
Design of sequences with good folding properties in 
coarse-grained protein models
Anders Irbäck*, Carsten Peterson, Frank Potthast† and Erik Sandelin

Background: Designing amino acid sequences that are stable in a given target
structure amounts to maximizing a conditional probability. A straightforward
approach to accomplishing this is a nested Monte Carlo where the
conformation space is explored over and over again for different fixed
sequences; this requires excessive computational demand. Several approximate
attempts to remedy this situation, based on energy minimization for fixed
structure or high-T expansions, have been proposed. These methods are fast
but often not accurate, as folding occurs at low T.

Results: We have developed a multisequence Monte Carlo procedure where
both sequence and conformational space are simultaneously probed with efficient
prescriptions for pruning sequence space. The method is explored on
hydrophobic/polar models. First we discuss short lattice chains in order to
compare with exact data and with other methods. The method is then successfully
applied to lattice chains with up to 50 monomers and to off-lattice 20mers.

Conclusions: The multisequence Monte Carlo method offers a new approach
to sequence design in coarse-grained models. It is much more efficient than
previous Monte Carlo methods, and is, as it stands, applicable to a fairly wide
range of two-letter models.

Introduction
The protein design problem amounts to finding an amino
acid sequence for a given target structure; the sequence
must be stable in the target structure and be able to fold
into this structure quickly. In a typical model, the second
requirement implies that stability must set in at not too
low a temperature. Hence, one is led to consider the
problem of finding sequences that maximize the stability
of the target structure at a given temperature. In terms of a
model described by an energy function E(r, σ), where
r = {rr1, rr2, …, rrN} denotes the structure coordinates and
σ = {σ1, σ2, …, σN} the amino acid sequence, this can be
expressed as maximizing the conditional probability

(1)

where r0 denotes the target structure, T the temperature
and the partition function Z(σ) is given by

(2)

Maximizing P (r0|σ) with respect to σ represents quite some
challenge, as for any move in σ, the partition function Z(σ)
needs to be evaluated; each evaluation of P (r0|σ) effectively
amounts to a folding calculation for fixed sequence σ.

Different ways of handling this sequence optimization
problem have been proposed and partly explored in the
context of coarse-grained (or minimalist) protein models,
where amino acid residues represent the entities. The pro-
posed methods fall into three categories. 

Firstly, E(r0, σ)-minimization [1–3]. If one simply ignores
Z(σ) in Equation (1), one is left with the problem of mini-
mizing E(r0, σ). This is too crude, as for many coarse-
grained models it implies that all σi values line up to a
homopolymer solution. This can be remedied by adding a
constraint to E(r0, σ), restricting the overall composition.
This method is very quick because no exploration of the
conformation space is involved. However, it does fail for a
number of examples, even for small system sizes. 

Secondly, high-T expansion [4–6]. A more systematic
approach is to approximate Z(σ) with low-order terms in
a cumulant or high-T expansion. This method is also fast,
and slightly more accurate than the E(r0, σ)-minimiza-
tion method, but it can also fail because folding takes
place at low T.

Thirdly, nested MC (NMC) [7]. In order to avoid intro-
ducing uncontrolled approximations, one is forced to turn
to MC methods. The most straightforward MC approach
is to use a normal fixed-σ MC in r for estimating the Z(σ)
contribution to Equation (1), which, however, leads to a
nested algorithm with a highly non-trivial inner part.
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Although correct results have been reported for toy-sized
problems, this approach is inhibitorily CPU (central pro-
cessing unit) time-consuming for larger problem sizes.

In this paper we develop and explore an alternative MC
methodology, Multisequence (MS) design, where the
basic strategy is to create an enlarged configuration space;
the sequence σ becomes a dynamic variable [8]. Hence, r
and σ are put on a more equal footing, which, in particular,
enables us to avoid a nested MC. Early stages of this project
were reported in [9].

The multisequence approach is explored on both a two-
dimensional (2D) lattice model, the hydrophobic/polar
‘HP’ model of Lau and Dill [10], and a simple three-
dimensional (3D) off-lattice model [11] with very good
results. As with any design method, one needs access to
suitable target structures and also to verify the results by
folding calculations. For short chains in the 2D HP model,
N ≤ 18, both these tasks are easy because all configura-
tions can be enumerated. For longer lattice chains and off-
lattice models, powerful MC algorithms like simulated
tempering [12,13,8] are needed for the verification.

Our calculations for the HP model can be divided into two
groups corresponding to short (N = 16 and 18) and long
(N = 32 and 50) chains. The results for short chains are com-
pared to exact enumerations, and we find that our method
reproduces the exact results extremely rapidly. We also
compare our results to those obtained by E(r0, σ) minimiza-
tion and a high-T approach. It should be mentioned that for
the former we scan through all possible fixed overall com-
positions, thereby giving this method a fair chance. Also, we
make a detailed exact calculation, illuminating the limita-
tions of the high-T expansion approach.

For larger N, a bootstrap method was developed that over-
comes the problem of keeping all possible sequences in
the computer memory. The efficiency of this trick is illus-
trated for a N = 32 target structure, which is chosen ‘by
hand’. Finally, a N = 50 target structure is generated by
using a design algorithm that aims to throw away those
sequences that are unsuitable for any structure. This
N = 50 target structure is subsequently subject to our mul-
tisequence design approach, which readily finds a sequence
with the target structure as its unique ground state. As a
byproduct, having access to good N = 50 sequences, we
investigate the behavior at the folding transition, which, to
our knowledge, has not been studied before for compara-
ble chain lengths.

Earlier studies of the three-dimensional (3D) off-lattice
model [11], and a similar 2D model [14], have shown that
the stability, as measured by the average size 〈δ2〉 of
thermal structural fluctuations, is strongly sequence-depen-
dent. Here, we perform design experiments using native

structures of both stable (low 〈δ2〉) and unstable (high 〈δ2〉)
sequences as target structures. The quality of the designed
sequences is carefully examined by monitoring the thermal
average of the mean-square distance to the target struc-
ture, 〈δ2

0〉. We find that the method consistently improves
on 〈δ2

0〉 and that it performs better than the E(r0, σ)-mini-
mization approach.

Results
Optimizing conditional probabilities
Maximizing the conditional probability P (r0|σ) of Equation
(1) with respect to σ for a given target structure r0 is a chal-
lenge, as it requires exploration of both conformation and
sequence degrees of freedom. At high T this task can be
approached by using a cumulant expansion of Z(σ), which
makes the problem much easier. Unfortunately, this is not
the temperature regime of primary interest. In this paper
we present an efficient MC-based procedure for sequence
optimization at biologically relevant temperatures.

The problem of maximizing P (r0|σ) can be reformulated
in terms of P (σ|r0) by introducing a marginal distribution
of σ, P (σ), and the corresponding joint distribution P (r,
σ) = P (r|σ)P (σ). Assigning equal a priori probability to all
the σ, that is, P (σ) = constant, one obtains

(3)

so maximizing P (r0|σ) is then equivalent to maximizing
P (σ|r0). In this paper we focus on the problem of design-
ing a single structure r0. This is a special case of the more
general problem of maximizing the probability

(4)

for a group of desired structures, D. Note that for a general
set D with more than one structure, this is not equivalent
to maximizing Σr∈D P (σ|r), as

(5)

Note that Equation (5) differs from [4], where equivalence
is assumed.

The multisequence method
A MC-based method for optimization of P (r0|σ) at general
T has been proposed by Seno et al. [7]. Their approach is
based on simulated annealing in σ with a chain-growth
MC in r for each σ. This gives a nested MC that is prohib-
itively time consuming, except for very small systems.
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The multisequence method offers a fundamentally differ-
ent approach. In this method, one replaces the simulations
of P (r|σ) for a number of different fixed σ by a single sim-
ulation of the joint probability distribution

(6)

(7)

The parameters g(σ) determine the marginal distribution

(8)

and must therefore be chosen carefully. At first sight, it
may seem that one would need to estimate Z(σ) in order
to obtain reasonable g(σ). However, a convenient choice is

g(σ) = –E(r0, σ)/T (9)

for which one has

(10)

In other words, maximizing P (r0|σ) is in this case equiva-
lent to minimizing P (σ). This implies that bad sequences
are visited more frequently than good ones in the simula-
tion. This property may seem unattractive at a first glance;
however, it can be used to eliminate bad sequences. The
situation is illustrated in Figure 1.

The idea of using the multisequence method for sequence
design is natural because the task is to compare different
sequences. Let us therefore stress that the method is not
only convenient, but also efficient. The basic reason for
this is that the system often can move more efficiently
through conformation space if the sequence degrees of
freedom are allowed to fluctuate. As a result, simulating
many sequences with the multisequence method can be
faster than simulating a single sequence with standard
methods, as will be shown below. Another appealing
feature of the multisequence scheme is that the optimiza-
tion of the desired quantity P (r0|σ), which refers to a
single structure, can be replaced by an optimization of the
marginal probability P (σ).

The basic idea of the multisequence method is the same as
in the method of simulated tempering [12,13,8]. The only
difference is that in the latter it is the temperature rather
than the sequence that is dynamical. It has been shown that

simulated tempering is a very efficient method for fixed-
sequence simulations in the HP model [15]. In particular, it
was applied to a N = 64 sequence with known ground state,
for which other methods had failed to reach the ground-
state level. Simulated tempering was, by contrast, able to
find the ground state. Below we use simulated tempering to
check our sequence-design results for long chains.

Reducing the sequence set
The simple scheme outlined above is normally of little use
on its own. With a large number of sequences it becomes
impractical, especially as bad sequences tend to dominate
in the simulation. It is therefore essential to incorporate a
procedure for removal of bad sequences. This elimination
can be done in different ways. We will discuss two possibili-
ties, which will be referred to as P (σ)- and E(r, σ)-based
elimination, respectively. Whereas both options are avail-
able for lattice models, P (σ)-based elimination is more
appropriate for off-lattice models.

P (σ)-based elimination
P (σ)-based elimination relies on the fact that bad sequences
have high P (σ) [see Equation (10)]. The full design proce-
dure consists in this case of a number of ordinary multise-
quence runs. After each of these runs, P (σ) is estimated for
all the Nr remaining sequences, and those having

P (σ) > Λ/Nr (11)

are removed. Typical values of the parameter Λ are 1–2.
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Figure 1

The distribution P (r, σ). The choice of g(σ) in Equation (9) makes
P (r0, σ) flat in σ. A sequence not designing r0 will have maxima in
P (ri|σ) for ri ≠ r0 due to states with E(ri, σ) ≤ E(r0, σ). A sequence
designing r0 will have a unique maximum at r = r0 in P (r |σ), which for
low T contains most of the probability.

P(r,σ): Bad σ

Good σ

σ

r0 r
Structure



E(r, σ)-based elimination
The procedure referred to as E(r, σ)-based removes
sequences that do not have the target structure r0 as their
unique ground state. For each conformation r ≠ r0 visited in
the simulation, it is checked, for each remaining sequence
σ, whether

E(r, σ) ≤ E(r0, σ) (12)

Those sequences for which Equation (12) is true are
removed. With this type of elimination, it may happen that
one removes the sequence that actually maximizes P (r0|σ)
at the design temperature — the best sequence at this
temperature does not necessarily have r0 as its unique
ground state (for an example, see Figure 2). This should
not be viewed as a shortcoming of the method. If it
happens, it rather means that the design temperature is too
high. E(r, σ)-based elimination is free from statistical errors
in the sense that a sequence that does have r0 as its unique
ground state cannot be removed. Hence, in a very long
simulation the surviving sequences are, by construction,
precisely those that have r0 as their unique ground state.

Restricted search by clamping
For long chains it is not feasible to explore the entire
sequence space. On the other hand, at least in a hydropho-
bic/hydrophilic model, there are typically several positions
in the target structure where σi is effectively frozen (see e.g.
[16,17]). As will be discussed below, it turns out that such
positions can be easily detected by means of trial runs.

Lattice-model results
In this and the next sections we explore the multise-
quence approach on the HP model on the square lattice.
In this context we also compare with and discuss other
approaches; E(r0, σ)-minimization and high-T expansions.

The HP model contains two monomer types, H (hydropho-
bic) and P (hydrophilic/polar), and is defined by the energy
function [10]

(13)

where ∆(ri – rj) = 1 if monomers i and j are non-bonded
nearest neighbors and 0 otherwise. For hydrophobic and
polar monomers, one has σi = 1 and 0, respectively.

Our explorations naturally divide into two categories; N = 16
and 18, where finding suitable structures and verifying
folding properties of the designed sequences is trivial, and
N = 32 and 50, where this is not the case.

For N ≤ 18 the HP model can be solved exactly by enumer-
ation. For this reason, such systems have been extensively

used for gauging algorithm performances. In Table 1,
properties for N = 16 and 18 systems are listed [18,19]. A
structure is designable if there exists a sequence for which
it represents a unique ground state. The fraction of des-
ignable structures drops sharply with N. Furthermore, it
depends strongly upon local interactions [19].

For a given target structure r0, it is convenient to classify
the sequences as ‘good’, ‘medium’ or ‘bad’. Good sequences
have r0 as their unique ground state, whereas medium
sequences have g > 1 degenerate ground states, one of
them being r0. Finally, bad sequences do not have r0 as
minimum energy structure.

In our MC calculations, the elementary moves in r space
are standard. Three types are used: one-bead, two-bead
and pivot (see e.g. [20]). Throughout the paper, a MC
sweep refers to a combination of N – 1 one-bead steps,
N – 2 two-bead steps and one pivot step. The new feature
is that the r moves are combined with stochastic moves in
σ. Each sweep is followed by one σ update. The σ update
is an ordinary Metropolis step [21].

N = 16/18
We have performed design calculations for a large number
of different N = 16 and 18 target structures. Our results
show that the multisequence design method is able to
reproduce the exact data very rapidly. Some examples
illustrating this were reported in [9]. Our calculations for
N = 16 and 18 are carried out using E(r, σ)-based elimi-
nation. Those sequences that survive the elimination are
compared by determining their relative weights P (σ),
see Equation (10). The stochastic σ moves are essential
in the second part of these calculations, when estimating

)r(r),E( j
ji

ijir −∑ ∆σσ−=σ
<
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Figure 2

P (r0|σ) versus T for the seven good sequences (solid lines) and for
four of the crossing sequences (dashed lines) for the N = 18
structure in [9].
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P (σ), but the first part, the elimination, could in prin-
ciple be done without using these moves. In [9] it was
shown, however, that it is advantageous to include the
stochastic σ moves in the first part as well. The effi-
ciency is higher and less T-dependent when these moves
are included.

To make sure that the success reported in [9] was not acci-
dental, we applied our method to all the 1475 designable
N = 18 structures. For each structure we performed five
experiments, for different random number seeds; each
started from all 2N possible sequences. Because the elimi-
nation is E(r, σ)-based, only the good sequences survive if
the simulation is sufficiently long. The average number of
MC sweeps needed to single out the good sequences was
123,000 (30 CPU seconds on DEC Alpha 200). A very few
experiments required up to 107 MC sweeps, and all five
experiments converged in less than 500,000 MC sweeps
for 90% of the structures. This shows that the elimination
procedure is both fast and robust.

Other methods
Minimizing E(r0, σ)
Maximizing P (r0|σ) [see Equation (1)] is equivalent to min-
imizing the quantity

∆F0(σ) = – T ln P (r0|σ) = E(r0, σ) – F (σ) (14)

where F (σ) is the free energy of sequence σ at temperature
T. In the energy-minimization method [2], one approxi-
mates ∆F0(σ) by replacing F (σ) with a constraint that con-
serves the net hydrophobicity to a preset value NH, 

(15)

The reason for imposing this constraint is more funda-
mental than just guiding the sequence optimization to an
appropriate net hydrophobicity. In the HP model, for
example, one has a pure ‘ferromagnetic’ system in terms of
σi for a fixed r0. Hence, minimizing E(r0, σ) with respect
to σ would result in a homopolymer with all monomers
being hydrophobic. With the constraint in Equation (15)
present, this is avoided.

In [2] the relevant NH is picked for the structure to be
designed. However, this does not correspond to a ‘real-
world’ situation, where NH is not known beforehand. When
comparing algorithm performances in [5,7] a default con-
straint, NH = N/2, was therefore used. Below, we will in our
comparisons scan through all NH and minimize E(r0, σ)
separately for each NH.

For N = 16 and 18, all 456 respective 1475 different des-
ignable structures (see Table 1) are subject to design by
minimizing E(r0, σ) for all NH. If the resulting minima are
non-degenerate for fixed NH, the sequences are kept as
candidates for good sequences, otherwise they are dis-
carded. A check of the results obtained this way against
exact data shows that there is at least one good sequence
among the candidates for 87/78% of the structures for
N = 16 and 18, respectively. In these cases we say that the
method can design the structure successfully. Another
measure of the success of the method is given by the
probability that an arbitrary generated candidate is good.
In total, we obtained 939/3546 candidates out of which
46/36% (435/1245 sequences) are good. Therefore, in order
to get the relatively high success rates mentioned above, it
is essential to be able to distinguish good candidates from
bad ones. The cost of doing this for long chains is much
larger than that of the energy minimization itself.

In Table 2 the performance of the E(r0, σ)-minimiza-
tion methods for N = 16 and 18 is compared with other
approaches with respect to design ability and CPU con-
sumption. As can be seen, the multisequence method with
its 100% performance is indeed very fast. Furthermore,
the performance of the E(r0, σ)-minimization variants dete-
riorates with size.

High-T expansion — crossings
A more systematic approach, based on cumulant approxi-
mations of F (σ), has been advocated by Deutsch and
Kurosky [5], and a method along these lines has also been
proposed by Morrissey and Shakhnovich [6]. However,
these are high-T approximations and they can fail at rele-
vant design temperatures, as has been pointed out by
Seno et al. [7].

The importance of the choice of the design temperature is
easily studied for short HP chains, for which the T depen-
dence of P (r0|σ) can be computed exactly. At T = 0 the
relative population of r0, P (r0|σ), is equal to 1, 1/g, and 0
for good, medium, and bad sequences, respectively. For
good sequences, the temperature at which P (r0|σ) = 1/2 is
often referred to as the folding temperature.

We calculated the T dependence of P (r0|σ) for one N = 16
structure from [7], which has 1 good and 1322 medium
sequences, and one N = 18 structure from [9] with 7 good
and 2372 medium sequences. In the N = 18 case, it turns

∑ =σ
i

Hi N
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Table 1

Sequence and structure statistics for the HP model for N = 16
and 18.

N = 16 N = 18 

No. of sequences (2N ) 65,536 262,144
No. of sequences with unique ground state 1539 6349
No. of structures 802,075 5,808,335
No. of designable structures 456 1475



out that there are 667 medium sequences that have higher
P (r0|σ) than at least one of the good sequences at some T.
We denote these as crossing sequences. Figure 2 shows
the results for the 7 good sequences and 4 of the crossing
sequences. In particular, one sees that in order for P (r0|σ)
optimization to actually lead to a good sequence, it is nec-
essary to work at a design temperature not much higher
than the highest folding temperature. At such low temper-
atures, it is clear that high-T approximations are inappro-
priate. For the N = 16 structure it was demonstrated in [7]
that the method of [5] fails. Indeed, it turns out that this
structure has 296 crossing sequences.

With these crossing phenomena, it is not surprising that
the high-T expansion frequently fails, as can be seen from
the summary in Table 2 from which it is also clear that the
performance deteriorates when increasing N from 16 to 18.

MC methods have the advantage that the design tempera-
ture can be taken low enough to avoid crossing problems,
without introducing any systematic bias. Still, in practise,
it is of course not possible to work at too-low design tem-
peratures, because of long decorrelation times at low T. It
is therefore important to note that the multisequence
E(r, σ)-based elimination multisequence method can be
carried out at any temperature without running the risk of
eliminating any good sequences.

N = 32
Having compared different methods for short chains, we
now turn to longer chains focusing on multisequence
design. For long chains it is not feasible to explore the
entire sequence space. On the other hand, it is expected
that, for a given target structure, there are several posi-
tions along the chain where most of the good sequences
share the same σi value (see e.g. [16,17]); in other words,
some positions are effectively frozen to H or P. A natural
approach therefore is to restrict the search by identifying
and subsequently clamping such σi to H or P. For this
purpose it is convenient to use a set of short trial runs, as
was shown in [9], using the target structure in Figure 3.

For this structure ten σi were clamped to H and ten to P.
Sequence optimization is then performed with the remain-
ing twelve σi left open. This clamping method can of
course be generalized to a corresponding multi-step pro-
cedure for very long chains.

Taking the target structure in Figure 3 as an example,
with the search restricted to 212 sequences as described
above, we now discuss two other important issues. First,
we compare the efficiency of E(r, σ)-based elimination to
that of P (σ)-based elimination. In Figure 4a we show the
number of remaining sequences, Nr, against MC time in
three runs for each of the two methods (T = 1/3, 1 CPU
hour or less per run). E(r, σ)-based elimination is very fast
in the beginning, and a level is quickly reached at which it
is easy to perform a final multisequence simulation for the
remaining sequences. The curves level off at relatively
high Nr, indicating that there are many good sequences for
this structure (these runs were continued until all three
contained the same 167 sequences). The three runs with
P (σ)-based elimination, which were carried out using
50000 MC sweeps for each elimination step and Λ = 2 [see
Equation (11)], were continued until five sequences or
fewer were left. The results were checked against those of
the long multisequence simulations discussed below and
were found to be quite stable in spite of the fact that the
runs were short. In particular, the best sequence
(sequence A of Table 3) was among the survivors in all
three cases.

Next we take a look at the distribution P (σ). The perfor-
mance of the design procedure is crucially dependent on
the shape of this distribution, especially when P (σ)-based
elimination is used. One runs into problems if the distrib-
ution is dominated by a relatively small number of
sequences with high P (σ). It is therefore interesting to
see how the shape of P (σ) evolves as the elimination
process proceeds. Figure 4b shows the entropy of P (σ),

(16)

in a run with P (σ)-based elimination. With Nr remaining
sequences, the maximal value of H is log2 Nr, correspond-
ing to a uniform distribution P (σ). As can be seen from
Figure 5a, after a few elimination steps, H is close to this
limit. The desired behavior of the marginal distribution of
r, P (r), is in a sense the opposite, as the weight of the
target structure should become large. The evolution of
P (r0) in the same run is shown in Figure 4c.

N = 50
A test of any design procedure consists of three steps.
Firstly, finding a suitable target structure. Secondly, per-
forming the actual design. Thirdly, verifying that the final

∑
σ

σσ−= )(log)( PPH 2
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Table 2

Number of structures designed by the different approaches for
N = 16 and 18. 

E(r0, σ)-minimization

NH = N/2 All NH High-T NMC MS

HP N = 16 (%) 25 87 70 100 100
HP N = 18 (%) 21 78 50 100 100
CPU sec/structure O(0.1) O(1) O(0.1) O(103) O(10)

E(r0, σ)-minimization with fixed NH = N/2 and with scanning through all
NH, respectively, the nested MC approach of [7] (NMC), and the
multisequence method (MS). Also shown is the computational demand
for N = 18 (DEC Alpha 200).
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sequence is good. In this section we discuss the design of
a N = 50 structure. For this system size the first step is
highly non-trivial. Also, the verification part is quite time-
consuming. For these reasons we focus on one example
and go through each of the steps in some detail.

Finding a suitable target structure
We begin with the problem of finding a suitable target
structure. For a randomly chosen structure it is unlikely that
there is any sequence that can design it; the fraction of des-
ignable structures is, for example, about 0.00025 for N = 18
(see Table 2). Furthermore, this fraction decreases with
system size. Rather than proceeding by trial and error, we
therefore determined the target structure by employing a
variant of our sequence-design algorithm. In this version no
target structure is specified and Equation (9) is replaced by

g(σ) = – Emin(σ)/T (17)

where Emin(σ) ideally should be the minimum energy for
the sequence σ. In our calculations, because the minimum
energy is unknown, we set Emin(σ) equal to the lowest
energy encountered so far. Except for this change of the
parameters g(σ), we proceed exactly as before using P (σ)-
based elimination. However, a sequence is never elimi-
nated if its g(σ) was changed during the last multise-
quence run, that is if a new lowest energy was found.

With this algorithm, one may hope to identify and eliminate
those sequences that are bad not only with respect to one
particular structure but with respect to all possible struc-
tures. Clearly, this is a much more ambitious goal, and it
should be stressed that a careful evaluation of the usefulness
of this approach is beyond the scope of the present paper.

This calculation was started from a set of about 2200
sequences. These were obtained by first randomly generat-
ing a mother sequence, with probability 0.65 for H, and then

Figure 3

Target structure for N = 32. Ten σi were clamped to H (filled circles)
and ten to P (open circles). Sequence optimization was performed with
the remaining twelve σi (crosses) left open.

Structure

Figure 4

Results obtained for the N = 32 target structure in Figure 3. (a) The
number of remaining sequences, Nr , against MC time for three runs
with P (σ)-based elimination (solid lines) and three with E(r, σ)-based
elimination (dashed lines). The evolution of (b) the entropy of P (σ) and

(c) the marginal probability P (r0) in a run with P (σ)-based elimination
(T = 1/3, Λ = 1, 107 MC sweeps for each elimination step). The line in
(b) shows log2 Nr.

0 2.5 5.0 7.5
Step

10.0 12.5

12.5

10.0

7.5

5.0

2.5

0.0

H

(b)(a)

0 2.5 5.0 7.5
Step

10.0 12.5

1.0

0.8

0.6

0.4

0.2

0.0

P
(r

0)

(c)

Structure

1000

800

600

400

200

0

N
r

0 1 2 3 4 5
MC sweeps (x10–6)



randomly changing this at one to three positions. Thus,
there is a high degree of similarity between the sequences,
which ensures a reasonable acceptance rate for the sequence
update. After 37 elimination steps (T = 1/2.8, Λ = 1.5, 2 × 105

MC sweeps for each elimination step), three of the
sequences were left. The best of these sequences and its
minimum-energy structure can be found in Figure 5a. Note
that this sequence does not minimize the energy for fixed
NH — the energy can be reduced by interchanging the
monomers i = 19 and 43 (i = 1 corresponds to the lowest of
the two endpoints in Figure 5a). In what follows, we take
this structure as our target structure without using any infor-
mation about the particular sequence shown.

Sequence design
We began the sequence design for this structure by per-
forming ten short runs, each started from 105 random
sequences. Based on these, 27 σi were clamped to H and 12
to P, as illustrated in Figure 5b. It is interesting to compare
these results to the original sequence in Figure 5a. As
expected, there is a close similarity but there are also three
positions along the chain at which σi is clamped to the
opposite value compared to the original sequence (i = 2, 19
and 43). Thus, the original sequence does not belong to the
restricted sequence set that we study next.

Having restricted the search, we proceed in two steps.
Firstly, we apply E(r, σ)-based elimination. As in the cor-
responding N = 32 calculation, the number of remaining
sequences rapidly reached a fairly stable and high level,

indicating that there are many sequences with the target
structure as unique ground state. The number of sequences
surviving this first step was 832. The second step is a
simulation with P (σ)-based elimination (T = 1/2.8, Λ = 1,
107 MC sweeps for each elimination step). This step was
repeated three times using different random number seeds,
each time starting from the same 832 sequences. The sta-
bility of the results was not perfect, but the best sequence
found was the same in all three runs. This sequence has
four H and seven P at the positions left open after clamp-
ing. The four positions that were assigned an H are i = 10,
11, 18 and 28.

Verification
In order to check the designed sequence, we performed
an independent simulated-tempering calculation. In this
simulation (2 × 109 MC sweeps), the target structure was
visited many times; we estimate the number of ‘indepen-
dent’ visits to be about 30. By contrast, no other structure
with the same or lower energy was encountered. We take
this as strong evidence that the target structure indeed is a
unique energy minimum for this sequence.

Similar simulations were also performed for two other
N = 50 sequences, S1 and S2. The sequence S1 is the one
shown in Figure 5a, and S2 is the one obtained by assign-
ing P to all open positions in Figure 5b. At first sight S1
may not seem to fit the target structure very well; as already
noticed, this sequence does not minimize the energy of
the target structure for fixed NH. Nevertheless, our results
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Target structure for N = 50. (a) The sequence
obtained using the design algorithm without
fixed target [see Equation (17); filled and
open circles correspond to H and P,
respectively]. (b) Results of the clamping
procedure for our N = 50 target structure.
Symbols are the same as in Figure 3.
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Table 3

Three N = 32 HP sequences.

Sequence A HHPP HHPP PPHP HPPP PHPH PPPP HHPP HHHH
Sequence B HHHP HHPP PPHP HHPP PHPH PPPP HHPH HHHH
Sequence C HHPP HHPP PPHP HPPP PHPH PPPP HHPH PHHH



suggest that both S1 and S2, like the designed sequence,
have the target structure as unique ground state. However,
the dominance of this structure sets in at a lower tempera-
ture for S1 and S2 than for the designed sequence; rough
estimates of the folding temperatures are 0.27 for the
designed sequence and 0.23 for S1 and S2.

Unfortunately, it was not feasible to evaluate alternative
methods for this system size, because the verification part
is too time consuming. Let us note, however, that our
designed sequence uniquely minimizes the energy of the
target structure for fixed NH = 31. Sequence S1, on the
other hand, appears to be good too, even though it does
not minimize the target energy for any NH.

The folding transition for N = 50
The simulated-tempering runs for the three N = 50
sequences provide thermodynamic data over a wide range
of temperatures. In particular, they offer an accurate picture
of the behavior at the folding transition. Shown in Figure 6
are the probability distributions of the similarity parameter
Q (number of contacts that a given conformation shares
with the native state) and the energy E, close to the folding
temperature Tf for sequence S2. The corresponding results
for the other two sequences are qualitatively similar.

From Figure 6a it can be seen that the distribution P (Q)
has an essentially bimodal shape. The peak at Q = Qmax = 34
corresponds to the native state and contains, by definition,
around 50% of the distribution. The non-native peak, at

Q = Qmax ≈ 0.4 – 0.6, is well separated from the native one,
showing that the transition is cooperative in the sense that
the system is either in the native state or in states that are
structurally very different. It must be stressed, however,
that it is not a two-state transition — the non-native part
does not correspond to one ensemble of unfolded struc-
tures, but rather to a number of distinct folded low-energy
states. The ruggedness of the non-native peak of P (Q) is an
indication of this and it becomes evident from the energy
distribution of Figure 6b, which shows no trace of bimodal-
ity. The fact that it is not a two-state transition is in line
with general arguments for 2D models [22,23].

The multisequence method
The multisequence method, which is a key element of
our design algorithm, was originally applied to a simple
off-lattice model [8] in the context of folding studies.
Using parameters g(σ) that had been adjusted so as to have
an approximately uniform distribution in σ, it was found to
be much more effcient than a standard MC. In this paper
we have instead chosen g(σ) according to Equation (9). This
simple choice is not possible for a random set of sequences.
The efficiency can, however, be quite good after removal
of bad sequences. To illustrate this, we take a set of 180
surviving N = 32 sequences, from one of the three runs
with E(r, σ)-based elimination in Figure 4a.

For these sequences we carried out multisequence simu-
lations at three different temperatures, T = 1/2.8, 1/3.1 and
1/3.4. The results of these simulations are compared to
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Figure 6

The probability distributions of (a) the similarity parameter Q and (b) the energy E for the N = 50 sequence S2 at T = 0.227 ≈ Tf.
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those of single-sequence simulations with identical r
updates for the three different sequences shown in
Table 3. Sequence A is the best sequence found among
the 180 sequences. As can be seen from Table 4, it has a
folding temperature close to T = 1/3.1. Sequences B and C
were deliberately chosen to represent different types of
behavior, and they have lower folding temperatures. It is
interesting to note how differently sequences A and C
behave (see Table 4), in spite of the fact that they differ
only by an interchange of two adjacent monomers.

As the number of sweeps is the same (109), and because the
cost of the additional sequence moves in the multisequence
runs is negligible, we can directly compare the statistical
errors from these runs. In Table 4, the averages and statisti-
cal errors for the quantity P (r0|σ) are shown. The errors
quoted are 1σ errors, obtained by a jackknife procedure.

From Table 4 it can be seen that the two methods give
similar statistical errors at the highest T studied, which lies
above the folding temperature for all three sequences. It
should be stressed that equal errors implies that the multi-
sequence method is faster by a factor of 180, as a single
run covers all sequences with this method. Although there
is a dependence upon sequence, there is furthermore a
clear tendency that the errors from the multisequence
runs get smaller than those from the single-sequence runs
at lower T. The difference is largest for sequence B and
the lowest temperature. In this case the errors differ by a
factor of 3.5, which corresponds to an extra factor of 10 in
computer time, in addition to the trivial factor of 180. 

This simple choice of g(σ) [Equation (9)] has been used
with success in all our calculations. Nevertheless, let us
finally note that multisequence design can also be applied
using other g(σ) values. In particular, it is easy to modify
Equation (10) for general g(σ).

Off-lattice model results
Lattice models offer computational and pedagogical
advantages, but the results obtained on the lattice must

be interpreted with care; for example, it is has been
shown that the number of designable structures drastically
depends on the lattice type in the HP model [19]. In this
section we therefore show that our design procedure can
be applied essentially unchanged to a 3D minimalist off-
lattice model [11]. Although similar models have been
studied before, see for example [14,24–26], it is the first
time, as far as we know, that sequence design is performed
in an off-lattice model based on sampling of the full
conformation space.

One problem encountered in going to off-lattice models is
in the very formulation of the stability criterion. Clearly, it
is the probability of being in the vicinity of the target
structure r0 that we are interested in, rather than the prob-
ability of being precisely in r0. Although this point can be
relevant for lattice models too, it is of more obvious impor-
tance in the off-lattice case. Throughout this paper we
stick to the probability P (r0|σ) corresponding to a single
target structure r0, using target structures that are obtained
by energy minimization. In the general case, it might be
necessary to consider instead the off-lattice analogue of
the left-hand side of Equation (5).

Another problem is the elimination criterion for bad
sequences. A straightforward implementation of E(r0, σ)-
based elimination requires the introduction of a cut-off
in structural similarity to r0, below which elimination
should not take place. However, with such a cut-off the
method is too slow, as in order to have a reasonable elim-
ination rate, it appears necessary to employ some sort of
quenching procedure, which tends to be very time-con-
suming. By contrast, we found P (σ)-based elimination to
be useful for off-lattice chains too, without any modifca-
tions or additional parameters. For the off-lattice model,
in contrast to the HP model, one does not have access to
a set of small N exact enumerations results. Hence, for all
sizes we need to go through the three steps needed for
N > 18 HP chains: find suitable structures, perform design
and verify that the designed sequence is stable in the
desired structure.
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Table 4

Comparison of results for P (r0|σ) obtained by two different methods.

1/T = 2.8 1/T = 3.1 1/T = 3.4

Sequence A Standard MC 0.227 ± 0.005 0.532 ± 0.010 0.752 ± 0.015
Multisequence 0.234 ± 0.006 0.520 ± 0.010 0.732 ± 0.008

Sequence B Standard MC 0.0389 ± 0.0024 0.086 ± 0.007 0.166 ± 0.021
Multisequence 0.0383 ± 0.0013 0.095 ± 0.003 0.166 ± 0.006

Sequence C Standard MC 0.00251 ± 0.00012 0.0066 ± 0.0003 0.0133 ± 0.0008
Multisequence 0.00250 ± 0.00009 0.0066 ± 0.0003 0.0123 ± 0.0005

The multisequence algorithm and a standard fixed-sequence MC. Results are shown for the three sequences in Table 3 for three different
temperatures.



The model
Like the HP model, the 3D off-lattice model [11] contains
two kinds of residues, hydrophobic (σi = 1) and hydrophilic
(σi = 0). Adjacent residues are linked by rigid bonds of unit
length, ^bi, to form linear chains. The energy function is
given by

(18)

where rij denotes the distance between residues i and j.
The first two sequence-independent terms define the local
interactions, which turn out to be crucial for native structure
formation [11]. The parameters are chosen as κ1 = –1 and
κ2 = 0.5 in order to obtain thermodynamically stable struc-
tures, and to have local angle distributions and bond–bond
correlations that qualitatively resemble those of functional
proteins. The third term represents the sequence-depen-
dent global interactions modeled by a Lennard–Jones
potential. The depth of its minimum, ε(σi, σj), is chosen to
favor the formation of a core of hydrophobic residues by
setting ε(0, 0) = 1, ε(1, 1) = ε(0, 1) = ε(1, 0) = ½.

To monitor structural stability we use the mean-square
distance δ2

ab between two arbitrary configurations a and b.
An informative measure of stability is given in terms of the
probability distribution P (δ2) of δ2

ab and the corresponding
mean, 〈δ2〉. The latter is small if the structural fluctuations
are small, but this tells us nothing about the actual struc-
ture. In addition, we therefore measure the similarity to
the desired structure r0. For this purpose we average δ2

ab
over configuration a, keeping configuration b fixed and
equal to r0. This average will be denoted by 〈δ2

0〉.

When investigating thermodynamic properties of this
model, one finds a strong dependence upon the local inter-
actions. This impact of local interactions is not a peculiar
property of off-lattice models. Indeed, similar findings
have been reported for the HP lattice model [19].

Design results — finding suitable structures
We have determined the global energy minima, or native
structures, for a number of N = 16 sequences, and six of
these structures are used as target structures in our design
calculations. In addition, we consider six N = 20 target
structures, which are native states of sequences studied in
[11]. We restrict ourselves to these twelve examples because
the verification of the design results, the computation of
〈δ2

0〉, is time-consuming. This selection of structures studied
represents no bias with respect to the performance of the
design algorithm. As can be seen from Table 5, some of
the original sequences represent good folders (small 〈δ2〉)

whereas others do not (large 〈δ2〉). An example of a N = 20
target structure can be found in [11].

Design results — designing the sequences
As discussed above, in our off-lattice calculations we use
P (σ)-based elimination, which, unlike E(r, σ)-based elimi-
nation, can be used as it stands. All our design calcula-
tions are carried out at the temperature T = 0.3, whereas the
highest folding temperatures measured in [11] are close to
0.2. This somewhat high design temperature was chosen in
order to speed up the calculations. It is still low enough for
design of stable sequences, as will become clear from the
verification below. These verification calculations are per-
formed at T = 0.15, using simulated tempering.

Our P (σ)-based design calculations start out from the set
of all 2N possible sequences. Each iterative step amounts
to a relatively short multisequence simulation consisting
of 500,000 MC cycles for the Nr remaining sequences, fol-
lowed by removal of those sequences for which the esti-
mated P (σ) fulfills Equation (11) with Λ = 1.5. This is
continued until a single sequence remains, which typically
requires around 150 steps. The final sequence we take as
the MS-designed sequence. Each MC cycle consists of
one attempt to update the conformation and one for the
sequence. The conformation update is either a rotation of
a single bond ^bi or a pivot move. The time consumption
for the studied N = 16 and 20 chains ranges from three to
six CPU hours.

In our multisequence and simulated-tempering simula-
tions, each MC sweep in conformation space is followed
by one attempt to update the sequence or temperature.
The sequence and temperature updates are both ordinary
Metropolis steps [21]. The CPU cost of these updates is
negligible compared to that of the conformation update.

The designed sequences are shown in Table 5 for N = 16
and 20. Also shown are the results of ‘naive’ energy mini-
mization [2]. Ideally, one should use this method by scan-
ning through all possible NH [Equation (15)], which was
carried out for N ≤ 18 HP chains in Section 3.2. However,
given that the verification is quite tedious, we have chosen
to use a single NH only, corresponding to the original
sequence. In other words, the E(r0, σ)-minimization method
is given a slight advantage in comparison to what would
have been the case for a real-world application.

Design results — verification
To assess the quality of the designed sequences, we mea-
sured the mean-square distances to their respective target
structures, 〈δ2

0〉, using simulated tempering. In Table 5 we
give both 〈δ2

0〉 and 〈δ2〉 at T = 0.15 for each of the sequences.
From these tables a few features emerge. For target struc-
tures where the original sequence is good (small 〈δ2

0〉),
the multisequence approach either returns the original
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sequence or finds an even better sequence. For target struc-
tures where the original sequence is bad (high 〈δ2

0〉), the
multisequence approach often finds sequences with signifi-
cantly lower 〈δ2

0〉. With only one exception, structure 16–4,
the results are better or much better for multisequence
design than for the energy-minimization method. For struc-
ture 16–4, the 〈δ2

0〉 values are relatively high for both
methods, as well as for the original sequence.

It should be stressed that in those instances where the
multisequence approach fails to find a good sequence, the
original sequence is bad too. Hence, it is likely that these
target structures do not represent designable structures.

Although this very simple implementation of multise-
quence design has been tested with success, it should be
kept in mind that there are a number of possible improve-
ments. As already mentioned, it would, for example in off-
lattice problems, be more natural to maximize the fuzzy
version of the conditional probability in Equation (4), rather
than the one referring to a single structure r0 used here.

Discussion
A novel MC scheme for sequence optimization in coarse-
grained protein models has been presented and tested on
hydrophobic/polar models. With simultaneous moves in
both sequence and conformation space according to a
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Table 5

Design results for six N = 16 and six N = 20 off-lattice target structures. 

Method σ 〈δ2〉 at T=0.15 〈δ2
0〉 at T=0.15

N = 16
16–1 target 1111100101101111 0.01 ± 0.0002 0.01 ± 0.002

MS 1111100101111111 0.01 ± 0.0002 0.01 ± 0.002
E(r0, σ) 1111100101011111 0.02 ± 0.003 0.01 ± 0.007

16–2 target 1011001110011110 0.07 ± 0.003 0.04 ± 0.004
MS 1011001110011110 0.03 ± 0.004 0.02 ± 0.007

E(r0, σ) 1111001010101110 0.38 ± 0.03 0.52 ± 0.02

16–3 target 1010101001101111 0.24 ± 0.05 0.13 ± 0.02
MS 1111111101001111 0.01 ± 0.001 0.01 ± 0.006

E(r0, σ) 1010101101001111 0.08 ± 0.02 0.04 ± 0.02

16–4 target 1101101000010011 0.38 ± 0.02 0.25 ± 0.02
MS 1111101111010011 0.12 ± 0.01 0.36 ± 0.01

E(r0, σ) 1010101000010111 0.28 ± 0.01 0.24 ± 0.02

16–5 target 1001110011111111 0.47 ± 0.02 0.33 ± 0.02
MS 1001110010111111 0.12 ± 0.002 0.10 ± 0.01

E(r0, σ) 1011110010111111 0.11 ± 0.004 0.11 ± 0.01

16–6 target 1110010000000110 0.64 ± 0.007 0.57 ± 0.02
MS 1101111110101111 0.30 ± 0.02 0.34 ± 0.02

E(r0, σ) 0101010000101010 0.28 ± 0.02 0.42 ± 0.01

N = 20
20–1 target 11110011110110111001 0.08 ± 0.01 0.04 ± 0.01

MS 11110011110010111001 0.02 ± 0.001 0.01 ± 0.002
E(r0, σ) 11110011111110101001 0.27 ± 0.04 0.29 ± 0.01

20–2 target 11110110101100111011 0.27 ± 0.05 0.15 ± 0.01
MS 11110100100100111111 0.02 ± 0.004 0.01 ± 0.003

E(r0, σ) 11110010101010111111 0.24 ± 0.05 0.93 ± 0.01

20–3 target 11100100101001010101 0.30 ± 0.04 0.38 ± 0.01
MS 11111100101001010111 0.10 ± 0.02 0.12 ± 0.01

E(r0, σ) 10101000101001010111 0.59 ± 0.02 0.53 ± 0.01

20–4 target 01101111010110111110 0.24 ± 0.02 0.34 ± 0.01
MS 01101010010111111110 0.05 ± 0.01 0.03 ± 0.01

E(r0, σ) 01101011010111111110 0.10 ± 0.01 0.05 ± 0.01

20–5 target 01111110111101101100 0.46 ± 0.04 0.29 ± 0.01
MS 11111110100101111101 0.46 ± 0.04 0.43 ± 0.01

E(r0, σ) 01111110100101111101 0.65 ± 0.09 0.46 ± 0.01

20–6 target 01100111000101011010 0.73 ± 0.01 0.75 ± 0.01
MS 11100111001101011111 0.64 ± 0.02 0.73 ± 0.01

E(r0, σ) 01111010100101001010 0.52 ± 0.08 0.91 ± 0.01

For each structure three sequences are listed together with the corresponding 〈δ2〉 and 〈δ2
0〉: the sequence used to generate the target structure

(‘target’), and the sequences obtained by multisequence design (MS) and E(r0, σ)-minimization, respectively. 



judiciously chosen joint distribution, an efficient way of
maximizing the corresponding conditional probabilities
emerges, in which two different prescriptions are given for
removing sequences not suitable for the target structures.
One is a simple energy comparison that can be applied to
lattice models, whereas the other one is based upon the
marginal distribution P (σ) and can be applied to both
lattice and off-lattice models.

The potential memory problem of keeping track of
removal of most of the 2N sequences for large N is dealt
with by an iterative method, capitalizing on the fact that
the assignment of certain positions in the chain tend to
get frozen to hydrophobic or polar residues. Further-
more, a modified algorithm was tentatively explored that
addresses the problem of finding designable structures.
This is highly relevant, given that structures differ widely
in designability [17,27].

Our design method is evaluated on a number of 2D lattice
(N = 16, 18, 32 and 50) and 3D off-lattice (N = 16 and 20)
structures with the following results. For N = 16 and 18
lattice chains, where the results can be gauged against
exact enumeration, the results come out extremely well
both with respect to performance and efficiency. In this
context we also compare with and discuss other non-exact
approaches — E(r0, σ)-minimization and high-T expansion.
With respect to the former, we give, in contrast to other
comparisons in the literature, the approach a fair chance by
scanning over all possible net hydrophobicities. For N > 18
lattice chains, finding suitable design structures and verify-
ing good folding properties of the designed chains is not
trivial. For N = 32 a suitable structure was designed by
hand, whereas for N = 50 a more systematic procedure was
employed where a variant of the multisequence approach
was used to find a designable structure. For both N = 32 and
N = 50 structures, the results from the design procedure
were verified to be correct. For N = 16 and N = 20 off-lattice
chains, a set of structures representing both good and bad
folders were used to test the design method. For good
folding sequences, the design procedure either identifies
the original sequence or finds a sequence with improved
folding properties. In the case of bad folding sequences, the
design procedure typically finds a sequence with improved
folding properties.

We also separately evaluate the efficiency of the multise-
quence approach in comparison to standard MC for ordi-
nary thermodynamic folding simulations. Such a test was
carried out in [8] using carefully tuned parameters g(σ).
The results presented here show that it can be less expen-
sive to fold 100–1000 chains simultaneously than a single
one, even with a simple choice of g(σ) [Equation (9)].

The size of the sequence-optimization problem increases
rapidly with an increase in the number of different

amino-acids used, and our approach is, as it stands, not
practical for models with twenty amino acids. What might
be feasible in this case is an approach along the lines of
[28], where it was shown that an accurate description of
the widely used Miyazawa–Jernigan 20 × 20 interaction
matrix [29] can be obtained in terms of its first two princi-
pal components.

Biological implications
Sequence design, the inverse of protein folding, is of
utmost relevance for, for example, drug design. The
study of the statistical mechanics of protein folding is
hampered by well-known computational difficulties. In
sequence design, the major difficulty is to ensure that the
designed sequence has the target structure as its global
energy minimum. It is the ambitious goal of the multise-
quence design method to achieve that by a simultaneous
search of conformation and sequence spaces. As it
stands, the method is applicable to a fairly wide range of
hydrophobic/polar models.
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