Node:Providing the multidimensional system of equations to solve, Next:, Previous:Initializing the Multidimensional Solver, Up:Multidimensional Root-Finding



Providing the function to solve

You must provide n functions of n variables for the root finders to operate on. In order to allow for general parameters the functions are defined by the following data types:

gsl_multiroot_function Data Type
This data type defines a general system of functions with parameters.
int (* f) (const gsl_vector * x, void * params, gsl_vector * f)
this function should store the vector result f(x,params) in f for argument x and parameters params, returning an appropriate error code if the function cannot be computed.
size_t n
the dimension of the system, i.e. the number of components of the vectors x and f.
void * params
a pointer to the parameters of the function.

Here is an example using Powell's test function,

with A = 10^4. The following code defines a gsl_multiroot_function system F which you could pass to a solver:

     struct powell_params { double A; };
     
     int
     powell (gsl_vector * x, void * p, gsl_vector * f) {
        struct powell_params * params
          = *(struct powell_params *)p;
        const double A = (params->A);
        const double x0 = gsl_vector_get(x,0);
        const double x1 = gsl_vector_get(x,1);
     
        gsl_vector_set (f, 0, A * x0 * x1 - 1);
        gsl_vector_set (f, 1, (exp(-x0) + exp(-x1)
                               - (1.0 + 1.0/A)));
        return GSL_SUCCESS
     }
     
     gsl_multiroot_function F;
     struct powell_params params = { 10000.0 };
     
     F.f = &powell;
     F.n = 2;
     F.params = &params;
     

gsl_multiroot_function_fdf Data Type
This data type defines a general system of functions with parameters and the corresponding Jacobian matrix of derivatives,
int (* f) (const gsl_vector * x, void * params, gsl_vector * f)
this function should store the vector result f(x,params) in f for argument x and parameters params, returning an appropriate error code if the function cannot be computed.
int (* df) (const gsl_vector * x, void * params, gsl_matrix * J)
this function should store the n-by-n matrix result J_ij = d f_i(x,params) / d x_j in J for argument x and parameters params, returning an appropriate error code if the function cannot be computed.
int (* fdf) (const gsl_vector * x, void * params, gsl_vector * f, gsl_matrix * J)
This function should set the values of the f and J as above, for arguments x and parameters params. This function provides an optimization of the separate functions for f(x) and J(x)--it is always faster to compute the function and its derivative at the same time.
size_t n
the dimension of the system, i.e. the number of components of the vectors x and f.
void * params
a pointer to the parameters of the function.

The example of Powell's test function defined above can be extended to include analytic derivatives using the following code,

     int
     powell_df (gsl_vector * x, void * p, gsl_matrix * J)
     {
        struct powell_params * params
          = *(struct powell_params *)p;
        const double A = (params->A);
        const double x0 = gsl_vector_get(x,0);
        const double x1 = gsl_vector_get(x,1);
        gsl_matrix_set (J, 0, 0, A * x1);
        gsl_matrix_set (J, 0, 1, A * x0);
        gsl_matrix_set (J, 1, 0, -exp(-x0));
        gsl_matrix_set (J, 1, 1, -exp(-x1));
        return GSL_SUCCESS
     }
     
     int
     powell_fdf (gsl_vector * x, void * p,
                 gsl_matrix * f, gsl_matrix * J) {
        struct powell_params * params
          = *(struct powell_params *)p;
        const double A = (params->A);
        const double x0 = gsl_vector_get(x,0);
        const double x1 = gsl_vector_get(x,1);
     
        const double u0 = exp(-x0);
        const double u1 = exp(-x1);
     
        gsl_vector_set (f, 0, A * x0 * x1 - 1);
        gsl_vector_set (f, 1, u0 + u1 - (1 + 1/A));
     
        gsl_matrix_set (J, 0, 0, A * x1);
        gsl_matrix_set (J, 0, 1, A * x0);
        gsl_matrix_set (J, 1, 0, -u0);
        gsl_matrix_set (J, 1, 1, -u1);
        return GSL_SUCCESS
     }
     
     gsl_multiroot_function_fdf FDF;
     
     FDF.f = &powell_f;
     FDF.df = &powell_df;
     FDF.fdf = &powell_fdf;
     FDF.n = 2;
     FDF.params = 0;
     

Note that the function powell_fdf is able to reuse existing terms from the function when calculating the Jacobian, thus saving time.