Node:Overview of real data FFTs, Next:Radix-2 FFT routines for real data, Previous:Mixed-radix FFT routines for complex data, Up:Fast Fourier Transforms
The functions for real data are similar to those for complex data. However, there is an important difference between forward and inverse transforms. The fourier transform of a real sequence is not real. It is a complex sequence with a special symmetry:
A sequence with this symmetry is called conjugate-complex or
half-complex. This different structure requires different
storage layouts for the forward transform (from real to half-complex)
and inverse transform (from half-complex back to real). As a
consequence the routines are divided into two sets: functions in
gsl_fft_real
which operate on real sequences and functions in
gsl_fft_halfcomplex
which operate on half-complex sequences.
Functions in gsl_fft_real
compute the frequency coefficients of a
real sequence. The half-complex coefficients c of a real sequence
x are given by fourier analysis,
Functions in gsl_fft_halfcomplex
compute inverse or backwards
transforms. They reconstruct real sequences by fourier synthesis from
their half-complex frequency coefficients, c,
The symmetry of the half-complex sequence implies that only half of the complex numbers in the output need to be stored. The remaining half can be reconstructed using the half-complex symmetry condition. This works for all lengths, even and odd--when the length is even the middle value where k=N/2 is also real. Thus only N real numbers are required to store the half-complex sequence, and the transform of a real sequence can be stored in the same size array as the original data.
The precise storage arrangements depend on the algorithm, and are different for radix-2 and mixed-radix routines. The radix-2 function operates in-place, which constrains the locations where each element can be stored. The restriction forces real and imaginary parts to be stored far apart. The mixed-radix algorithm does not have this restriction, and it stores the real and imaginary parts of a given term in neighboring locations (which is desirable for better locality of memory accesses).