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What is life? 

Morphogens, Turing Morphogens, Turing 

Early auxin transport model 

…computer manipulation of a mathematical 
model, … (Leopold and Hall 1966) 

Methodology 

Experiments Hypotheses 

Mathematical 
models  

Computer simulation 
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Green Fluorescent Protein WUS::GFP and red membrane stain 

Venu Reddy 

Projection of time series 

Marcus Heisler PIN1::PIN1-GFP 

 Quantitative measures from image 

Green  WUS::GFP 
Red membrane stain 

WUS “concentration” 

 WUS network simulation (2D template) 

Template 

Cell volumes, wall areas, and neighbors from template 

Simulation 

Outline 

  Protein folding, introducing all atoms and simulated 
tempering  

  (Random walks for a DNA -> ask Tobias) 

   TGFb-pathway, example of solving ODEs 

  Finding parameters, χ2 optimization 

  Multicellular models with diffusion - example of 
solving PDEs 
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HP model 

Do you like G&Ns metropolis implementation? 

Why don’t you like G&Ns metropolis implementation? 

Why don’t you like the local moves in  
G&Ns metropolis implementation? 

 Peptide folding and aggregation 

                   Anders Irbäck 

All-atom Monte Carlo simulations, with 
sequence as the only input. 

Simulated tempering used 

  Similar to simulated annealing, but system allowed to 
go up and down in temperature  

  Temperature step is a metropolis step 

  g_T temperature factor in exp(-E/T+g_T) 

  g_T tuned in beginning of simulation to have the 
system spend equal times at different temperatures 

Ordinary differential equations 

  TGFb-pathway, example of solving ODEs 

  State of art ODE solvers? 

  Finding parameters, χ2 optimization 

The TGFβ pathway 
Experimental Data 

- Western blot analysis 

- Data available for PSmad1 and Psmad2 
- Different TGF-β dosages 

Valdimarsdottir et al. 2004 

PSmad1 

PSmad2 

Smad1 

       0           45         90         120       180        240 time/min 
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The Model Modeling of Biological Systems 

- Deterministic model using Ordinary Differential Equations 
(ODE) 

- Law of Mass Action (well known from undergraduate 
chemistry) 

Modeling of Biological Systems 

- Deterministic model using Ordinary Differential Equations 
(ODE) 

- Law of Mass Action (well known from undergraduate 
chemistry) 

Modeling of Biological Systems 

- Deterministic model using Ordinary Differential Equations 
(ODE) 

- Law of Mass Action (well known from undergraduate 
chemistry) 

Modeling of Biological Systems 

- Deterministic model using Ordinary Differential Equations 
(ODE) 

- Law of Mass Action (well known from undergraduate 
chemistry) 

Modeling Gene Expression 

-The Michaelis-Menten Reaction 
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Modeling Gene Expression 

-The Michaelis-Menten Reaction 

Modeling Gene Expression 

-The Michaelis-Menten Reaction 

     T        DNA 

The Model Equations 

How would you solve the equations? 

Our experience 

  We used 5th order Runge-Kutta with adaptive step 
size 

  Since system stiff for some parameter values, we 
also implemented an implicit method (Rosenbrock) 

  Rosenbrock much faster in the stiff cases, but since 
we scanned parameter space and most sets were 
not stiff, RK5 was at least as good! 

State of art? (MATLAB) 
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State of art? (MATLAB) State of art? (MATLAB) 

State of art? (LSODA) 

 In systems biology, LSODA is often quoted as the 
solver to use 

 It combines two solvers Adams for non-stiff and 
BDF for stiff regions, and automatically switches in-
between 

See e.g. www.copasi.org 

Next problem, optimization 

 Parameters in the TGFb-model unknown 

 Adjust parameters to fit experimental data 

 Minimize χ2, the quadratic difference between 
model and data points 

How would you minimize χ2 ? 

Parameter optimization 

 Need a global optimization algorithm 

 Adjust parameters to fit experimental data 

 We used simulated annealing 

 Minimize χ2, the quadratic difference between 
model and data points 

 Note: T is a parameter, E=χ2 , one simulation to 
extract one E (i.e. takes time ) 
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Procedure 
Reference experiments 

Clustering of multiple solutions  
(more numerical methods) “Blind test” experiments 

Multiple cells 

from ODEs to PDEs (and back) 

E. coli experiment 
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Models need to take care of… 

  Gene regulatory network 

  Molecular reactions 

  Molecular signalling 

  Molecular transport 

  Growth 

  Cell proliferation 

  Cell neighbourhood 

  Mechanics 

Simulator task 

Molecular 
networks 

Growth/ 
Proliferation 

Mechanics 

Initial configurations 

Resolution 

Solvers need to take care of… 

  Different compartment types 

  Model equations that change (dynamic 
neighborhood) 

  Change in number of variables (cell divisions) 

An example 

How would you solve the equations? 

PDE methods 

Finite difference methods (space-time grid) 

Finite element methods (common for mechanics fluid dyn) 

Variational methods 
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Model with explicit carriers 

(Swarup et al 2005) Explicit Euler 

Root simulation 

Nature 449, 1008-1013 (2007) 

Root simulation 

Nature 449, 1008-1013 (2007) 

Explicit Euler and Alternating Direction Implicit (ADI) method 

Plant subcompartments 

Subcompartments 
root, P Melke 

Subcompartments 
membrane 

4-5 order RK w adaptive step size and Implicit Euler 

PNAS 2006 

FEM simulation of mechanics MATLAB, the help is gone… 
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Phyllotaxis, pattern formation in plants 

  Spiral 

  Multijugate     
(Decussate) 

  Distichous 

http://www.math.smith.edu/~phyllo/ 

Visible spirals, parastichies 

8 13 

21 34 

http://www.math.smith.edu/~phyllo 

The Fibonacci sequence 

  Fibonacci sequence, Fk: 1,1,2,3,5,8,13,21,34,… 

  Golden mean  1/t = (√5+1)/2 ~ 1.6180…   (Fk+1/Fk-1 ,k→∞) 

  Golden angle α ~ 137.5 ~ 360 t2 

137.5 
O=2πr 

O t 

O t2 

Douady and Couder (1994) 

Relates back to ideas of 
Hofmeister (19th century) 

Central zone+growth+spacing mechanism 

Auxin  

  Indole-3-acetic acid (IAA) 

  Plant hormone involved in 
several developmental 
activities (embryo 
development, tropism, 
primordia formation,…) 

  Point addition at meristrem 
creates new primordia 

Reinhardt et al 2003 

PIN-FORMED 1, PIN1 protein 

  Membrane protein 

  Putative auxin efflux carrier 

  Expressed in a phyllotactic 
pattern in epidermis, and in 
vascular tissue 

  Polarized in cells 

  Phyllotaxis fails in loss of 
function mutant 
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Ion transport across a membrane potenial 
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f (Φ) =
Φ

eΦ −1

Φ =
FVq
RT

fout ≈ 4
fin ≈ 0.07

What about the sign for influx/efflux? 

Primordia is initiated by auxin peaks 

PIN1:GFP and DR5 
expression 


What polarizes PIN1? 

  PIN1 polarizes towards 
cells with high auxin 
content (hypothesis)  

Pi               Pij  
f(aj) 

PIN1 cycling


Auxin concentration model 









−+








−+−== ∑∑∑ ii

N

j
j

N

j
iji

N

j
jijidp

i
i aNaDPaPaTaKK

dt
daf

iii

production 

degradation active 
transport 

passive 
transport 

ai – auxin concentration in cell i 

Pij – polarized PIN1 (Pij ~             ) 

€ 

a jP
tot

ak∑

Phyllotaxis model, Ring 
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L1 simulation with growth and mechanics 

Auxin 

Jönsson et al (2006) 

2D wall-spring model with growth What about the zebra? 

Sahlin  et al, submitted 


