;)=
with the partition function Z given by

7="1 f dye™ e,
5

Performing the trivial sums over the allowed states of the Potts spins [Yuille,
1990; Yuille, Honda & Peterson, 19917, we can rewrite Z as

7 — f dye EentVe

where the effective energy E ; of the template is given by

— %~ 2 c
Eeff(y):_czl()g<ze b ya|/>+y2|ya_ya+1|2' (30)
Next we minimize E;, with respect to y, using gradient descent
Aya=rl<zvia(xi_ya)+y(ya+1—2ya+ya—1>’ (31)
where # > 0 is a suitable step size, and the Potts factor (cf. (20)) v,, is given by
e’
b= (32)
e rnE

This is all done under slow annealing in the temperature ¢, which enters the
dynamics only via the Potts factors. A typical evolution of (31) and (32) is
schematically depicted in Figure 7.16. In contrast to the Potts description of
Section 4, the logical units are only implicit in the dynamics; the nontrivial
dynamics lies with the analog variables y,. Here is an example of a complete
algorithm.

An elastic net algorithm for the TSP

1. Choose problem instance — {x;, i=1, N}.
2. Choose multiplicity M of template (M > N).
3. Choose a suitable y and initial temperature.

206 7 Artificial neural networks

o .0
(a) (b)
(©) @

Figure 7.16 Evolution of the template chain from high to low temperatures; the dots
denote city coordinates x; and the template coordinate y, reside on the closed curves

4. Place template points y, equally spaced on a small circle with a slight random
displacement from the center of gravity of the citics.
5. Until the system has settled, do:

update the template points: y, =y, + Ay,, with Ay, given by (31);
c=09xc.

How does Lhis algorithm work? The [irst term in (30) contains a sum of Gaussians

of width /¢ around the templates. At high ¢ this makes all the y, compete to
match all the cities; in effect, they will be attracted towards the center of mass. As
¢ decreases, the Potts factors become more selective, and the range of competition
for each x; is focused on a smaller neighborhood. Finally one y,, is singled out to
match each x;, and the remaining y’s become arranged equidistantly along
straight line segments connecting the cities.

This algorithm produces high-quality solutions [Peterson, 1990a]. And, very
important, an N-city problem requires only O(N) variables. It is a good example
of a low-dimensional geometric problem where a template method is to be
preferred over the pure neural method. See also Chapter 8, Section 7.

6 Deformable templates 207

6.2 Track finding

Track finding is the problem of fitting smooth tracks to a given set of signal
points. In its most general form —as in the problem of reconstructing the
trajectories of airborne objects from radar signals — the parametric form of the
tracks is unknown. A pure neural approach is appropriate in this case: assign
a decision element (neuron) s;; between two signals i and j, which is equal to 1 if
iand j are connected and 0 otherwise. An energy function is then constructed in
terms of s;; such that smooth tracks will correspond to minima [Denby, 1988;
Peterson, 1989]. Another possibility is to have a rotor neuron [Gislén, Soderberg
& Peterson, 1992a] (see Section 7) associated with each signal, with an interac-
tion such that smooth tracks emerge [Peterson, 1990b].

In particle physics experiments, a known magnetic field makes charged
particles bend in tracks of known parametric form. The values of the track
parameters contain information about the momenta of the particles. Even
though the pure neural approach [Denby, 1988; Peterson, 1989; Stimpfl-Abele &
Garrido, 1991] seems to work reasonably well, it is natural to use a deformable
templates approach [Yuille, Honda & Peterson, 1991; Ohlsson, Peterson
& Yuille, 1992; Gyulassy & Harlander, 1991] for the following reasons:

1. Not only does it solve the combinatorial optimization part of the problem,
assigning signals to tracks, it also delivers the track parameters, which contain
the physical quantities of interest.

2. The pure neural approach is more general than this problem requires. One
should benefit from the fact that the parametric form of the tracks is known in
advance, straight lines or helices.

3. The number of variables needed to solve an N-signal problem is large even
with the connectivity restrictions imposed by Peterson [1989] and Stimpfl-
Abele & Garrido [1991]. For a problem with N signals and M tracks one
should only need O(M) variables.

4. As demonstrated by Gyulassy & Harlander [1991], the neural approach is
somewhat sensitive to noise. Again, with prior knowledge of the parametric
form, the method should be more robust with respect to noise.

The strategy of the deformable templates approach for tracking [Yuille, Honda
& Peterson, 1991; Gyulassy & Harlander, 19917 is to match the observed events
to simple parameterized models, templates, the form of which reflects the a priori
knowledge about the possible track shapes, e.g., helices passing through the
origin (the collision point). In addition, the formalism allows for some data points
(sensor noise) to be unmatched. The mechanism involved is closely related to
redescending M-estimators used in robust statistics [Huber, 1981].

We assume we are given a set of N signal coordinates x,eR> i=1,...,N. For
the case of a constant magnetic field, we define the templates, labeled by
a=1,..., M, to be helices passing through the origin, parameterized each by an
elevation angle 0,, a transverse curvature k,, and a longitudinal velocity par-
ameter y,. The assignment of templates a to the signals i is handled by an M-state

208 7 Artificial neural networks

Pottsspins, for each signal i. The algorithm works in two steps. First, for example
a Hough transform [Duda & Hart, 1973] is used to determine the number M of
templates rcquired, and to initialize the templates (Hough transforms are essen-
tially variants of ‘histogramming’ or ‘binning’ techniques, which are commonly
applied to particle tracking). The elastic arms method then takes over, resolves
ambiguities, and makes detailed fits to the signals, based on the following energy
function (cf. (29)):

Efs, 0,x,9)= IZV: % (M, — Vs (33)

i=la=1

where M, short for M(6,, K, 7., X;), is a measure of the squared distance between
signal i and the helix a, and the Potts spin component s;, is 1 if the ith point is

assigned to the ath arm, and zero otherwise, subject to the modified Potts constraint,

Y s,,=0o0rl. (34)

Thus, for each i there should be at most one a such that s;, = 1. This allows for
noise signals not being assigned to any track. It is equivalent to having an extra
null component

M
Sio=1— Z Sia
a=1

in the Potts spin, signifying no assignment. The parameter A is a penalty for the
nonassignment of a signal point. In effect a distance cutoffis introduced such that
signals with no templates within the distance ﬂ tend not to be assigned.

We want to minimize E(s,0,x,y) with respect to the Potts spins and the
template parameters, subject to the constraint of (34). As in the TSP the problem
is encoded in two kinds of variables, assignment variables s;, and template
parameters 0,, x,, and y,. Following the steps of the TSP application, we define
the Boltzmann distribution as

—Efs,0,6)/c
P(s,0,x,y) = Z

Summing over the Potts spins [Ohlsson, Peterson & Yuille, 19927, one obtains

—Egqe(Bicp)/c
2

1
Pul0,) ==

where the effective energy E amounts to
N M
Eeff(05 K,’)))Z —C Z log <eMC+ Z eMi"/C>'
i=1 a=1
Straightforward gradient descent on E . with a step size n gives

OE ul oM,
AG - eﬁ': o . ia
e Y Vi 30,

a i=1

6 Deformable templates 209

Figure 7.17 An elastic arm at temperature ¢

with the Potts factor

e_Mia/c

= —MJ
ia e).fr_|_z£v‘=] e lip/c

v 35)

and analogous equations for Ak, and Ay,. These are iterated under annealing
in ¢. The structure of these equations is reminiscent of the TSP case, with decision
elements v,, intermixed with geometric fitting terms proportional to dM,,/d6,,
oM., /0x,, and OM,,/0y,. In a more sophisticated treatment, the step size # is
replaced by a matrix, allowing for an interaction between the different par-
ameters, so as to take into account an inhomogeneous metric in the space of
parameters.

How does this algorithm work? At a high starting temperature a set of initial
template arms are placed according to the Hough transform values for the
parameters 0,, k,, and y,. The templates compete for the signals by means of

Gaussian distributions of width \/E centered around the arm positions (Fig-
ure 7.17). Initially each arm can attract many signals. The relative importance of
the different signals is measured by the Potts factor (35). As the temperature is
lowered, the different arms are attracted more exclusively to nearby signals
only.

As discussed in connection with (33), 4 governs the amount of noise points or
outliers the algorithm allows for. It enters the Potts factor (35) via an extra
component contributing to the denominator. For 4 — oo no signals are ignored
and the extra component vanishes. For finite values of /4 the domain of attraction

of the arms is cut off (for small ¢) at a distance ﬁ

The elastic arms approach is very similar to human processing for this kind of
recognition problem. A human looks for helices in a global way and then makes
fine-tuning adjustments. Indeed, when confronted with high-multiplicity data,
the algorithm performs very well [Ohlsson, Peterson & Yuille, 1992].

210 7 Atrtificial neural networks

7 ROTOR NEURONS

A binary (Tsing) neuron can be considered as a vector living on a ‘sphere’ in one
dimension. The MF approach can be generalized to variables defined on spheres
in higher dimensions. Such rotor neurons may be used in geometrical optimiza-
tion problems with angular variables.

7.1 Mean field rotor neurons

We consider the general problem of minimizing an energy function E(s,,...,Sy)
with respect to a set of N D-dimensional unit vectors (rotors), s,cR”,
s, =1,i=1,..., N. To derive the MF equations, consider the partition function

Z= JeE(s)/Cds1 - dsy,
where the integrations over ds; are performed over the directions only. Along the

same lines as in the binary (Ising) and Potts cases previously discussed [Gislén,
Soderberg & Peterson, 1992a], rewrite Z as

Z jexp(— EM/c—Y viu+) F(ui)> dv,du, -+ dvyduy, (36)
where u; = |u;| and
D—-2
F(w) =logl p_ 5,) —Tlogu -+ constant. (37

In (37) I, is the modified Bessel function of order n. Next we seek a saddle point of
the effective potential in the exponent of (36) as in the previous cases, which leads
to the mean field equations

u; = - V. E(v), (38)
c

v, = g(u) = d;9(u;) = 4, F'(u), (39)

where 1, = u,/u;. They give v; as the average of s; in the local field —VE(v). For
D =1 the standard sigmoid (cf. (2))

v; = g(u;) = tanh u,

is of course recovered.

The obvious dynamics consists of iterating (38) and (39) by annealing in the
temperature c. At high temperature the system is in a symmetric phase, character-
ized by a stable trivial fixpoint v, ~ 0. At lower c this becomes unstable, and the
mean fields v, will be repelled by the origin. For low enough temperature they will
stabilize close to the sphere v} = 1 (Figure 7.18).

The dynamics is thus very different from conventional methods, where moves
typically take place on the surface. Although the ability of exploring an ‘off-shell’

8 Summary and outlook 211

Figure 7.18 Schematic evolution of a D = 2 rotor initialized close to the center for ¢ < ¢

interpolating state space probably does not give as large an advantage as in the
discrete Ising and Potts cases, it does provide an additional dimension through
which to escape spurious local minima.

7.2 Applications

Gislén, Sdderberg & Peterson [1992a] applied the rotor approach to the specific
problem of the equilibrium configuration of N equal charges on a sphere (D = 3).
Conlfigurations were computed for 3, 5, 10, 20, 30, and 100 charges. The MF rotor
model gave the correct solutions where they were explicitly known (N = 2, 3, 4, 6).
For larger problems the solutions were compared to those from a local optimiza-
tion (LO) and a simulated annealing (SA) algorithm.

The quality of the MF rotor algorithm turns out to be better or equal to
algorithms produced by LO and SA. As for time consumption, the rotor
algorithm empirically scales like N2, whereas LO and SA scale like N° or worse.

Even though the rotor formalism applies to optimization problems that
are not of a strictly combinatorial type, it is a natural extension of the binary
decision neuron formalism that seems to be working well on the test beds
explored. Possible realistic applications are molecular foldings and related
problems.

8 SUMMARY AND OUTLOOK

Using neural networks to find good solutions to combinatorial optimization
problems is an approach whose very nature differs from other approximative
methods. The problems are mapped onto energy functions very similar to those
of magnetic systems. Hence tools from statistical mechanics can be exploited. In
addition to the simulated annealing method, one borrows the mean field approxi-
mation; and continuous variables feel their ways in a fuzzy manner towards good
solutions. This is in contrast to most other methods, where moves are performed
within the discrete solution space.

212 7 Artificial neural networks

There are two main alternatives within the ANN paradigm, the pure ANN
approach and deformable templates. For generic combinatorial optimization
problems, such as scheduling and assignment problems, one uses the pure ncural
approach in which the basic steps are as follows:

e Map the problem onto a neural network by a suitable encoding of the solution
spacc and an appropriate choice of energy function.

e Utilize prior knowledge about phase transition properties from analyzing
the linearized dynamics. Special care is needed when defining the MF equa-
tions in cases when the penalty terms are nonpolynomial, as in the case of
inequality constraints.

e While annealing solve the corresponding mean field equations iteratively.

e When the MF equations have converged, check the solutions for their legality,
whether or not they satisfy the basic constraints. If not, supplement the
algorithm with a greedy heuristic, or reanneal the system (possibly with
modified constraint coefficients).

The MF equations of this method show an appealing similarity to the KirchofT
equations for analog VLSI circuitry.

For low-dimensional geometrical problems, like the traveling salesman prob-
lem and track finding problems, it is often advantageous to use a hybrid
procedure, the deformable templates method. In this case, one has the following
basic steps:

e Map the problem onto an energy function in terms of both template (geometric)
and assignment (neural) variables. The dependence on the assignment vari-
ables is usually trivial.

e Form the corresponding partition function, and integrate (or sum) out the
assignment variables to produce an effective energy in terms of template
variables only.

e Minimize the effective energy with a gradient descent method. The templates
will then be updated in such a way that the contributions from the data points
are weighted with their relevance through Potts factors.

This template method has a lot in common with clustering and robust statistics
methodologies as well as with Bayesian method | Ohlsson, Peterson & Yuille,
1992]. Not only is the pure neural approach closely related to analog VLSI, both
the pure and hybrid approaches easily lend themselves to parallel execution.

With respect to quality of the solutions, the ANN methods produce very

____competitive results_compared_to_other.approximative schemes. Se¢ Peterson

[1990a] and Ohlsson, Peterson & Soderberg [1993 | for comparisons between
methods of solving the traveling salesman and knapsack problems, respectively.
No comparisons have been possible in full-size high-school scheduling applica-
tions, since no results exist from other approaches.

The neural language is very natural for encoding many combinatorial
optimization problems. The approach has the advantage of being casily used for

1

8 Summary and outlook 213

revision of solutions due to new situations. One simply reanneals the network,
clamping any nonrevisable units.

An Ising neuron can be considered as a one-dimensional rotor. The MF
approach can also be extended to rotors in high dimensions. This can be fruitful
when dealing with configurational problems with angular minimization.

By considering the MF approximation as resulting from a variational prin-
ciple, the approach might be extended to systems with any type of discrete or
continuous variables. Work in that direction has been pursued in molecular
conformation problems [Bouchaud et al., 1991].

