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Abstract

In discussions of the nature of life, the terms “complexity,” “organ-
ism,” and “information content,” are sometimes used in ways remark-
ably analogous to the approach of algorithmic information theory, a
mathematical discipline which studies the amount of information nec-
essary for computations. We submit that this is not a coincidence and
that it is useful in discussions of the nature of life to be able to refer to
analogous precisely defined concepts whose properties can be rigorously
studied. We propose and discuss a measure of degree of organization
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and structure of geometrical patterns which is based on the algorith-
mic version of Shannon’s concept of mutual information. This paper
is intended as a contribution to von Neumann’s program of formulating
mathematically the fundamental concepts of biology in a very general
setting, i.e. in highly simplified model universes.

1. Introduction

Here are two quotations from works dealing with the origins of life and
exobiology:

These vague remarks can be made more precise by in-
troducing the idea of information. Roughly speaking, the
information content of a structure is the minimum number
of instructions needed to specify the structure. Once can
see intuitively that many instructions are needed to specify
a complex structure. On the other hand, a simple repeating
structure can be specified in rather few instructions. [1]

The traditional concept of life, therefore, may be too
narrow for our purpose. . . We should try to break away
from the four properties of growth, feeding, reaction, and
reproduction. . . Perhaps there is a clue in the way we speak
of living organisms. They are highly organized, and perhaps
this is indeed their essence. . . What, then, is organization?
What sets it apart from other similarly vague concepts? Or-
ganization is perhaps viewed best as “complex interrelated-
ness”. . . A book is complex; it only resembles an organism
in that passages in one paragraph or chapter refer to others
elsewhere. A dictionary or thesaurus shows more organiza-
tion, for every entry refers to others. A telephone directory
shows less, for although it is equally elaborate, there is little
cross-reference between its entries. . . [2]

If one compares the first quotation with any introductory article on
algorithmic information theory (e.g. [3–4]), and compares the second
quotation with a preliminary version of this paper [5], one is struck
by the similarities. As these quotations show, there has been a great
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deal of thought about how to define “life,” “complexity,” “organism,”
and “information content of organism.” The attempted contribution
of this paper is that we propose a rigorous quantitative definition of
these concepts and are able to prove theorems about them. We do not
claim that our proposals are in any sense definitive, but, following von
Neumann [6–7], we submit that a precise mathematical definition must
be given.

Some preliminary considerations: We shall find it useful to distin-
guish between the notion of degree of interrelatedness, interdependence,
structure, or organization, and that of information content. Two ex-
treme examples are an ideal gas and a perfect crystal. The complete
microstate at a given time of the first one is very difficult to describe
fully, and for the second one this is trivial to do, but neither is or-
ganized. In other words, white noise is the most informative message
possible, and a constant pitch tone is least informative, but neither is
organized. Neither a gas nor a crystal should count as organized (see
Theorems 1 and 2 in Section 5), nor should a whale or elephant be con-
sidered more organized than a person simply because it requires more
information to specify the precise details of the current position of each
molecule in its much larger bulk. Also note that following von Neu-
mann [7] we deal with a discrete model universe, a cellular automata
space, each of whose cells has only a finite number of states. Thus we
impose a certain level of granularity in our idealized description of the
real world.

We shall now propose a rigorous theoretical measure of degree of or-
ganization or structure. We use ideas from the new algorithmic formu-
lation of information theory, in which one considers individual objects
and the amount of information in bits needed to compute, construct,
describe, generate or produce them, as opposed to the classical for-
mulation of information theory in which one considers an ensemble of
possibilities and the uncertainty as to which of them is actually the
case. In that theory the uncertainty or “entropy” of a distribution is
defined to be

−∑
i<k

pi log pi,

and is a measure of one’s ignorance of which of the k possibilities ac-
tually holds given that the a priori probability of the ith alternative is
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pi. (Throughout this paper “log” denotes the base-two logarithm.) In
contrast, in the newer formulation of information theory one can speak
of the information content of an individual book, organism, or picture,
without having to imbed it in an ensemble of all possible such objects
and postulate a probability distribution on them.

We believe that the concepts of algorithmic information theory are
extremely basic and fundamental. Witness the light they have shed on
the scientific method [8], the meaning of randomness and the Monte
Carlo method [9], the limitations of the deductive method [3–4], and
now, hopefully, on theoretical biology. An information-theoretic proof
of Euclid’s theorem that there are infinitely many prime numbers should
also be mentioned (see Appendix 2).

The fundamental notion of algorithmic information theory is H(X),
the algorithmic information content (or, more briefly, “complexity”) of
the object X. H(X) is defined to be the smallest possible number of
bits in a program for a general-purpose computer to print out X. In
other words, H(X) is the amount of information necessary to describe
X sufficiently precisely for it to be constructed. Two objects X and Y
are said to be (algorithmically) independent if the best way to describe
them both is simply to describe each of them separately. That is to say,
X and Y are independent if H(X, Y ) is approximately equal to H(X)+
H(Y ), i.e. if the joint information content of X and Y is just the sum
of the individual information contents of X and Y . If, however, X and
Y are related and have something in common, one can take advantage
of this to describe X and Y together using much fewer bits than the
total number that would be needed to describe them separately, and
so H(X, Y ) is much less than H(X) + H(Y ). The quantity H(X : Y )
which is defined as follows

H(X : Y ) = H(X) + H(Y )−H(X, Y )

is called the mutual information of X and Y and measures the degree
of interdependence between X and Y . This concept was defined, in
an ensemble rather than an algorithmic setting, in Shannon’s original
paper [10] on information theory, noisy channels, and coding.

We now explain our definition of the degree of organization or struc-
ture in a geometrical pattern. The d-diameter complexity Hd(X) of an
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object X is defined to be the minimum number of bits needed to de-
scribe X as the “sum” of separate parts each of diameter not greater
than d. Let us be more precise. Given d and X, consider all possi-
ble ways of partitioning X into nonoverlapping pieces each of diameter
≤ d. Then Hd(X) is the sum of the number of bits needed to describe
each of the pieces separately, plus the number of bits needed to spec-
ify how to reassemble them into X. Each piece must have a separate
description which makes no cross-references to any of the others. And
one is interested in those partitions of X and reassembly techniques α
which minimize this sum. That is to say,

Hd(X) = min[H(α) +
∑
i<k

H(Xi)],

the minimization being taken over all partitions of X into nonoverlap-
ping pieces

X0, X1, X2, . . . , Xk−1

all of diameter ≤ d.
Thus Hd(X) is the minimum number of bits needed to describe X

as if it were the sum of independent pieces of size ≤ d. For d larger
than the diameter of X, Hd(X) will be the same as H(X). If X is
unstructured and unorganized, then as d decreases Hd(X) will stay
close to H(X). However if X has structure, then Hd(X) will rapidly
increase as d decreases and one can no longer take advantage of patterns
of size > d in describing X. Hence Hd(X) as a function of d is a kind
of “spectrum” or “Fourier transform” of X. Hd(X) will increase as d
decreases past the diameter of significant patterns in X, and if X is
organized hierarchically this will happen at each level in the hierarchy.

Thus the faster the difference increases between Hd(X) and H(X)
as d decreases, the more interrelated, structured, and organized X is.
Note however that X may be a “scene” containing many independent
structures or organisms. In that case their degrees of organization are
summed together in the measure

Hd(X)−H(X).

Thus the organisms can be defined as the minimal parts of the scene for
which the amount of organization of the whole can be expressed as the
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sum of the organization of the parts, i.e. pieces for which the organiza-
tion decomposes additively. Alternatively, one can use the notion of the
mutual information of two pieces to obtain a theoretical prescription
of how to separate a scene into independent patterns and distinguish a
pattern from an unstructured background in which it is imbedded (see
Section 6).

Let us enumerate what we view as the main points in favor of this
definition of organization: It is general, i.e. following von Neumann the
details of the physics and chemistry of this universe are not involved;
it measures organized structure rather than unstructured details; and
it passes the spontaneous generation or “Pasteur” test, i.e. there is
a very low probability of creating organization by chance without a
long evolutionary process (this may be viewed as a way of restating
Theorem 1 in Section 5). The second point is worth elaborating: The
information content of an organism includes much irrelevant detail, and
a bigger animal is necessarily more complex in this sense. But if it were
possible to calculate the mutual information of two arbitrary cells in a
body at a given moment, we surmise that this would give a measure of
the genetic information in a cell. This is because the irrelevant details
in each of them, such as the exact position and velocity of each molecule,
are uncorrelated and would cancel each other out.

In addition to providing a definition of information content and
of degree of organization, this approach also provides a definition of
“organism” in the sense that a theoretical prescription is given for dis-
secting a scene into organisms and determining their boundaries, so
that the measure of degree of organization can then be applied sepa-
rately to each organism. However a strong note of caution is in order:
We agree with [1] that a definition of “life” is valid as long as anything
that satisfies the definition and is likely to appear in the universe under
consideration, either is alive or is a by-product of living beings or their
activities. There certainly are structures satisfying our definition that
are not alive (see Theorems 3 to 6 in Section 5); however, we believe
that they would only be likely to arise as by-products of the activities
of living beings.

In the succeeding sections we shall do the following: give a more
formal presentation of the basic concepts of algorithmic information
theory; discuss the notions of the independence and mutual information
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of groups of more than two objects; formally define Hd; evaluate Hd(R)
for some typical one-dimensional geometrical patterns R which we dub
“gas,” “crystal,” “twins,” “bilateral symmetry,” and “hierarchy;” con-
sider briefly the problem of decomposing scenes containing several inde-
pendent patterns, and of determining the boundary of a pattern which
is imbedded in an unstructured background; discuss briefly the two
and higher dimension cases; and mention some alternative definitions
of mutual information which have been proposed.

The next step in this program of research would be to proceed from
static snapshots to time-varying situations, in other words, to set up a
discrete universe with probabilistic state transitions and to show that
there is a certain probability that a certain level of organization will be
reached by a certain time. More generally, one would like to determine
the probability distribution of the maximum degree of organization of
any organism at time t + ∆ as a function of it at time t. Let us pro-
pose an initial proof strategy for setting up a nontrivial example of the
evolution of organisms: construct a series of intermediate evolutionary
forms [11], argue that increased complexity gives organisms a selec-
tive advantage, and show that no primitive organism is so successful
or lethal that it diverts or blocks this gradual evolutionary pathway.
What would be the intellectual flavor of the theory we desire? It would
be a quantitative formulation of Darwin’s theory of evolution in a very
general model universe setting. It would be the opposite of ergodic the-
ory. Instead of showing that things mix and become uniform, it would
show that variety and organization will probably increase.

Some final comments: Software is fast approaching biological lev-
els of complexity, and hardware, thanks to very large scale integration,
is not far behind. Because of this, we believe that the computer is
now becoming a valid metaphor for the entire organism, not just for
the brain [12]. Perhaps the most interesting example of this is the
evolutionary phenomenon suffered by extremely large programs such
as operating systems. It becomes very difficult to make changes in
such programs, and the only alternative is to add new features rather
than modify existing ones. The genetic program has been “patched
up” much more and over a much longer period of time than even the
largest operating systems, and Nature has accomplished this in much
the same manner as systems programmers have, by carrying along all
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the previous code as new code is added [11]. The experimental proof
of this is that ontogeny recapitulates phylogeny, i.e. each embryo to a
certain extent recapitulates in the course of its development the evo-
lutionary sequence that led to it. In this connection we should also
mention the thesis developed in [13] that the information contained in
the human brain is now comparable with the amount of information in
the genes, and that intelligence plus education may be characterized as
a way of getting around the limited modifiability and channel capacity
of heredity. In other words, Nature, like computer designers, has de-
cided that it is much more flexible to build general-purpose computers
than to use heredity to “hardwire” each behavior pattern instinctively
into a special-purpose computer.

2. Algorithmic Information Theory

We first summarize some of the basic concepts of algorithmic informa-
tion theory in its most recent formulation [14–16].

This new approach leads to a formalism that is very close to that
of classical probability theory and information theory, and is based on
the notion that the tape containing the Turing machine’s program is
infinite and entirely filled with 0’s and 1’s. This forces programs to be
self-delimiting; i.e. they must contain within themselves information
about their size, since the computer cannot rely on a blank at the end
of the program to indicate where it ends.

Consider a universal Turing machine U whose programs are in bi-
nary and are self-delimiting. By “self-delimiting” we mean, as was just
explained, that they do not have blanks appended as endmarkers. By
“universal” we mean that for any other Turing machine M whose pro-
grams p are in binary and are self-delimiting, there is a prefix µ such
that U(µp) always carries out the same computation as M(p).

H(X), the algorithmic information content of the finite object X, is
defined to be the size in bits of the smallest self-delimiting program for
U to compute X. This includes the proviso that U halt after printing
X. There is absolutely no restriction on the running time or storage
space used by this program. For example, X can be a natural number
or a bit string or a tuple of natural numbers or bit strings. Note that
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variations in the definition of U give rise to at most O(1) differences in
the resulting H , by the definition of universality.

The self-delimiting requirement is adopted so that one gets the fol-
lowing basic subadditivity property of H :

H(〈X, Y 〉) ≤ H(X) + H(Y ) + O(1).

This inequality holds because one can concatenate programs. It ex-
presses the notion of “adding information,” or, in computer jargon,
“using subroutines.”

Another important consequence of this requirement is that a natural
probability measure P , which we shall refer to as the algorithmic prob-
ability, can be associated with the result of any computation. P (X) is
the probability that X is obtained as output if the standard universal
computer U is started running on a program tape filled with 0’s and
1’s by separate tosses of a fair coin. The algorithmic probability P and
the algorithmic information content H are related as follows [14]:

H(X) = − log P (X) + O(1). (1)

Consider a binary string s. Define the function L as follows:

L(n) = max{H(s) : length(s) = n}.

It can be shown [14] that L(n) = n + H(n) + O(1), and that an over-
whelming majority of the s of length n have H(s) very close to L(n).
Such s have maximum information content and are highly random,
patternless, incompressible, and typical. They are said to be “algo-
rithmically random.” The greater the difference between H(s) and
L(length(s)), the less random s is. It is convenient to say that “s is
k-random”. if H(s) ≥ L(n) − k, where n = length(s). There are at
most

2n−k+O(1)

n-bit strings which aren’t k-random. As for natural numbers, most n
have H(n) very close to L(floor(log n)) Here floor(x) is the greatest
integer ≤ x. Strangely enough, though most strings are random it is
impossible to prove that specific strings have this property. For an



10 G. J. Chaitin

explanation of this paradox and further references, see the section on
metamathematics in [15], and also see [9].

We now make a few observations that will be needed later. First of
all, H(n) is a smooth function of n:

|H(n)−H(m)| = O(log |n−m|). (2)

(Note that this is not strictly true if |n−m| is equal to 0 or 1, unless
one considers the log of 0 and 1 to be 1; this convention is therefore
adopted throughout this paper.) For a proof, see [16]. The following
upper bound on H(n) is an immediate corollary of this smoothness
property: H(n) = O(log n). Hence if s is an n-bit string, then H(s) ≤
n+O(log n). Finally, note that changes in the value of the argument of
the function L produce nearly equal changes in the value of L. Thus,
for any ε there is a δ such that L(n) ≥ L(m) + ε if n ≥ m + δ. This is
because of the fact that L(n) = n + H(n) + O(1) and the smoothness
property (2) of H .

An important concept of algorithmic information theory that hasn’t
been mentioned yet is the conditional probability P (Y |X), which by
definition is P (〈X, Y 〉)/P (X). To the conditional probability there cor-
responds the relative information content H(Y |X∗), which is defined to
be the size in bits of the smallest programs for the standard universal
computer U to output Y if it is given X∗, a canonical minimum-size
program for calculating X. X∗ is defined to be the first H(X)-bit
program to compute X that one encounters in a fixed recursive enu-
meration of the graph of U (i.e. the set of all ordered pairs of the form
〈p, U(p)〉). Note that there are partial recursive functions which map
X∗ to 〈X, H(X)〉 and back again, and so X∗ may be regarded as an ab-
breviation for the ordered pair whose first element is the string X and
whose second element is the natural number that is the complexity of
X. We should also note the immediate corollary of (1) that minimum-
size or nearly minimum-size programs are essentially unique: For any ε
there is a δ such that for all X the cardinality of {the set of all programs
for U to calculate X that are within ε bits of the minimum size H(X)}
is less than δ. It is possible to prove the following theorem relating the
conditional probability and the relative information content [14]:

H(Y ∗|X) = − log P (Y |X) + O(1). (3)
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From (1) and (3) and the definition P (〈X, Y 〉) = P (X)P (Y |X), one
obtains this very basic decomposition:

H(〈X, Y 〉) = H(X) + H(Y |X∗) + O(1). (4)

3. Independence and Mutual Information

It is an immediate corollary of (4) that the following four quantities are
all within O(1) of each other:




H(X)−H(X|Y ∗),
H(Y )−H(Y |X∗),
H(X) + H(Y )−H(〈X, Y 〉),
H(Y ) + H(X)−H(〈Y, X〉).

These four quantities are known as the mutual information H(X : Y )
of X and Y ; they measure the extent to which X and Y are interde-
pendent. For if P (〈X, Y 〉) ≈ P (X)P (Y ), then H(X : Y ) = O(1);
and if Y is a recursive function of X, then H(Y |X∗) = O(1) and
H(X : Y ) = H(Y ) + O(1). In fact,

H(X : Y ) = − log

[
P (X)P (Y )

P (〈X, Y 〉)
]

+ O(1),

which shows quite clearly that H(X : Y ) is a symmetric measure of the
independence of X and Y . Note that in algorithmic information theory,
what is of importance is an approximate notion of independence and
a measure of its degree (mutual information), rather than the exact
notion. This is because the algorithmic probability may vary within
a certain percentage depending on the choice of universal computer
U . Conversely, information measures in algorithmic information theory
should not vary by more than O(1) depending on the choice of U .

To motivate the definition of the d-diameter complexity, we now
discuss how to generalize the notion of independence and mutual infor-
mation from a pair to an n-tuple of objects. In what follows classical
and algorithmic probabilities are distinguished by using curly brackets
for the first one and parentheses for the second. In probability theory
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the mutual independence of a set of n events {Ak : k < n} is defined
by the following 2n equations:

∏
k∈S

P{Ak} = P{⋂
k∈S

Ak}

for all S ⊂ n. Here the set-theoretic convention due to von Neumann
is used that identifies the natural number n with the set {k : k < n}.
In algorithmic probability theory the analogous condition would be to
require that ∏

k∈S

P (Ak) ≈ P (
⊔
k∈S

Ak) (5)

for all S ⊂ n. Here
⊔

Ak denotes the tuple forming operation for a
variable length tuple, i.e.

⊔
k<n

Ak = 〈A0, A1, A2, . . . , An−1〉.

It is a remarkable fact that these 2n conditions (5) are equivalent to
the single requirement that

∏
k<n

P (Ak) ≈ P (
⊔
k<n

Ak). (6)

To demonstrate this it is necessary to make use of special properties
of algorithmic probability that are not shared by general probability
measures. In the case of a general probability space,

P{A ∩ B} ≥ P{A}+ P{B} − 1

is the best lower bound on P{A∩B} that can in general be formulated
in terms of P{A} and P{B}. For example, it is possible for P{A} and
P{B} to both be 1/2, while P{A∩B} = 0. In algorithmic information
theory the situation is quite different. In fact one has:

P (〈A, B〉) ≥ c2P (A)P (B),

and this generalizes to any fixed number of objects:

P (
⊔
k<n

Ak) ≥ cn

∏
k<n

P (Ak).



Toward a Mathematical Definition of “Life” 13

Thus if the joint algorithmic probability of a subset of the n-tuple of
objects were significantly greater than the product of their individual
algorithmic probabilities, then this would also hold for the entire n-
tuple of objects. More precisely, for any S ⊂ n one has

P (
⊔
k<n

Ak) ≥ c′nP (
⊔
k∈S

Ak)P (
⊔

k∈n−S

Ak) ≥ c′′nP (
⊔
k∈S

Ak)
∏

k∈n−S

P (Ak).

Then if one assumes that

P (
⊔
k∈S

Ak) �
∏
k∈S

P (Ak)

(here � denotes “much greater than”), it follows that

P (
⊔
k<n

Ak) �
∏
k<n

P (Ak)

We conclude that in algorithmic probability theory (5) and (6) are
equivalent and thus (6) is a necessary and sufficient condition for an
n-tuple to be mutually independent. Therefore the following measure
of mutual information for n-tuples accurately characterizes the degree
of interdependence of n objects:

[
∑
k<n

H(Ak)]−H(
⊔
k<n

Ak).

This measure of mutual information subsumes all others in the following
precise sense:

[
∑
k<n

H(Ak)]−H(
⊔
k<n

Ak) = max{[∑
k∈S

H(Ak)]−H(
⊔
k∈S

Ak)}+ O(1),

where the maximum is taken over all S ⊂ n.

4. Formal Definition of Hd

We can now present the definition of the d-diameter complexity Hd(R).
We assume a geometry: graph paper of some finite number of dimen-
sions that is divided into unit cubes. Each cube is black or white,
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opaque or transparent, in other words, contains a 1 or a 0. Instead
of requiring an output tape which is multidimensional, our universal
Turing machine U outputs tuples giving the coordinates and the con-
tents (0 or 1) of each unit cube in a geometrical object that it wishes
to print. Of course geometrical objects are considered to be the same
if they are translation equivalent. We choose for this geometry the
city-block metric

D(X, Y ) = max |xi − yi|,
which is more convenient for our purposes than the usual metric. By
a region we mean a set of unit cubes with the property that from any
cube in it to any other one there is a path that only goes through
other cubes in the region. To this we add the constraint which in the
3-dimensional case is that the connecting path must only pass through
the interior and faces of cubes in the region, not through their edges or
vertices. The diameter of an arbitrary region R is denoted by |R|, and
is defined to be the minimum diameter 2r of a “sphere”

{X : D(X, X0) ≤ r}

which contains R. Hd(R), the size in bits of the smallest programs
which calculate R as the “sum” of independent regions of diameter
≤ d, is defined as follows:

Hd(R) = min[α +
∑
i<k

H(Ri)],

where
α = H(R| ⊔

i<k

Ri) + H(k),

the minimization being taken over all k and partitions of R into k-
tuples

⊔
Ri of nonoverlapping regions with the property that |Ri| < d

for all i < k.
The discussion in Section 3 of independence and mutual informa-

tion shows that Hd(R) is a natural measure to consider. Excepting
the α term, Hd(R) −H(R) is simply the minimum attainable mutual
information over any partition of R into nonoverlapping pieces all of
size not greater than d. We shall see in Section 5 that in practice the
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min is attained with a small number of pieces and the α term is not
very significant.

A few words about α, the number of bits of information needed to
know how to assemble the pieces: The H(k) term is included in α, as
illustrated in Lemma 1 below, because it is the number of bits needed to
tell U how many descriptions of pieces are to be read. The H(R|⊔ Ri)
term is included in α because it is the number of bits needed to tell U
how to compute R given the k-tuple of its pieces. This is perhaps the
most straight-forward formulation, and the one that is closest in spirit
to Section 5 [5]. However, less information may suffice, e.g.

H(R|〈k∗, ⊔
i<k

(R∗
i )〉) + H(k)

bits. In fact, one could define α to be the minimum number of bits in
a string which yields a program to compute the entire region when it
is concatenated with minimum-size programs for all the pieces of the
region; i.e. one could take

α = min{|p| : U(pR∗
0R

∗
1R

∗
2 . . . R∗

k−1) = R}.
Here are two basic properties of Hd: If d ≥ |R|, then Hd(R) =

H(R) + O(1); Hd(R) increases monotonically as d decreases. Hd(R) =
H(R) + O(1) if d ≥ |R| because we have included the α term in the
definition of Hd(R). Hd(R) increases as d decreases because one can no
longer take advantage of patterns of diameter greater than d to describe
R. The curve showing Hd(R) as a function of d may be considered a
kind of “Fourier spectrum” of R. Interesting things will happen to the
curve at d which are the sizes of significant patterns in R.

Lemma 1. (“Subadditivity for n-tuples”)

H(
⊔
k<n

Ak) ≤ cn +
∑
k<n

H(Ak).

Proof.

H(
⊔
k<n

Ak) = H(〈n,
⊔
k<n

Ak〉) + O(1)

= H(n) + H(
⊔
k<n

Ak|n∗) + O(1)

≤ c′ + H(n) +
∑
k<n

H(Ak).
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Hence one can take
cn = c′ + H(n).

5. Evaluation of Hd for Typical One-Dim-

ensional Geometrical Patterns

Before turning to the examples, we present a lemma needed for esti-
mating Hd(R). The idea is simply that sufficiently large pieces of a
random string are also random. It is required that the pieces be suffi-
ciently large for the following reason: It is not difficult to see that for
any j, there is an n so large that random strings of size greater than
n must contain all 2j possible subsequences of length j. In fact, for n
sufficiently large the relative frequency of occurrence of all 2j possible
subsequences must approach the limit 2−j .

Lemma 2. (“Random parts of random strings”)
Consider an n-bit string s to be a loop. For any natural numbers i and
j between 1 and n, consider the sequence u of contiguous bits from s
starting at the ith and continuing around the loop to the jth. Then if
s is k-random, its subsequence u is (k + O(log n))-random.

Proof. The number of bits in u is j − i + 1 if j is ≥ i, and is
n+ j− i+1 if j is < i. Let v be the remainder of the loop s after u has
been excised. Then we have H(u)+H(v)+H(i)+O(1) ≥ H(s). Thus
H(u)+n−|u|+O(logn) ≥ H(s), or H(u) ≥ H(s)−n+ |u|+O(logn).
Thus if s is k-random, i.e. H(s) ≥ L(n)−k = n+H(n)−k+O(1), then
u is x-random, where x is determined as follows: H(u) ≥ n + H(n)−
k − n + |u|+ O(log n) = |u|+ H(|u|)− k + O(logn). That is to say, if
s is k-random, then its subsequence u is (k + O(logn))-random.

Lemma 3. (“Random prefixes of random strings”)
Consider an n-bit string s. For any natural number j between 1 and
n, consider the sequence u consisting of the first j bits of s. Then if s
is k-random, its j-bit prefix u is (O(log j) + k)-random.

Proof. Let the (n − j)-bit string v be the remainder of s after u
is excised. Then we have H(u) + H(v) + O(1) ≥ H(s), and therefore
H(u) ≥ H(s)− L(n− j) + O(1) = L(n)− k − L(n− j) + O(1) since s
is k-random. Note that L(n)−L(n− j) = j + H(n)−H(n− j) + O(1)
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= j + O(log j), by the smoothness property (2) of H . Hence H(u) ≥
j+O(log j)−k. Thus if u is x-random (x as small as possible), we have
L(j)−x = j +O(log j)−x ≥ j +O(log j)−k. Hence x ≤ O(log j)+k.

Remark. Conversely, any random n-bit string can be extended
by concatenating k bits to it in such a manner that the result is a
random (n + k)-bit string. We shall not use this converse result, but it
is included here for the sake of completeness.

Lemma 4. (“Random extensions of random strings”)
Assume the string s is x-random. Consider a natural number k. Then
there is a k-bit string e such that se is y-random, as long as k, x, and
y satisfy a condition of the following form:

y ≥ x + O(logx) + O(log k).

Proof. Assume on the contrary that the x-random string s has
no y-random k-bit extension and y ≥ x + O(log x) + O(log k), i.e. x
< y + O(log y) + O(log k). From this assumption we shall derive a
contradiction by using the fact that most strings of any particular size
are y-random, i.e. the fraction of them that are y-random is at least

1− 2−y+O(1).

It follows that the fraction of |s|-bit strings which have no y-random
k-bit extension is less than

2−y+O(1).

Since by hypothesis no k-bit extension of s is y-random, we can uniquely
determine s if we are given y and k and the ordinal number of the
position of s in {the set of all |s|-bit strings which have no y-random
k-bit extension} expressed as an (|s|−y+O(1))-bit string. Hence H(s)
is less than L(|s|−y +O(1))+H(y)+H(k)+O(1). In as much as L(n)
= n + H(n) + O(1) and |H(n) − H(m)| = O(log |n − m|), it follows
that H(s) is less than L(|s|)− [y + O(log y) + O(log k)]. Since s is by
assumption x-random, i.e. H(s) ≥ L(|s|)− x, we obtain a lower bound
on x of the form y +O(log y)+O(logk), which contradicts our original
assumption that x < y + O(log y) + O(log k).
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Theorem 1. (“Gas”)
Suppose that the region R is an O(log n)-random n-bit string. Consider
d = n/k, where n is large, and k is fixed and greater than zero. Then

H(R) = n + O(log n), and Hd(R) = H(R) + O(log H(R)).

Proof that Hd(R) ≤ H(R) + O(logH(R))
Let β be concatenation of tuples of strings, i.e.

β(
⊔
i≤k

Ri) = R0R1R2 . . . Rk.

Note that
H(β(

⊔
i≤k

Ri)|
⊔
i≤k

Ri) = O(1).

Divide R into k successive strings of size floor(|R|/k), with one (possibly
null) string of size less than k left over at the end. Taking this choice of
partition

⊔
Ri in the definition of Hd(R), and using the fact that H(s)

≤ |s|+ O(log |s|), we see that

Hd(R) ≤ O(1) + H(k + 1) +
∑
i≤k

{|Ri|+ O(log |Ri|)}

≤ O(1) + n + (k + 2)O(log n)

= n + O(log n).

Proof that Hd(R) ≥ H(R) + O(logH(R))
This follows immediately from the fact that H|R|(R) = H(R)+O(1)

and Hd(R) increases monotonically as d decreases.
Theorem 2. (“Crystal”)

Suppose that the region R is an n-bit string consisting entirely of 1’s,
and that the base-two numeral for n is O(log log n)-random. Consider
d = n/k, where n is large, and k is fixed and greater than zero. Then

H(R) = log n + O(log log n), and Hd(R) = H(R) + O(log H(R)).

Proof that Hd(R) ≤ H(R) + O(logH(R))
If one considers using the concatenation function β for assembly as

was done in the proof of Theorem 1, and notes that H(1n) = H(n) +
O(1), one sees that it is sufficient to partition the natural number n into
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O(k) summands none of which is greater than n/k in such a manner
that H(n) + O(log log n) upper bounds the sum of the complexities of
the summands. Division into equal size pieces will not do, because
H(floor(n/k)) = H(n) + O(1), and one only gets an upper bound of
kH(n) + O(1). It is necessary to proceed as follows: Let m be the
greatest natural number such that 2m ≤ n/k. And let p be the smallest
natural number such that 2p > n. By converting n to base-two notation,
one can express n as the sum of≤ p distinct non-negative powers of two.
Divide all these powers of two into two groups: those that are less than
2m and those that are greater than or equal to 2m. Let f be the sum of
all the powers in the first group. f is < 2m ≤ n/k. Let s be the sum of
all the powers in the second group. s is a multiple of 2m; in fact, it is of
the form t2m with t = O(k). Thus n = f +s = f +t2m, where f ≤ n/k,
2m ≤ n/k, and t = O(k). The complexity of 2m is H(m) + O(1)
= O(log m) = O(log log n). Thus the sum of the complexities of the
t summands 2m is also O(log log n). Moreover, f when expressed in
base-two notation has log k + O(1) fewer bit positions on the left than
n does. Hence the complexity of f is H(n) + O(1). In summary, we
have O(k) quantities ni with the following properties:

n =
∑

ni, ni ≤ n/k,
∑

H(ni) ≤ H(n) + O(log log n).

Thus Hd(R) ≤ H(R) + O(log H(R)).
Proof that Hd(R) ≥ H(R) + O(logH(R))
This follows immediately from the fact that H|R|(R) = H(R)+O(1)

and Hd(R) increases monotonically as d decreases.
Theorem 3. (“Twins”)

For convenience assume n is even. Suppose that the region R consists
of two repetitions of an O(log n)-random n/2-bit string u. Consider
d = n/k, where n is large, and k is fixed and greater than unity. Then

H(R) = n/2 + O(log n), and Hd(R) = 2H(R) + O(log H(R)).

Proof that Hd(R) ≤ 2H(R) + O(log H(R))
The reasoning is the same as in the case of the “gas” (Theorem

1). Partition R into k successive strings of size floor(|R|/k), with one
(possibly null) string of size less than k left over at the end.

Proof that Hd(R) ≥ 2H(R) + O(log H(R))
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By the definition of Hd(R), there is a partition
⊔

Ri of R into
nonoverlapping regions which has the property that

Hd(R) = α +
∑

H(Ri), α = H(R|⊔Ri) + H(k), |Ri| ≤ d.

Classify the non-null Ri into three mutually exclusive sets A, B, and
C: A is the set of all non-null Ri which come from the left half of R
(“the first twin”), B is the (empty or singleton) set of all non-null Ri

which come from both halves of R (“straddles the twins”), and C is
the set of all non-null Ri which come from the right half of R (“the
second twin”). Let A′, B′, and C ′ be the sets of indices i of the regions
Ri in A, B, and C, respectively. And let A′′, B′′, and C ′′ be the three
portions of R which contained the pieces in A, B, and C, respectively.
Using the idea of Lemma 1, one sees that

H(A′′) ≤ O(1) + H(#(A)) +
∑
i∈A′

H(Ri),

H(B′′) ≤ O(1) + H(#(B)) +
∑
i∈B′

H(Ri),

H(C ′′) ≤ O(1) + H(#(C)) +
∑
i∈C′

H(Ri).

Here # denotes the cardinality of a set. Now A′′, B′′, and C ′′ are each
a substring of an O(log n)-random n/2-bit string. This assertion holds
for B′′ for the following two reasons: the n/2-bit string is considered
to be a loop, and |B′′| ≤ d = n/k ≤ n/2 since k is assumed to be
greater than 1. Hence, applying Lemma 2, one obtains the following
inequalities:

|A′′|+ O(log n) ≤ H(A′′),

|B′′|+ O(log n) ≤ H(B′′),

|C ′′|+ O(log n) ≤ H(C ′′).

Adding both of the above sets of three inequalities and using the facts
that

|A′′|+ |B′′|+ |C ′′| = |R| = n, #(A) ≤ n/2, #(B) ≤ 1, #(C) ≤ n/2,
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and that H(m) = O(log m), one sees that

n + O(log n) ≤ H(A′′) + H(B′′) + H(C ′′)

≤ O(1) + H(#(A)) + H(#(B)) + H(#(C)) +∑{H(Ri) : i ∈ A′ ∪ B′ ∪ C ′}
≤ O(log n) +

∑
H(Ri).

Hence

Hd(R) ≥ ∑
H(Ri) ≥ n + O(log n) = 2H(R) + O(log H(R)).

Theorem 4. (“Bilateral Symmetry”)
For convenience assume n is even. Suppose that the region R consists
of an O(log n)-random n/2-bit string u concatenated with its reversal.
Consider d = n/k, where n is large, and k is fixed and greater than
zero. Then

H(R) = n/2 + O(log n), and Hd(R) = (2− k−1)H(R) + O(log H(R)).

Proof. The proof is along the lines of that of Theorem 3, with
one new idea. In the previous proof we considered B′′ which is the
region Ri in the partition of R that straddles R’s midpoint. Before B′′

was O(log |R|)-random, but now it can be compressed into a program
about half its size, i.e. about |B′′|/2 bits long. Hence the maximum
departure from randomness for B′′ is for it to only be O(log |R|) +
(|R|/2k)-random, and this is attained by making B′′ as large as possible
and having its midpoint coincide with that of R.

Theorem 5. (“Hierarchy”)
For convenience assume n is a power of two. Suppose that the region
R is constructed in the following fashion. Consider an O(1)-random
log n-bit string s. Start with the one-bit string 1, and successively
concatenate the string with itself or with its bit by bit complement, so
that its size doubles at each stage. At the ith stage, the string or its
complement is chosen depending on whether the ith bit of s is a 0 or
a 1, respectively. Consider the resulting n-bit string R and d = n/k,
where n is large, and k is fixed and greater than zero. Then

H(R) = log n + O(log log n), and Hd(R) = kH(R) + O(log H(R)).
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Proof that Hd(R) ≤ kH(R) + O(logH(R))
The reasoning is similar to the case of the upper bounds on Hd(R)

in Theorems 1 and 3. Partition R into k successive strings of size
floor(|R|/k), with one (possibly null) string of size less than k left over
at the end.

Proof that Hd(R) ≥ kH(R) + O(logH(R))
Proceeding as in the proof of Theorem 3, one considers a partition⊔

Ri of R that realizes Hd(R). Using Lemma 3, one can easily see that
the following lower bound holds for any substring Ri of R:

H(Ri) ≥ max{1, log |Ri| − c log log |Ri|}.

The max {1, . . .} is because H is always greater than or equal to unity;
otherwise U would have only a single output. Hence the following
expression is a lower bound on Hd(R):

∑
Φ(|Ri|), (7)

where

Φ(x) = max{1, log x− c log log x}, ∑ |Ri| = |R| = n, |Ri| ≤ d.

It follows that one obtains a lower bound on (7) and thus on Hd(R) by
solving the following minimization problem: Minimize

∑
Φ(ni) (8)

subject to the following constraints:

∑
ni = n, ni ≤ n/k, n large, k fixed.

Now to do the minimization. Note that as x goes to infinity, Φ(x)/x
goes to the limit zero. Furthermore, the limit is never attained, i.e.
Φ(x)/x is never equal to zero. Moreover, for x and y sufficiently large
and x less than y, Φ(x)/x is greater than Φ(y)/y. It follows that a sum
of the form (8) with the ni constrained as indicated is minimized by
making the ni as large as possible. Clearly this is achieved by taking
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all but one of the ni equal to floor(n/k), with the last ni equal to
remainder(n/k). For this choice of ni the value of (8) is

k[log n + O(log log n)] + Φ(remainder(n/k))

= k log n + O(log log n)

= kH(R) + O(log H(R)).

Theorem 6. For convenience assume n is a perfect square. Suppose
that the region R is an n-bit string consisting of

√
n repetitions of an

O(log n)-random
√

n bit string u. Consider d = n/k, where n is large,
and k is fixed and greater than zero. Then

H(R) =
√

n + O(log n), and Hd(R) = kH(R) + O(log H(R)).

Proof that Hd(R) ≤ kH(R) + O(logH(R))
The reasoning is identical to the case of the upper bound on Hd(R)

in Theorem 5.
Proof that Hd(R) ≥ kH(R) + O(logH(R))
Proceeding as in the proof of Theorem 5, one considers a partition⊔

Ri of R that realizes Hd(R). Using Lemma 2, one can easily see that
the following lower bound holds for any substring Ri of R:

H(Ri) ≥ max{1,−c log n + min{√n, |Ri|}}.
Hence the following expression is a lower bound on Hd(R):

∑
Φn(|Ri|), (9)

where

Φn(x) = max{1,−c log n+min{√n, x}}, ∑ |Ri| = |R| = n, |Ri| ≤ d.

It follows that one obtains a lower bound on (9) and thus on Hd(R) by
solving the following minimization problem: Minimize

∑
Φn(ni) (10)

subject to the following constraints:

∑
ni = n, ni ≤ n/k, n large, k fixed.
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Now to do the minimization. Consider Φn(x)/x as x goes from 1 to n.
It is easy to see that this ratio is much smaller, on the order of 1/

√
n,

for x near to n than it is for x anywhere else in the interval from 1 to n.
Also, for x and y both greater than

√
n and x less than y, Φn(x)/x is

greater than Φn(y)/y. It follows that a sum of the form (10) with the
ni constrained as indicated is minimized by making the ni as large as
possible. Clearly this is achieved by taking all but one of the ni equal
to floor(n/k), with the last ni equal to remainder(n/k). For this choice
of ni the value of (10) is

k[
√

n + O(log n)] + Φn(remainder(n/k))

= k
√

n + O(log n)

= kH(R) + O(logH(R)).

6. Determining Boundaries of Geometrical

Patterns

What happens to the structures of Theorems 3 to 6 if they are imbedded
in a gas or crystal, i.e. in a random or constant 0 background? And
what about scenes with several independent structures imbedded in
them—do their degrees of organization sum together? Is our definition
sufficiently robust to work properly in these circumstances?

This raises the issue of determining the boundaries of structures. It
is easy to pick out the hierarchy of Theorem 5 from an unstructured
background. Any two “spheres” of diameter δ will have a high mutual
information given δ∗ if and only if they are both in the hierarchy instead
of in the background. Here we are using the notion of the mutual
information of X and Y given Z, which is denoted H(X : Y |Z), and is
defined to be H(X|Z) + H(Y |Z) − H(〈X, Y 〉|Z). The special case of
this concept that we are interested in, however, can be expressed more
simply: for if X and Y are both strings of length n, then it can be
shown that H(X : Y |n∗) = H(X|Y ) − H(n). This is done by using
the decomposition (4) and the fact that since X and Y are both of
length n, H(〈n, X〉) = H(X) + O(1), H(〈n, Y 〉) = H(Y ) + O(1), and
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H(〈n, 〈X, Y 〉〉) = H(〈X, Y 〉) + O(1), and thus

H(X|n∗) = H(X)−H(n) + O(1),

H(Y |n∗) = H(Y )−H(n) + O(1),

H(〈X, Y 〉|n∗) = H(〈X, Y 〉)−H(n) + O(1).

How can one dissect a structure from a comparatively unorganized
background in the other cases, the structures of Theorems 3, 4, and 6?
The following definition is an attempt to provide a tool for doing this:
An ε, δ-pattern R is a maximal region (“maximal” means not extensible,
not contained in a bigger region R′ which is also an ε, δ-pattern) with
the property that for any δ-diameter sphere R1 in R there is a disjoint
δ-diameter sphere R2 in R such that

H(R1 : R2|δ∗) ≥ ε.

The following questions immediately arise: What is the probability of
having an ε, δ-pattern in an n-bit string, i.e. what proportion of the
n-bit strings contain an ε, δ-pattern? This is similar to asking what is
the probability that an n-bit string s satisfies

Hn/k(s)−H(s) > x.

A small upper bound on the latter probability can be derived from
Theorem 1.

7. Two and Higher Dimension Geometrical

Patterns

We make a few brief remarks.
In the general case, to say that a geometrical object O is “ran-

dom” means H(O|shape(O)∗) ≈ volume(O), or H(O) ≈ volume(O) +
H(shape(O)). Here shape(O) denotes the object O with all the 1’s that
it contains in its unit cubes changed to 0’s. Here are some examples:
A random n by n square has complexity

n2 + H(n) + O(1).
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A random n by m rectangle doesn’t have complexity nm + H(n) +
H(m)+O(1), for if m = n this states that a random n by n square has
complexity

n2 + 2H(n) + O(1),

which is false. Instead a random n by m rectangle has complexity
nm + H(〈n, m〉) + O(1) = nm + H(n) + H(m|n∗) + O(1), which gives
the right answer for m = n, since H(n|n∗) = O(1). One can show that
most n by m rectangles have complexity nm + H(〈n, m〉) + O(1), and
less than two raised to the nm − k + O(1) have complexity less than
nm + H(〈n, m〉)− k.

Here is a two-dimensional version of Lemma 2: Any large chunk of
a random square which has a shape that is easy to describe, must itself
be random.

8. Common Information

We should mention some new concepts that are closely related to the
notion of mutual information. They are called measures of common
information. Here are three different expressions defining the common
information content of two strings X and Y . In them the parameter ε
denotes a small tolerance, and as before H(X : Y |Z) denotes H(X|Z)+
H(Y |Z)−H(〈X, Y 〉|Z).

max{H(Z) : H(Z|X∗) < ε & H(Z|Y ∗) < ε}
min{H(〈X, Y 〉 : Z) : H(X : Y |Z∗) < ε}
min{H(Z) : H(X : Y |Z∗) < ε}

Thus the first expression for the common information of two strings
defines it to be the maximum information content of a string that can
be extracted easily from both, the second defines it to be the minimum
of the mutual information of the given strings and any string in the
light of which the given strings look nearly independent, and the third
defines it to be the minimum information content of a string in the light
of which the given strings appear nearly independent. Essentially these
definitions of common information are given in [17–19]. [17] considers
an algorithmic formulation of its common information measure, while
[18] and [19] deal exclusively with the classical ensemble setting.
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Appendix 1: Errors in [5]

. . . The definition of the d-diameter complexity given in [5] has a basic
flaw which invalidates the entries for R = R2, R3, and R4 and d = n/k
in the table in [5]: It is insensitive to changes in the diameter d . . .

There is also another error in the table in [5], even if we forget the
flaw in the definition of the d-diameter complexity. The entry for the
crystal is wrong, and should read log n rather than k log n (see Theorem
2 in Section 5 of this paper).

Appendix 2: An Information-Theoretic

Proof That There Are Infinitely Many

Primes

It is of methodological interest to use widely differing techniques in
elementary proofs of Euclid’s theorem that there are infinitely many
primes. For example, see Chapter II of Hardy and Wright [20], and also
[21–23]. Recently Billingsley [24] has given an information-theoretic
proof of Euclid’s theorem. The purpose of this appendix is to point out
that there is an information-theoretic proof of Euclid’s theorem that
utilizes ideas from algorithmic information theory instead of the classi-
cal measure-theoretic setting employed by Billingsley. We consider the
algorithmic entropy H(n), which applies to individual natural numbers
n instead of to ensembles.

The proof is by reductio ad absurdum. Suppose on the contrary that
there are only finitely many primes p1, . . . , pk. Then one way to specify
algorithmically an arbitrary natural number

n =
∏

pei
i

is by giving the k-tuple 〈e1, . . . , ek〉 of exponents in any of its prime
factorizations (we pretend not to know that the prime factorization is
unique). Thus we have

H(n) ≤ H(〈e1, . . . , ek〉) + O(1).
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By the subadditivity of algorithmic entropy we have

H(n) ≤ ∑
H(ei) + O(1).

Let us examine this inequality. Most n are algorithmically random and
so the left-hand side is usually log n+O(log log n). As for the right-hand
side, since

n ≥ pei
i ≥ 2ei ,

each ei is ≤ log n. Thus H(ei) ≤ log log n + O(log log log n). So for
random n we have

log n + O(log log n) ≤ k[log log n + O(log log log n)],

where k is the assumed finite number of primes. This last inequality is
false for large n, as it assuredly is not the case that log n = O(log log n).
Thus our initial assumption that there are only k primes is refuted, and
there must in fact be infinitely many primes.

This proof is merely a formalization of the observation that if there
were only finitely many primes, the prime factorization of a number
would usually be a much more compact representation for it than its
base-two numeral, which is absurd. This proof appears, formulated as
a counting argument, in Section 2.6 of the 1938 edition of Hardy and
Wright [20]; we believe that it is also quite natural to present it in an
information-theoretic setting.
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