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1 Introduction

1.1 Why model diffusion in cells?

Physical proximity is an essential requirement for molecular interaction to occur, whether it is
between an enzyme and its substrate and modulators or between a receptor and its ligand. Cells
have developed many mechanisms to bring molecules together, including structural ones, e.g.
calcium-activated ionic channels often cluster with calcium channels in the plasma membrane
(Gola and Crest, 1993; Issa and Hudspeth, 1994), or specific processes like active transport (Nixon,
1998). In many situations, however, concentration gradients exist which will affect the local rate of
chemical reactions. Such gradients can be static at the timescale of interest, e.g. the polarity of cells
(Kasai and Petersen, 1994), or very dynamic like for example the intra- and intercellular signaling
by traveling calcium waves (Berridge, 1997).

Diffusion is the process by which random Brownian movement of molecules or ions cause an
average movement towards regions of lower concentration, which may result in the collapse of the
concentration gradient. In the context of cellular models, one distinguishes-experimentally and
functionally-between free diffusion and diffusion across or inside cell membranes (Hille, 1992).
We will only consider the first case explicitly, but similar methods as described here can be applied
to the latter.

Historically, diffusion has often been neglected in molecular simulations which are then assumed
to operate in ’the well-mixed pool’. This assumption may be valid when modeling small volumes,
e.g. inside a spine (Koch and Zador, 1993), but should be carefully evaluated in all other contexts.
As we will see in this chapter, the introduction of diffusion into a model raises many issues which
otherwise do not apply: spatial scale, dimensionality, geometry and which individual molecules or
ions can be considered to be immobile or not. The need for modeling diffusion should be evaluated
for each substance separately. In general, if concentration gradients exist within the spatial scale of
interest it is highly likely that diffusion will have an impact on the modeling results, unless the
gradients change so slowly that they can be considered stationary compared to the timescale of
interest.

Simulating diffusion is in general a computationally expensive decision which is a more practical
explanation of why it is often not implemented. This may very well change in the near future. A
growing number of modeling studies (Markram et al., 1998; Naraghi and Neher, 1997) have 
recently emphasised the important effects diffusion can have on molecular interactions.

1.2 When is diffusion likely to make a difference?

A reaction-diffusion system is classically described as one where binding reactions are fast enough
to affect the diffusion rate of the molecule or ion of interest (Wagner and Keizer, 1994; Zador and
Koch, 1994). A classic example which we will consider is the interaction of calcium with
intracellular buffers, which cause calcium ions to spread ten times slower than one would expect
from the calcium diffusion constant (Kasai and Petersen, 1994).

Depending on which region of the cell one wants to model, this slow effective diffusion can be
good or bad news. In fact, the slow effective diffusion rate will dampen rapid changes caused by
calcium influx through a plasma membrane so much that in the center of the cell it can be modeled
as a slowly changing concentration without gradient. Conversely, below the plasma membrane the
slower changes in concentration gradient may need to be taken into full account (fig.3C).



This is, however, a static analysis of the problem while the dynamics of the reaction-diffusion
process may be much more relevant to the domain of molecular interactions. In effect, as we will
discuss in some detail, binding sites with different affinities may compete for the diffusing
molecule which leads to highly nonlinear dynamics. This may be a way for cells to spatially
organise chemical reactions in a deceptively homogenous intracellular environment (Markram et 
al., 1998; Naraghi and Neher, 1997).

Before dealing with reaction-diffusion systems, however, we will consider the diffusion process
itself in some detail. In this context we will consider especially those conditions under which the
standard one-dimensional diffusion equation description used in most models is expected to fail.

2 Characteristics of diffusion systems.

Part I provided a concise introduction to the modeling of chemical kinetics based on mass action,
expressed as reaction rate equations. It also discussed the shortcomings of the rate equation
approach for describing certain features of chemical reactions and provided alternatives, e.g.
Markov processes, to improve models of chemical kinetics.

These improvements stem from the realisation that under certain circumstances the stochastic
nature of molecular interactions can have a profound effect on the dynamical properties. The
resulting models still share a common assumption with rate equation models in that they assume a
well-mixed homogenous system of interacting molecules. This ignores the fact that spatial
fluctuations may introduce yet another influence on the dynamics of the system. For example, in
many cases it is important to know how a spatially localised disturbance can propagate in the
system.

From statistical mechanics it follows that adding spatial dependence to the molecule distributions
calls for a transport mechanism which dissipates gradients in the distribution. This mechanism is
called diffusion and it is of a statistical nature. The effects on the dynamics of the chemical system
are determined by the relative timescales of the diffusion process and the chemical kinetics
involved.

At the end of this section we will describe a number of examples of how diffusion interacts with a
chemical system thereby creating new dynamics. First, however, we will consider diffusion by
itself as an important and relatively fast transport mechanism in certain systems. We will also
discuss how to relate diffusion to experimental data and show that such data mostly provide a
warped view on diffusion. Therefore it is usually more appropriate to talk about ’apparent
diffusion’. The appearance of this apparent diffusion, i.e. the degree of warpedness compared to
free diffusion, is determined both by the nature of the chemical reactions and by the specific spatial
geometry of the system under investigation.

This chapter provides methods of different nature to solve the equations that govern these
phenomena and will give guidelines concerning their applicability. This should enable the reader to
make initial guesses about the importance of diffusion in the system under consideration, which
can help decide whether or not to pursue a more detailed study of the full reaction-diffusion
system.

2.1 What is diffusion?

Diffusional behaviour is based on the assumption that the molecules perform a random walk in the
space that is available to them. This is called Brownian motion. The nature of this random walk is
such that the molecules have equal chance to go either way (in the absence of external fields). To
see how this can generate a macroscopic effect (as described by Fick’s law, see later) let’s consider
a volume element in which there are more molecules than in a neighbouring volume element.
Although the molecules in both volume elements have equal chance of going either way, there are
more molecules that happen to go to the element with the low initial number of molecules than
there are molecules coming to the high initial number element because they simply outnumber
them.

To describe this process mathematically we assume the molecules perform a discrete random walk
by forcing them to take a step of fixed length x in a random direction (i.e. left or right) every 
fixed t, independent of previous steps. The average change in number of molecules n

i
k at 

discrete position i in a timestep t from t
k
 to t

k+1
 for a high enough number of molecules is then



given by (see for instance (Schulman, 1981))

   ( 1 )

where p
l
 and p

r
 are the probabilities to go either to the left or to the right. In the absence of drift we 

have for the probabilities (using the sum rule for independent events)

   ( 2 )

so that 

Filling in these numbers in eq.(1) gives

   ( 3 )

resulting in

   ( 4 )

Letting x->0 and t->0 while keeping 

   ( 5 )

constant (and multiplying both sides with a constant involving Avogadro’s number
(6.022*1023mol-1) and volume to convert to concentrations), we get the following parabolic PDE:
[1]

   ( 6 )

This is generally known as the one-dimensional diffusion equation along a Cartesian axis. Other
one-dimensional equations are used more often but they arise from symmetries in a
multi-dimensional formulation, e.g. the radial component in a spherical or cylindrical coordinate
system (see below). The random walk can be easily extended to more dimensions by using the
same update scheme for every additional (Cartesian) coordinate.

The random walk process described above generates a Gaussian distribution of molecules over all
grid positions when all molecules start from a single grid position x

0
 (i.e. a Dirac delta function) :

   ( 7 )

It’s left as an exercise for the reader to proof this [2]. From this, and the fact that every function can 
be written as a series of delta functions, it follows that the same solution can be generated using a 
continuous random walk by drawing the step size each molecule moves every timestep t from a
Gaussian of the form

   ( 8 )

which has a mean square step size of ( x)2=2D t , relating the two random walk methods. The 



choice of the method to use is determined by the following : discrete random walks allow a fast 
evaluation of the local density of molecules while continuous random walks allow easy inclusion 
[3] of complex boundary conditions.

The above is a quick way to determine the solution of eq.(6) for the initial condition [4] C(x,0)=C
0

(x-x
0
). This is one of the few cases that can also be solved analytically. See Crank (Crank, 1975)

for a general and extensive analytical treatment of the diffusion equation.

Fig. 1: The initial condition is the distribution of 
molecules on a fixed time t (chosen as t=0 in most 
cases). It determines the final shape of the
distribution at a later time t+T. In general, a partial 
differential equation (in space and time) has a set of
possible solutions for a fixed set of parameters and
(spatial) boundary conditions. By setting the initial 
condition, one selects a specific solution. 

A final remark concerning the scale on which the random walk approach applies should be made.
The movements the molecules make in the diffusion process are related to the thermal movement
of and collisions with the background solvent molecules. The path a single molecule follows is
erratic but each step is deterministic when the molecules are considered to be hard spheres. If the
environment of the molecule is random though, the resulting path can be considered the result of a
random walk where each step is independent of the molecule’s history(Hille, 1992).

Nevertheless, even in a fluid the close range environment of a molecule has some short term
symmetry in the arrangement of the surrounding molecules so that on the scale of the mean free
path (and the corresponding pico/femto second time scale) there is some correlation in the steps of
the molecule-i.e. the molecule appears to be trapped in its environment for a short time. At this
scale using random walks is not appropriate and one has to resort to Molecular Dynamics instead.
At a larger distance (and thus at a longer timescale), the environment appears random again in a
fluid and the correlations disappear so that a random walk approach is valid again.

2.2 A macroscopic description of diffusion.

Many discussions about diffusion start out with an empirical law : Fick’s law (Fick, 1885). This
law states that a concentration gradient for a dissolved substance gives rise to a flux of mass in the
(diluted) solution, proportional to but in the opposite direction of the concentration gradient. The
constant of proportionality is called the (macroscopic) diffusion constant. It is valid under quite
general assumptions. The corresponding equation in one dimension is of the form

   ( 9 )

where D is the macroscopic diffusion constant and C(x,t) is the mass distribution function
expressed as a concentration. The minus sign is there to ensure that the mass will flow downhill on
the concentration gradient (otherwise we get an unstable system and the thermodynamic law of
entropy would be violated).

The diffusion constant is usually treated as a fundamental constant of nature for the species at
hand, determined from diffusion experiments. It is, however, not a real fundamental constant since
it can be calculated, using kinetic gas theory, from thermodynamic constants, absolute temperature
and molecule parameters. In fact, it can even be position-dependent if the properties of the medium
(like the viscosity) vary strongly with position. So, including diffusion in an accurate model could
become a messy business in some cases.

Fick’s law looks very much like an expression for a flux proportional to a conservative force on the
molecules, with the ’force’ depending on the gradient of a field potential (the concentration). But,
as can be concluded from section 5, that ’force’ is entirely of a statistical nature. The flux of mass
changes the concentration at all points of nonzero net flux. The rate of change is given by a mass
balance (i.e. a continuity) equation as follows 



   ( 10 )

in the absence of other nonFickian fluxes. Replacing J
F
(x,t) by the right-hand side of eq.(9) gives

eq.(4) if we identify the diffusion constant with the former constant D. For more details on kinetic
gas theory and a derivation of this macroscopic diffusion constant from microscopic
considerations, see for example The Feynman Lectures (Feynman et al., 1989). A classic is of
course Einstein’s original treatment of Brownian motion (Einstein, 1905).

Eqs.(9) and (10) can be easily extended to higher dimensions by using the following vector
notations 

   ( 11 )

where " " is the gradient operator and " " the divergence operator. Combining the two
equations then gives the general multi-dimensional diffusion equation

   ( 12 )

with  the Laplace operator (Laplacian). The explicit form of the Laplacian depends on the chosen 
coordinate system. In a Cartesian system in ordinary space it looks like this 

   ( 13 )

Sometimes the nature of the problem is such that it is simpler to state the problem in cylindrical [5]

   ( 14 )

or spherical [6] coordinates 

   ( 15 )

In case of axial respectively. spherical symmetry this reduces to the following more generally used
(one-dimensional) radial equations 

   ( 16 )

The solution of the spherical radial equation for an instantaneous point source, i.e. for an initial
condition of the form C(r,0)=C

0
(r)/r, is (for r

0
=0)

   ( 17 )

This is the radial equivalent of eq.(7) and again this is actually one of the few solutions that can be
found analytically. Both solutions describe one-dimensional diffusion in an infinite space and
especially the last one is generally referred to as free diffusion.

2.3 Importance of boundary conditions and dimensionality.

Often, properties of diffusion are derived from free diffusion, following eq.(6), and proposed as



generic diffusion properties while the actual boundary conditions shape the concentration profiles
in significantly different ways. Knowing these shapes can be important when interpreting
experimental results or when selecting curves-i.e. solutions of model problems-for fitting
experimental data to estimate (apparent) diffusion parameters.

Choosing the appropriate boundary conditions is also important from a modeling point of view.
Free diffusion is of use to model interactions in infinite space or in a bulk volume on appropriate
timescales, i.e. situations where diffusion is used as a simple passive transport or dissipative
mechanism. However, when diffusion is used as a transport mechanism to link cascading processes
that are spatially separated or when diffusion is used in conjunction with processes that are
triggered at certain concentration level thresholds, a detailed description of the geometry of the
system may become very important. In that case the complex geometry can impose the majority of
the boundary conditions.

To give an example, let’s consider a cylinder of infinite length, with a reflecting mantle, in which
there is an instantaneous point source releasing a fixed amount of substance A while further down
the cylinder there is a store of another substance B. The store starts releasing substance B when the
concentration of substance A reaches a certain threshold level. For smaller radii of the cylinder the
time of release from the store will be much shorter. This is because the concentration of A at the
store will rise sooner to the threshold level for smaller radii, although the intrinsic diffusion rate of
A does not change.

When the concentration level of A has to be sustained for a longer period, consider what happens
when we seal off the cylinder with a reflecting wall near the point source. Since mass can now only
spread in one general direction, the concentration of A can become almost twice as high as
compared to the unsealed case, the exact factor depending on the distance between the point source
and the sealed end. Furthermore, the concentration near the store and point source will stay
elevated for a longer period of time. Eventually, the concentration will drop to zero in this case
since the cylinder is still semi-infinite. When we seal off the other end too (at a much larger
distance), then the concentration of A will, not surprisingly, drop to a fixed rest level-above or
below the threshold level, depending just on the volume of the now finite closed cylinder-when no
removal processes are present.

Boundary conditions play also a major role in the dimensionality of the diffusion equation one has
to choose. Eqs.(16) are examples of equations that arise from certain symmetries in the boundary
conditions. Often the dimensionality is also reduced by neglecting asymmetries in some
components of the boundary conditions or by averaging them out for these components in order to
reduce computation time or computational complexity. In some cases, though, it is necessary to
keep the full dimensionality of the problem to be able to give an accurate description of the system.
This is for example the case in cell models where compartmentalization is obtained through spatial
co-localization of related processes. In order to simulate such models, one has to resort to fast
multi-dimensional numerical methods. The methods section provides two such methods: one finite
differencing method called ADI and one Monte Carlo method called Green’s Function Monte
Carlo.

2.4 Interactions among molecules and with external fields.

In the reaction rate equation approach a system of chemical reactions can be described in general
by a set of coupled first-order ODE’s: 

   ( 18 )

where the form of the functions f
s
 are determined by the reaction constants and structures of the M 

chemical reaction channels. The functions f
s
 are generally nonlinear in the C

s
’s. In case the 

reaction mechanisms and constants are known, one can use the following normal form for the f
s
’s: 
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with  , where the  are the stoichiometric coefficients for substance s on 

the left-hand respectively right-hand side of the reaction equation for reaction c [7] and k
c
 is the 

reaction constant. Most of the  are zero.  is known as the reaction order 
and is related to the order of the collisions between the reacting molecules. Since collisions of 
order higher than 4 are extremely improbable, R

c
  4 for most reactions. A reaction of higher order 

is most likely a chain of elementary reaction steps.

Combining the rate equations with a set of diffusion equations now results in a set of coupled
nonlinear parabolic PDE’s :

   ( 20 )

The first term of the right-hand side will be 0 for all immobile substances. Systems governed by a
set of equations like eqs.(18) can exhibit a broad array of complex temporal patterns. Including a
transport mechanism to introduce spatial dependence as described by eqs.(20) can introduce
additional complex spatial patterns.

Only very simple cases can be solved analytically for both types of problems, so one has to resort
to numerical methods which can become very involved for the second type of problems. At low
molecule densities, classic integration methods like the ones introduced in section 14 cannot grasp
the full dynamics of the system because they don’t include the intrinsic fluctuations. One has to
resort to stochastic approaches for the chemical kinetics like the ones introduced in Part I and for
the diffusion like the Monte Carlo method introduced in the Numerical Methods section.

Reaction partners can be electrically charged. Although this can have an important influence on the
reaction kinetics, it is usually handled by adjusting the rate constants (in case of rate models) or the
reaction probabilities (in case of stochastic models). However, one can think of problems where it’s
important to know the effects of local or external electric fields on diffusion. One can start studying
these problems by rewriting eqs.(11) to

   ( 21 )

where  is the net flux induced by the Coulomb interactions between the charged molecules and
 the net flux induced by the interaction of the charged molecules with an external field of 

potential V. z is the valence of the ionic species, F is the Faraday constant, R is the gas constant 
and T is absolute temperature. The second equation is called the electrodiffusion equation. In the 
case of  , it is called the Nernst-Plank equation (Hille, 1992). Special complicated numerical

algorithms have to be used to solve the general electrodiffusion equation because of the long range
and the 1/r divergence of Coulomb interactions. For an application to synaptic integration in
dendritic spines, see for example Qian and Sejnowski (Qian and Sejnowski, 1990).

2.5 An example of reaction-diffusion systems: calcium buffering in the cytoplasm.



Reaction-diffusion systems have been studied most extensively in the context of buffering and
binding of calcium ions. Calcium is probably the most important intracellular signaling molecule.
Its resting concentration is quite low (about 50 nM) but it can raise by several orders of magnitude
(up to 100’s of M’s) beneath the pore of calcium channels (Llinás et al., 1992). Cells contain an 
impressive variety of molecules with calcium binding sites, this includes pumps which remove the 
calcium (e.g. the calcium-ATPase;(Garrahan and Rega, 1990)), buffers which bind the calcium 
(e.g. calbindin, calsequestrin, calretinin, etc.;(Baimbridge et al., 1992)), enzymes activated by 
calcium (for example phospholipases;(Exton, 1997)) or modulated by calcium (for example 
through calmodulin activation;(Farnsworth et al., 1995)). The interaction of the transient steep
calcium concentration gradients with all these binding sites creates complex reaction-diffusion
systems, the properties of which are not always completely understood. For example, it remains a
point of discussion whether calcium waves, which are caused by inositol1,4,5-triphosphate (IP

3
) 

activated release of calcium from intracellular stores, propagate because of diffusion of IP
3

(Bezprozvanny, 1994; Sneyd et al., 1995) itself or of calcium (Jafri and Keizer, 1995), which has a 
complex modulatory effect on the IP

3
 receptor (Bezprozvanny et al., 1991).

We will focus on the macroscopic interaction of calcium with buffer molecules. The main function
of buffers is to keep the calcium concentration within physiological bounds by binding most of the
free calcium. Almost all models of the interactions of calcium with buffers use the simple
second-order equation:

   ( 22 )

Eq.(22) is only an approximation as most buffer molecules have multiple binding sites with
different binding rates (Linse et al., 1991) and require more complex reaction schemes (see first 
section of this book). In practice, however, experimental data for these different binding rates are 
often not available. Nevertheless, it is important to express buffer binding with rate equations, even
simplified ones, instead of assuming the binding reactions to be in steady-state, described by the
buffer dissociation constant K

d
=b/f like is often done (e.g. (Goldbeter et al., 1990; Sneyd et al., 

1994)). Even if the time scale of interest would allow for equilibrium to occur, the use of 
steady-state equations neglects the important effects of the forward binding rate constant f on 
diffusion and competition between buffers (see further).

Fig. 2: A pictorial description of the 
effect of buffer binding on calcium 
diffusion for slowly diffusing buffers. 
The yellow dots represent calcium ions, 
the green blobs buffer molecules, the 
purple blobs are calcium channels and 
the lightning symbol represents 
chemical interaction. The reacting dot 

is gradient-colored to distinguish it from the other intracellular dot. Note that the figure only shows 
the net effect for the respective populations. In reality, individual molecules follow erratic paths
that don’ t directly show the buffering effect. 

While the properties of buffered calcium diffusion have been mostly studied using analytical
approaches (Naraghi and Neher, 1997; Wagner and Keizer, 1994; Zador and Koch, 1994), it is
fairly simple to demonstrate these concepts through simulation of the system corresponding to the
set of differential equations described in the next section (see also (Nowycky and Pinter, 1993) for
a similar analysis). The simulations of the simple models that [8] we used were run with the 
GENESIS software (the simulation scripts can be downloaded from the Web
http://www.bbf.uia.ac.be/models/models.shtml). For more information on simulating calcium
diffusion with the GENESIS software (Bower and Beeman, 1995) we refer to De Schutter and 
Smolen (De Schutter and Smolen, 1998). We will focus on the transient behavior of the
reaction-diffusion system, i.e. the response to a short pulsatile influx of calcium through the plasma 
membrane. Also, as we are interested mostly in molecular reactions we will stay in the 
nonsaturated regime [Ca2+]<<K

d
) though of course interesting nonlinear effects can be obtained

when some buffers start to saturate. Finally, for simplicity we do not include any calcium removal
mechanisms (calcium pumps ;(Garrahan and Rega, 1990) and the Na+Ca2+ exchanger
;(DiFrancesco and Noble, 1985)), though they are expected to have important additional effects by
limiting the spread of the calcium transients (Markram et al., 1998; Zador and Koch, 1994).



The diffusion constant of calcium (D
Ca

) in water is 6*10-6cm2s-1. In cytoplasm, however, the 
measured diffusion constant is much lower because of the high viscosity of this medium. Albritton 
et al.(Albritton et al., 1992) measured a D

Ca
 of 2.3*10-6cm2s-1 in cytoplasm and other ions and 

small molecules can be expected to be slowed down by the same factor. As shown in fig.3A, with 
this D

Ca
 calcium rises rapidly everywhere in a typical cell, with only a short delay of about 10 ms 

in the deepest regions. After the end of the calcium influx, the calcium concentration reaches 
equilibrium throughout the cell in less than 200 ms. Down to about 3.0 m the peak calcium 
concentration is higher than the equilibrium one because influx rates are higher than the rate of 
removal by diffusion.

Fig. 3: Effect of immobile buffer 
binding rates on calcium diffusion. The
changes in calcium concentration at 
several distances from the plasma 
membrane) due to a short calcium
current into a spherical cell are shown.

A Calcium concentration for simulation 
with no buffers present.

B Same with buffer with slow forward 
rate f (similar to EGTA) present.

C Same with buffer with fast f (similar 
to BAPTA) present. Fainter colors:
approximation using D

app
 (eq.(24)).

D Bound buffer concentration for 
simulation shown in B

E Same for simulation shown in C 

This diffusion constant is attained only if no binding to buffers occurs (Albritton et al.(Albritton et 
al., 1992)) completely saturated the endogenous buffers with calcium to obtain their 
measurements). Figs.3(B-E) demonstrates the effect of stationary buffers on the effective calcium
diffusion rate: they decrease both the peak and equilibrium calcium concentration, slow the
diffusion process down and limit the spread of calcium to the submembrane region (i.e. close to the
site of influx). The total buffer concentration [B]

T
=[B]+[CaB] and its affinity, which is high in 

these simulations (K
d
=0.2 M), will determine the amount of free calcium at equilibrium. This is

called the buffer capacity of the system, which is also the ratio of the inflowing ions that are bound
to buffer to those that remain free (Augustine et al., 1985; Wagner and Keizer, 1994) : 

   ( 23 )

In case of low calcium concentration eq.(23) reduces to [B]
T
/K

d
. Buffer capacities in the cytoplasm

are high, ranging from about 45 in adrenal chromaffin cells (Zhou and Neher, 1993) to more than
4000 in Purkinje cells (Llano et al., 1994).

While the buffer capacity determines the steady-state properties of the system, the dynamics are
highly dependent on the forward binding rate f (compare fig.3B with fig.3C). In effect, for the



same amount of buffer and the same high affinity the calcium profiles are very different. For the
slow buffer as in fig.3B, calcium rises rapidly everywhere in the cell with similar delays as in
fig.3A, but reaches much lower peak concentrations. Only about 50% of the buffer gets bound
below the plasma membrane. After the end of the calcium influx the decay to equilibrium has a
very rapid phase, comparable to that in fig.3A, followed by a much slower relaxation which takes
seconds. The peak calcium concentrations are comparatively much higher than the equilibrium
concentration of 95 nM down to a depth of 5.0 m. Note the slow relaxation to equilibrium of 
bound buffer in fig.3D Conversely, in the case of rapid binding buffer (fig.3C) calcium rises slowly
below the plasma membrane, but does not start to rise 1.0 m deeper until 50 ms later. Deeper, the 
calciun concentration does not start to rise until after the end of the calcium influx. Much more
calcium gets bound to buffer (fig.3E) below the plasma membrane than in fig.3D. The decay to
equilibrium is monotonic and slower than in fig.3A.

Both the differences during the influx and equilibration processes compared to the unbuffered
diffusion are due to the binding and unbinding rates of the buffer, which dominate the dynamics.
The buffer binding does not only determine the speed with which the transients rise, but also with
which they extend toward deeper regions of the cell. This is often described as the effect of buffers
on the apparent diffusion constant D

app
 of calcium (Wagner and Keizer, 1994): 

   ( 24 )

This equation gives a reasonable approximation for distances sufficiently far from the source of
influx, provided f is quite fast (Wagner and Keizer, 1994). For a fast buffer similar to BAPTA it
does not capture the submembrane dynamics at all (fainter colors in fig.3C [9] ). In conclusion, in 
presence of fast immobile buffers, experimental measurements of calcium diffusion can be orders 
of magnitude slower than in their absence. This severely limits the spatial extent to which calcium 
can affect chemical reactions in the cell compared to other signaling molecules with similar 
diffusion constants that are not being buffered, like IP

3
 (Albritton et al., 1992; Kasai and Petersen, 

1994). Conversely, for the slower buffer (fig.3B) the initial dynamics (until about 50 ms after the 
end of the current injection) are mostly determined by the diffusion constant.

When the calcium influx has ended, the buffers again control the dynamics while the
concentrations equilibrate throughout the cell. Because much more calcium is bound than free
(buffer capacity of 250 in these simulations) the bulk of this equilibration process consists of
shuffling of calcium ions from buffers in the submembrane region to those in deeper regions. As
this requires unbinding of calcium from the more superficial buffer the dynamics are now
dominated by the backward binding rate b, which is faster for the fast f buffer in fig.3C (both
buffers having the same K

d
). As a consequence the fast bound buffer concentration mimics the 

calcium concentration better than the slow bound buffer. This is an important point when choosing
a fluorescent calcium indicator dye: the ones with fast (un)binding rates will be much more
accurate (Regehr and Atluri, 1995). Finally, calcium removal mechanisms can also affect the
equilibration process to a large degree: if the plasma membrane pumps remove the calcium ions
fast enough they will never reach the lower regions of the cell, especially in the case of the buffer
with fast f (where initially more calcium stays close to the plasma membrane).

Fig. 4: Effect of a diffusible buffer 
binding rates on calcium diffusion.
Simulation results similar to those in 
Fig.3(B-E), but the buffer is now
diffusible.

A Calcium concentration for simulation 
with diffusible buffer with slow
forward binding rate f.

B Same with diffusible buffer with fast 
f.

C Bound buffer concentration for 
simulation shown in B

D Same for simulation shown in C 



The above system changes completely
when the buffer itself becomes
diffusible (see schematic explanation in 
fig.2 and simulation results in fig.4).

Now the buffer itself becomes a carrier for calcium ions: bound buffer diffuses to the regions of
lower bound buffer concentration which simply are also regions of lower calcium concentration so
that the bound buffer will unbind its calcium. Again this effect can be described by how the
apparent diffusion constant D

app
 of calcium changes (Wagner and Keizer, 1994) : 

   ( 25 )

This equation has all the limitations of a steady-state approximation. It demonstrates, however, that
diffusion of buffers (which in the case of ATP have DB comparable to DCa in the
cytoplasm;(Naraghi and Neher, 1997)) can compensate for the effect of (stationary) buffers on the
apparent diffusion rate. In the case of fig.4B, it does not capture the submembrane transient at all
(not shown) but reproduces the transients at deeper locations well. The diffusive effect of mobile
buffers is an important artifact that fluorescent calcium indicator dyes (e.g. fura-2) can introduce in
experiments, because they will change the calcium dynamics themselves (Blumenfeld et al., 1992;
De Schutter and Smolen, 1998; Sala and Hernandez-Cruz, 1990).

The actual effect on D
app

, however, will depend again on the f rate of the buffer. In the case of a 
slow f rate the effect of buffer diffusion during the period of calcium influx are minor as the 
submembrane peak calcium concentration is only a bit lower compared to simulations with
immobile buffer (compare fig.4A with fig.3B). At the same time the diffusible buffer saturates
much less than the immobile one (fig.3C). The biggest difference is, however, after the end of the
calcium influx: the system reaches equilibrium within 100 ms! Like in the case of immobile fast
buffer (fig.3C), diffusible fast buffer (fig.4B) is much more effective in binding calcium than the
slow one (compare to fig.4A), but even more so than the immobile one: now only the
submembrane concentration shows a peak, at all other depths the concentrations increase linearly
to equilibrium (and can be approximated well by eq.(25) for D

app
) and this is reached almost 

immediately after the end of the calcium influx. 

In general it is mainly during the equilibration period after the calcium influx that the buffer
diffusion causes a very rapid spread of calcium to the deeper regions of the cell. In other words, the
D

app
 will actually increase under these situations because the reaction-diffusion system moves 

from initially being dominated by the slow calcium diffusion (during influx D
app

 approaches D
Ca

) 
to being dominated by the buffer diffusion (during equilibration where now only one unbinding
step is needed instead of the shuffling needed with the immobile buffer). A similar phenomenon
can be found in the case of longer periods of calcium influx: in this case the mobile buffer will start
to saturate so that the unbinding process becomes more important and again D

app
 rises, but now 

during the influx itself (Wagner and Keizer, 1994).

When the buffer has a fast f rate the effects of buffer diffusion become more apparent during the
calcium influx itself also (compare fig.4B with fig.3C)! One sees indeed an almost complete
collapse of the calcium gradient because the buffer binds most of the calcium flowing into the
submembrane region without being affected by saturation (it gets continuously replenished by free
buffer diffusing upward from deeper regions of the cell).

Fig. 5: Effect of competition between 
two diffusible buffers. Simulations 
similar to those in Fig.3(B-E), with 
both diffusible buffers present.

A Calcium concentrations.

B Bound buffer concentrations : upper 
traces slow buffer, lower traces fast
buffer.

C Superposition of bound buffer traces 
for fast buffer and slow buffer (fainter
colors; traces have been superimposed 



by subtracting the steady state
bound buffer concentration). 
Concentrations just below the 
plasma membrane (red curves)
and at 30 m depth (blue 
curves) are shown. 

We end this section with a consideration of how competition among buffers in a reaction-diffusion
system can cause localization of binding reactions. This is demonstrated in fig.5 which shows a
simulation where the same two buffers with identical affinities, but different homogenous
concentrations, are present [10]. While the calcium concentrations (fig.5A) are somewhat similar to 
those in fig.4B, the peak concentrations are much smaller and the reaction-diffusion system takes a 
much longer time to reach equilibrium after the end of the calcium influx. More important are the 
large differences in the bound buffer profiles (fig.5B): the ones for the slow buffer rise 
continuously, while the ones for the fast buffer peak at low depths in the cell.

These differences are shown in more detail in fig.5C A peak in bound fast buffer concentration can
be observed below the plasma membrane during the calcium influx: initially much more calcium is
bound to the fast buffer than to the slow one (which has a five times higher concentration).
Conversely, in deeper regions of the cell, the slow buffer always dominates (fig.5C). This effect
which has been called "relay race diffusion" by Naraghi and Neher (Naraghi and Neher, 1997)
shows that, under conditions of continuous inflow, buffers have a characteristic length constant
(depending on their binding rates, concentration and diffusion rate) which corresponds to the
distance from the site of influx at which they will be most effective in binding calcium. If one
replaces in the previous sentence the word buffer with calcium-activated molecule it becomes
obvious that relay race diffusion can have profound effects on the signaling properties of calcium
as it will preferentially activate different molecules depending on their distance from the influx or
release site. The competition between buffers also slows down the dynamics of the
reaction-diffusion system as calcium is again being shuttled between molecules (compare fig.4B
and fig.5A).

Markram et al.(Markram et al., 1998) have studied similar systems where calcium removal 
systems were included in the model. They show that if calcium removal is fast, only the fast 
binding molecules may be able to react with calcium ions during transients. Conversely, in a case 
of repetitive pulses of calcium influx, the slower binding molecules will keep increasing their
saturation level during the entire sequence of pulses while the faster buffers will reach a steady
saturation after only a few pulses (Markram et al., 1998), demonstrating the sensitivity to temporal
parameters of such a mixed calcium binding system. This is very reminiscent of recent
experimental results demonstrating the sensitivity of gene expression systems to calcium spike
frequency (Dolmetsch et al., 1998; Li et al., 1998).

3 Numerical Methods.

This section treats examples of two distinct classes of numerical methods to approximately solve
the full reaction-diffusion system. The first class of methods tries to solve the set of
reaction-diffusion equations by simulating the underlying chemical/physical stochastic processes
and/or by integrating the equations using stochastic techniques. Because of their stochastic nature,
they are generally referred to as Monte Carlo methods. The second class of methods tries to solve
the set of reaction-diffusion equations directly by numerically integrating the equations. The
methods are called the Crank-Nicholson method and the Alternating Direction Implicit (ADI)
method.

3.1 Monte Carlo methods.

The term ’Monte Carlo method’ is used for a wide range of very distinct methods that have one
thing in common : they make use of the notion ’randomness’ (through the use of
computer-generated random numbers [11] ), either to quickly scan a significant part of a 
multi-dimensional region or to simulate stochastic processes. The first type is used for efficiently 
integrating multi-variate integrals. Reaction-diffusion problems are more naturally solved [12]
using the second type of MC methods. These MC methods can be subdivided once more in two 
classes : methods that follow the fate of individual molecules and methods that follow the fate of 
mass elements. We will give an introduction to the first class of methods, called Diffusion MC, and 
work out in more details an example of the second class, called Green’s Function MC.



3.2 Diffusion MC methods.

These methods use random walks to simulate the diffusional motion of every individual molecule.
Successful applications include the study of synaptic transmission by simulating diffusion of
neurotransmitter molecules across the synaptic cleft and including their reactions with postsynaptic
receptors (Bartol et al., 1991; Wahl et al., 1996) and the study of G-protein activation in the 
submembrane region for a small membrane patch (Mahama and Linderman, 1994). Although their 
usefulness is proven, they suffer from two major problems.

The first problem is related to the inclusion of chemical reactions. These have to be simulated by
detecting collisions between the walking molecules and current detection algorithms tend to be
very inefficient. In addition, it is very hard to determine the reaction probabilities from the rate
constants and/or molecule parameters since the molecule can experience more real, chemically
effective, collisions than the random walk would allow for. Therefore these methods are only
useful for simulating chemical reactions of mobile molecules with immobile ones on a surface, like
receptors, so that one can use the notion of effective cross section to calculate the reaction
probabilities.

The other problem is related to the scale of the system. Simulating individual molecules is only
feasible for a small number of molecules, that is, on the order of ten thousand molecules [13] as is
the case in the examples mentioned. If one is interested for instance in simulating a large part of a
dendritic tree or when the concentration of a substance has a large dynamic range, as is the case for
calcium, these methods will hit hard on computer memory usage and computation time.

A way to solve the first problem is to use a Molecular Dynamics (see Part I) approach which,
however, suffers from the second problem as well, thereby eradicating the advantages of using
random walks. A popular implementation of this kind of MC methods is MCell (Bartol et al., 
1996). The authors of Mcell pioneered the use of ray-tracing techniques for boundary detection in 
general MC simulators of biological systems.

3.3. Green’s Function MC.

We introduce an MC method, that doesn’t suffer from these problems as can be seen from the
following. It’s called Green’s Function MC and it is based on a Quantum MC method from Solid
State Physics (De Raedt and von der Linden, 1995). Technically, this method depends strongly on
a result from function theory : every function can be expanded in a series of Dirac delta functions
or 

   ( 26 )

where the  are N  samples of the function  at fixed points. In our case, it 
denotes the distribution function (expressed in concentration units for instance) of a substance at 
time t

0
. Finding the evolution of the function under an evolution equation boils down to finding the 

evolution of the coefficients C
i
(t

0
->t). We know from section 5 that the solution of the diffusion

equation for a Dirac delta function [14] is a Gaussian and that this Gaussian can be generated using 
a random walk, in this case a random walk in 3-space. In order to perform that random walk to
solve the diffusion equation, we further subdivide the C

i
(t

0
)’s in n

i
 pieces of weight w

K
 and assign 

this weight to a random walker for every piece, resulting in  walkers in total. Eq.(26) 

now becomes 

   ( 27 )

which is only valid for t=t0 because at later times the successive random walk steps redistribute the
walkers over neighboring positions so that we should write

   ( 28 )

instead for later times (t>t
0
). n

i
(t) is the number of all walkers for which the position 



 being a neighborhood of  and  , the 

region in space in which the simulation takes place. When proper accounting of walkers is done,
N

w
=R

i
n

i
(t) should be the initial number of walkers for every step.

The easiest way to perform the random walk, however, is to divide all C
i
(t

0
)’s in n

i
 equal pieces of 

weight w. At time t,  can now be approximated by

   ( 29 )

with n
i
(t) the number of walkers at or near. As a consequence, simulating diffusion has now

become as simple as taking N
w

 samples of equal size w of the initial distribution function and 
keeping track of all the samples as they independently perform their random walks. In a closed
region V, choose weights w=(C

0
V)/N

w
 where C

0
 is for example the final concentration at 

equilibrium and V=vol(V). For pure diffusion, all mass that was present initially will be preserved
so that the weights stay unchanged. Note that N

w
 determines the variance of the fluctuations

around the expected mean [15] and can be much smaller than the number of molecules present in 
V. Therefore this Green’s Function MC method does not suffer from the same bad scaling 
properties as the diffusion MC methods.

Implementing chemical interactions (in fact, almost any interaction) has now become
straightforward. To make the idea clear while keeping it simple we will use a reaction-rate
approach. Once this is understood, it shouldn’t be too hard to switch to a population level
description (as opposed to a mass or number density description) and use the stochastic methods of
Part I to implement the chemical interactions. There are two main classes of algorithms that
implement the chemical reactions of which the first one is the most popular. This first class are
weight-updating schemes, the other class are called birth/death schemes since they manipulate the
number of random walkers. Because of its popularity we will first derive a weight-updating scheme
by combining a form of eq. (28) with a set of equations like eqs. (20). However, it is advisable not
to use this scheme. The reason will become clear from the introduction to an algorithm of the
second class.

Since the interactions can change the identity of the molecules of a substance and thereby changing
the total mass of that substance present in V, we expect the interactions to change the weight of the
walkers. Therefore we should write eq.(28) as follows

   ( 30 )

Filling in eq.(30) for all substances in eqs.(20), one can show that one will get the following update
scheme for all the weights associated with substance s

   ( 31 )

where, in the second set of equations, we used the normal form for the f
s
’s (eq.(19)). (The 

diffusional parts are handled by the random walks and make the nI time-dependent.) Generally, this 

means solving N
w

(s) coupled nonlinear ODE’s for every substance s, amounting to 

equations in total for every time step. When the f
s
’s are linear in  , the equations become as 

follows : 

   ( 32 )



with formal solution

   ( 33 )

where the approximation is assumed valid when the integrandum can be considered (nearly)
constant in ]t,t+ t[. This update scheme guarantees positive weight values for positive initial 
values. Also, at a fixed position, the same exponential factor can be used for all the walkers
corresponding to the same substance, providing a significant optimisation. The accuracy and
stability of the solution will depend on the problem at hand, especially the degree of stiffness will
be very important.

The term stiffness is generally used in the context of a coupled system of equations. It is a measure
for the range of time scales in the simultaneous solutions of the equations. If one is interested in the
fast time scales, it implies that one will loose a lot of time calculating the slowly changing
components. If one is only interested in the slow components, it means that one runs the risk of
numerical instability. Therefore special numerical algorithms should be applied to solve stiff
systems. Runge-Kutta-Fehlberg with Rosenbrock-type extensions are simple and robust examples
of such algorithms (see for example (Press et al., 1992)).

Sometimes the term ’stiffness’ is also used in the context of certain PDE’s. In this case it means
that the spatial and temporal scale are linked by a relation like eq.(5). However, in most cases one
is interested in longer time scales for a fixed spatial scale than is prescribed by this relation. So,
again, one is confronted with the dilemma of efficiency vs. numerical stability. Therefore also in
this case one should use numerical algorithms specially suited for these equations (for example the
implicit schemes as described in section 14).

Since the weights can change, nothing can stop them from becoming zero or very big. Walkers
with zero (or arbitrary subthreshold) weights don’t contribute (much) to the distribution function.
Generating random walks for them is a waste of computation time. A popular practice is to
disregard these small weight walkers all together (and possibly reuse their datastructures for
redistributing large weight walkers, as described next). In case the weights become very large, they
can cause instability, excessive variance and huge numerical errors. Therefore one could divide a
walker with a large weight into smaller pieces. There are other methods to increase efficiency and
reduce variance but they depend on the specifics (like relative time scales) of the problem at hand.
Without these weight control mechanisms, however, weight-update schemes tend to be very
inefficient and produce results with large variances.

Sherman and Mascagni (Sherman and Mascagni, 1994) developed a similar method, called
Gradient Random Walk (GRW). Instead of calculating the solution directly, it calculates the
gradient of the solution. Their work is a good source of references to other particle methods to
solve reaction-diffusion equations and to the mathematical foundations and computational
properties of particle methods in general.

When using the combination of weight control mechanisms as described above, an important
principle of MC simulations is violated. This ’correspondence principle’ leads to the condition of
’detailed balance’ [16] at thermodynamic equilibrium. It guarantees global balance (at 
thermodynamic equilibrium) and meaningful, consistent statistics (in general). A prerequisite for 
the correspondence principle to be met is to preserve the close correspondence-hence the name 
"correspondence principle"-between local changes in the distribution of random walkers and the 
physical processes that cause these local changes. This means that local reshuffling of random 
walkers for performance reasons is out of the question. Algorithms of the second class, however, 
meet this principle in an efficient manner when correctly implemented.

Deriving a particular scheme for second class algorithms starts from eq.(29) instead of eq. (28) :
instead of making the weights dependent on time, like in eq.(30), one can find a scheme for
changing the number n

i
(t) while keeping w

s
 fixed (on a per substance basis). By filling in eq.(29) in 

eqs.(20) one gets for every position  : 



   ( 34 )

(now with  which can be pre-computed). Now

one only has to solve N (<< N
w(s)

(t)) coupled nonlinear ODE’s for every position  that is
occupied (by at least one substance), in the worst case scenario leading to at most

 sets of N coupled equations of which most are trivial (i.e. zero change).

Integrating this set of equations over t gives a change in the number of random walkers 
n

i,s
(t)(=n

i,s
(t+ t)-n

i,s
(t)) at position . Generally, n

i,s
(t) is not an integer, therefore one uses the

following rule : [17] create/destroy n
i,s

(t)V random walkers and create/destroy an extra

random walker with probability frac( n
i,s

(t)). Note that now N
w

=R
i
n

i
(t) is not preserved! The

correspondence principle is still met when globally scaling down the number of random walkers
(and as a compensation renormalise their weight) for a substance in case their number has grown
out of band due to nonFickian fluxes.

Now that one can select a method to incorporate chemical interactions, it has to be combined with
the discrete random walk generator for diffusion. To simplify the implementation, one chooses a
common spatial grid for all substances. Since for diffusion the temporal scale is intrinsically related
to the spatial scale (by eq.(5)), this means a different t for every unique D. The simulation clock
ticks with the minimal t, t

min
. Every clock tick, the system of eqs.(34) is solved to change the

numbers of random walkers. Then a diffusion step should be performed for every substance s for
which an interval t

s
 has passed since its last diffusion update at time t

s
. Here we made the

following implicit assumptions : the concentration of substance s in V
i
 is assumed not to change 

due to diffusion during a time interval t
s
 and all substances are assumed to be well-mixed in 

every V
i
. The assumptions are justified if one chooses vol( V

i
) in such a way that in every V

i
the concentration changes every time step with atmost 10% for the fastest diffusing substance(s) 
(i.e. the one(s) with t

s
= t

min
).

3.4 Discretization in space and time.

For a large enough number of molecules, it is sufficient to integrate the diffusion equations directly
using for instance discretisation methods. Their scaling properties are much better (although, for
multi-dimensional problems this is questionable) and, theoretically, they are also much faster.
However, as can be seen from the equations (see below), their implementation can become more
and more cumbersome for every additional interaction term and for growing geometrical
complexity. So, although these methods are very popular because of their perceived superior
performance, it’s sometimes more feasible to use the Green’s Function MC method (or another
equivalent particle method) as a compromise between performance and ease of implementation.

The Crank-Nicholson method is an example of a classical implicit finite difference discretisation
method that is very suited for diffusion problems. Section 15 introduces the formulation for
one-dimensional (reaction-)diffusion and section 16 provides ADI, an extension to
Crank-Nicholson to solve multi-dimensional problems.

3.5 One-dimensional diffusion.

Because the diffusion equation (eq.(6)) is a parabolic PDE-which makes it very stiff for most
spatial scales of interest (Carnevale, 1989; Press et al., 1992)-its solution prefers an implicit [18]
solution method and its numerical solution is sensitive to the accuracy of the boundary conditions 
(Fletcher, 1991). For the discretisation, the volume will be split in a number of elements and the 
concentration is computed in each of them. This approximation for a real concentration will be 
good if sufficient molecules are present in each element so that the law of large numbers applies. 
This implies that the elements should not be too small, though this may of course lead to a loss of 
accuracy in representing gradients. The problem is not trivial. Take, for example, the calcium 
concentration in a dendritic spine (Koch and Zador, 1993). A resting concentration of 50 nM 
corresponds to exactly two calcium ions in the volume of a 0.5 m diameter sphere, which is about 



the size of a spine head! The random walk methods described in the previous sections seem more
appropriate for this situation.

A popular assumption is that of a spherical cell where diffusion is modeled using the spherical
radial equation (2nd eq. of eqs.(16)). The discretisation is performed by subdividing the cell into a
series of onion shells with a uniform thickness of about 0.1 m (Blumenfeld et al., 1992) and
figs.3-5). The Crank-Nicolson method is then the preferred solution method for finding the
concentration in each shell after every time step t (Fletcher, 1991; Press et al., 1992) as it is
unconditionally stable and second order accurate in both space and time. We will continue using
our example of calcium diffusion, which leads to a set of difference equations of the form:

   ( 35 )

Note that the equations express the unknown  in terms of the knowns (the right-hand 

side terms) but also of the unknowns for the neighboring shells. Therefore, this requires an iterative
solution of the equations, which is typical for an implicit method. The terms containing i+1 are
absent in the outer shell i=n and those containing i-1 in the innermost shell i=0. This system of
equations can be applied to any one-dimensional morphology, where the geometry of the problem
is described by the coupling constants C

i,i+1
. In the case of a spherical cell the coupling constants 

are of the form :

   ( 36 )

where r is the uniform thickness of the shells and the diameter of the cell is equal to d=2n r. See 
De Schutter and Smolen (1998) for practical advise on how to apply these equations to more
complex geometries.

The system of algebraic equations eqs.(35) can be solved very efficiently because its corresponding
matrix is tridiagonal with diagonal dominance (Press et al., 1992). Influx across the plasma 
membrane can be simulated by adding a term  to the right-hand side of the 

equation corresponding to the outer shell. Computing the flux at t+ t/2 maintains the second order
accuracy in time (Mascagni and Sherman, 1998). Note that the overall accuracy of the solution will
depend on how exactly this boundary condition Jn is met (Fletcher, 1991).

In the case of buffered diffusion the buffer reaction eq.(22) has to be combined with eqs.(35). This
leads to a new set of equations with for every shell one equation for each diffusible buffer:

   ( 37 )

and an equation for buffered calcium diffusion:



   ( 38 )

Equation (38) applies to a system with only one buffer. In case of multiple buffers, one additional
term appears at the left-hand side and two at the right-hand side for each buffer. We have also
assumed that DB is identical for the free and bound forms of the buffer, which gives a constant
[B]

T,I
. This is reasonable taking into account the relative sizes of calcium ions as compared to most

buffer molecules.

Eqs.(37) and (38) should be solved simultaneously, resulting in a diagonally banded matrix with
three bands for the calcium diffusion and two bands extra for each buffer included in the model.

3.6 Two-dimensional diffusion. 

An elegant extension to the Crank-Nicholson method is the Alternating Direction Implicit (ADI)
method which allows for an efficient solution of two-dimensional diffusion problems (Fletcher,
1991; Press et al., 1992). Each time step is divided into two steps of size t/2 and in each substep
the solution is computed in one dimension: 

   ( 39 )

respectively

   ( 40 )

where first diffusion along the i dimension is solved implicitly and then over the j dimension. The
coupling constants C

i,i+1
 and c

j,j+1
 again depend on the geometry of the problem and are identical

and constant in the case of a square grid. The two matrices of coupled equations (39) and (40) are
tridiagonal with diagonal dominance and can be solved very efficiently. In two dimensions, the
ADI method is unconditionally stable for the complete time step and second order accurate in both
space and time, provided the appropriate boundary conditions are used (Fletcher, 1991). Holmes
(Holmes, 1995) used the two-dimensional ADI method with cylindrical coordinates to model
glutamate diffusion in the synaptic cleft. The ADI method can also be applied to simulate
three-dimensional diffusion with substeps of t/3, but in this case it is only conditionally stable
(Fletcher, 1991).

4 Case study.

In general, we’re interested in compartmental models of neurons using detailed reconstructed
morphologies, in particular of the dendritic tree. These compartments are cylindrical idealisations



of consecutive tubular sections of dendritic membrane. Because of the cylindrical nature of the
compartments we prefer a description in cylindrical coordinates, giving us an accurate
representation of the concentration in the submembrane region. This is important for a number of
our other simulations. As can be seen from eq.(15), using cylindrical coordinates introduces factors
depending on 1/  and an additional first-order term in . These are pure geometric effects and arise
from the fact that an infinitesimal volume element in cylindrical coordinates is of the form dV= d

d dz which is dependent on .

Just like in the 1D case, eq.(11)(2nd eq.) can be derived from a (discrete) random walk process.
That is, in Cartesian coordinates, for every second order term on the right-hand side of eq. (11)(2nd

eq.) the corresponding coordinate of the random walker’s position is updated according to the 1D
random walk scheme. However, this recipe does not work when writing out a random walk scheme
for eq.(14) due to the extra first-order term. A more general recipe for deriving the appropriate
random walk process can be obtained by considering more closely the consequences of the 
-dependency of dV.

In order to maintain a uniform distribution of mass at equilibrium, there should be less mass in the
volume elements closer to the origin, since for smaller , i.e. nearer to the origin, the volume 
elements get smaller. Therefore the random walkers (which correspond to mass units) should tend 
to step more often away from the origin than toward the origin when equilibrating, creating a net 
drift outward. Eventually, in a closed volume with reflecting walls this drift will come to a halt at 
equilibrium, while the outward tendency creates a gradient in  in the number (but not density!) of
walkers. The tendency is introduced by adjusting the probability to choose the direction of a 
-step.

The adjustment is derived as follows for a drifting 1D random walk : suppose the walkers have a
drift speed c (negative to go to the left, positive to go to the right) then the probability to go to the
left is 

   ( 41 )

(with obvious conditions on  t and  x for a given c). When filling in these expressions for pl,r in
eq.(1) and taking the appropriate limits, one gets the following equation

   ( 42 )

Note the correspondence between this equation and the radial part of eq.(14). Therefore we extend
the recipe as follows : every first-order term corresponds to a drift with the drift speed c given by
the coefficient of the partial derivative and the probabilities are adjusted according to eq.(41). If we
ignore the 1/  factors by defining new ’constants’ c=D/r and D’=D/r2, we get the following 
random walk scheme in cylindrical coordinates : for every time step t->t+ t, for every walker

 the following coordinate update is performed :

   ( 43 )

where we choose

   ( 44 )

with the following probabilities for the respective signs :



   ( 45 )

and (pr
-
=0, pr

+
=1) for k=0. This type of random walk is called a Bessel walk. From the 1/rn factors 

in the diffusion equation one expects problems of divergence in the origin. The way we handle the
random walks in the origin (i.e. for k=0) seems to work fine as can be seen from simulation results.
Of course, due to the low number of walkers in the origin, the variance is quite large in the region
around the origin.

The discrete natures of the geometry and the random walk introduce other specific problems,
among which are connections of compartments with different radii, branchpoints and regions of
spine neck attachments to the compartmental mantle. We used minimalistic approaches to these
problems by using probabilistic models. Concerning the connections for example, we assigned a
probability for the transition that the random walker could make between two connected cylinders
in such a way that pz+/- becomes 

   ( 46 )

(where the sign is chosen in accordance with the end of the cylinder at which the walker is) in case
the walker is at the end of cylinder 1 that is connected to cylinder 2. When the walker makes the
transition to cylinder 2, its -coordinate is adjusted according to 

new
=(R

2
/R

1
) 

old
. This way no 

artificial gradients are created in the area around the discrete transition. Instead, the walkers behave
more like walkers in a tapered cylinder, which is the more natural geometry for dendritic branches.

Fig. 6: The effect of the presence of spines on 
the longitudinal component of diffusion in the 
dendritic shaft. Compare with fig.1 for the 
smooth case (i.e. without spines). The yellow 
dots represent (small sphere-like) molecules. In 
the model, the spine heads-the small spheres on 
the spine necks shown here as sticks 
perpendicular to the dendritic shaft-are modeled 
as short, wide cylinders. 

Recent caged compound release experiments in neuronal spiny dendrites (Wang and Augustine,
1995) and (Bormann et al., 1997) show a slowing in the apparent diffusion (see fig.6). The 
apparent diffusion constant is defined as the diffusion constant for the effective 1D diffusion along 
the longitudinal axis of the dendritic shaft. The experiments were performed with both relatively
inert and highly regulated substances. We were interested in estimating the contribution of
geometric factors to this slowing in apparent diffusion rate, especially the effect of ’hidden’
volume (mostly spines) and morphology (branching, structures in cytoplasm).

In order to isolate the contributing factors, we constructed simple geometrical models of dendritic
structures including spines and single branchpoints. Then we simulated idealised release
experiments by using square pulses as initial condition and calculated the apparent diffusion
coefficient D

app
(t) from the resulting concentration profiles as follows : 

   ( 47 )

with



   ( 48 )

The integral is cut off at the endpoints of the (chain of consecutive) cylinders, which is ok when the
distance between the endpoints is large enough so that only very few walkers will arrive at either of
the endpoints in the simulated time period. The simulator is instructed to output

 , i.e. the - and -dependence is averaged out. Slowing is expressed by a
slowing factor (t), defined as  . The apparent diffusion constant
D

app
 at equilibrium is defined as D

app
=D

app
(t-> ).

Fig.7 shows the difference in time evolution of two concentration profiles. One is for a smooth
dendrite (modeled as a simple cylinder), the other for a spiny dendrite of the same length but with
spines distributed over its plasma membrane. The spines are attached perpendicularly on the
cylindrical surface and consist of 2 cylinders : one narrow for the neck (attached to the surface) and
one wide for the head. The figure shows the results for the most common spines parameters
(density, neck and head lengths and radii) on Purkinje cell dendrites.

Fig. 7: Concentration profiles along 
length axis of the dendritic shaft.

Upper frame : Smooth dendrite case 
(see text).

Lower frame : Spiny dendrite case 
(see text). 

The corresponding (t) curves can be found, overlapped, in fig.8. The small amount of slowing in 
the smooth dendrite case is due to reflection at the endpoints, which is neglectible for the period of
simulation time used. We found  (0)/ ’s of 1.0-3.0 for various geometric parameters of the
spines. (We used  (0)/  to express total slowing instead of -1  because D

app
(0) is only 

equal to D for initial conditions that are solution of the diffusion equation.)

Fig. 8: Slowing factor curves.

Red curve Spiny dendrite case (see text).

Blue curve Smooth dendrite case (see text).



5 Conclusion.

In this chapter we have demonstrated that diffusional processes can dominate the kinetics of
molecular processes. Moreover, in many cases the effect of diffusion is strongly influenced by the
boundary conditions, in particular by the local geometry of the cell in all three dinensions.
However, most models of reaction-diffusion systems to date have assumed some form of spatial
symmetry so that they could be reduced to a one-dimensional system. As a consequence, efficient
methods to simulate three-dimensional reaction-diffusion systems are still under development.
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