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STATISTICAL MECHANICS 
 

Lars Gislén, Theoretical physics, University of Lund 
 
1. Introduction 
 
Classical thermodynamics is based on a few 
principles derived from: The first and second 
law. The first law is essentially a law stating 
the conservation of energy: The change of the 
internal energy of a body is the result of 
mechanical work and/or a change of its "heat". 
The second law can, in one of its formulations, 
be expressed as that "heat" spontaneously 
flows from warm to cold. In classical thermo-
dynamics you also introduce the concept of 
entropy in connection with studying heat 
engines and the so-called Carnot process. This 
way of studying thermodynamics is essentially 
historically-technically and was the result of 
the need to understand and improve the heat 
engines that was used in the early mining 
technique, like Newcomen's steam engine.  
 
In classical thermodynamics we use macroscopic quantities like temperature, 
mass, pressure, volume, density. 
 

The method we will use was developed by the Austrian 
physicist Ludwig Boltzmann at the end of the 19th century. It 
derives the thermodynamic laws and macroscopic properties 
of a system starting from a microscopic description. The 
advantage of using this approach is that we can, starting from 
a few, very simple axioms, derive the entire classical 
thermodynamics. Another advantage is that the concept of 

entropy that is rather abstract and hard to understand in classical 
thermodynamics gets a very simple interpretation using statistical mechanics. 
 
We will avoid using the word "heat" in our text as this word in everyday 
language is connected with several different concepts in thermodynamics like 
temperature, internal energy, transfer of energy using a temperature 
difference and also with entropy. 
 
1.1  Fundament definitions 
 

 
 
 
 
 
 
 

 
Thermodynamic 
system 

Isolating 
walls 
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If we wait long enough the system will reach thermodynamical equilibrium (TE). 
Macroscopic parameters then have well defined and constant values. The 
system has no "memory" of past states. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
•Example:  

 
Diathermic means that energy (heat) can pass the wall. After having waited 
long enough we have TE. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
The 0-th law of thermodynamics: 
 
If system A is in thermodynamic equilibrium with B and C is in 
thermodynamic equilibrium with B this implies that C is in thermodynamic 
equilibrium with A. 
 

A B C B

ΤΕ ΤΕ ΤΕ

A C

 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example: This can be use to (preliminarily) define temperature by having B 
above be a "thermometer". If the temperature of A is the same as the 
temperature of B and the temperature of C is the same as the temperature of B 
then A and C have the same temperature. We can now determine if two 
bodies have the same temperature.  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
What we need is a temperature scale. Imagine a number of reference systems 

� 

Bi; i =1,2,… . We can check which of them is in TE with A. The number i then is 
a measure of the temperature of A. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example: In a standard thermometer, i is the length of the liquid capillary of 
the thermometer. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
We can calibrate a thermometer by using special media: ice, boiling water. We 
can assign the length of the thermometer capillary by 100 for boiling water 
and 0 for ice and then we divide the interval between them in 100 parts. The 
gives us the so-called Celcius scale but historically we also have other 
calibrations, the Fahrenheit scale, the Réaumur scale and the Rankin scale.  
 
Calibrated thermometers of course agree at the calibration points but can 
deviate in other points. We would like to define temperature in a more 
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consistent way. One possibility is, as is done in classical thermodynamics, to 
define temperature as proportional to the pressure of an "ideal" gas wit fixed 
volume. We will return to this later. We will show that in statistical 
mechanics, we can define temperature theoretically and that this definition 
agrees with the ideal temperature definition.  
 
1.2  Different kinds of equilibrium 
 
We illustrate this using three pictures. 

 
Thus we can have thermal equilibrium, mechanical equilibrium and chemical 
equilibrium. There are, in fact, several other possibilities; imagine that we 
have electrically charged particles and /or particles with magnetic moments 
and external electric and magnetic fields. We must then wait for electric and 
magnetic equilibrium and so on. We will for the moment ignore such effects 
on our system. To have thermodynamic equilibrium, we demand that we 
have (if possible) all these kind of equilibrium at the same time.  
 
1.3  Functions of state 
 
At thermodynamic equilibrium it turns out that the properties of the system 
are simple; they only depend on a few macroscopic parameters; we have what 
is called a well-defined macroscopic state. We then have certain relations 
between some of the macroscopic parameters. Let T be temperature, p 
pressure and V volume. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example: 

� 

T = T p,V( )  

� 

p = p T ,V( )  

� 

V = V p,T( ) 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example:  
For an ideal gas at constant temperature we have experimentally  pV = const , 
Boyle's law. It the temperature is not constant we have (for an ideal gas) 

� 

pV = nRT , the general law of state. Observe that this implies that in classical 
thermodynamics we can introduce the ideal gas scale by 

 

� 

T =
pV
nR

 

We can measure temperature by measuring the pressure of an ideal gas in a 
container with constant volume: the gas thermometer. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example. We can model a non-ideal gas using the equation of van der Waal: 

 

� 

p +
a
V 2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ V − b( ) = nRT  

where a and b are suitable constants. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Consider an arbitrary (nice) function  
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� 

G = G x,y,…( )  
where G is such that its value is uniquely determined by the arguments x, y, 
…  
We make a small change of G by changing the arguments. We can compute 
the change in G using a Taylor expansion: 

 

� 

dG =
∂G
∂x

dx +
∂G
∂y

dy = A x, y( )dx + B x, y( )dy  

Notice that if G is ”nice” enough, in practice always, we have 

 

� 

∂ 2G
∂y∂x

=
∂ 2G
∂x∂y

=
∂A x, y( )

∂y
=
∂B x,y( )

∂x
 

that is a very stringent condition on the functions A and B. 
 
1.4  Internal energy E 
 
Change the temperature of a system from     

� 

T1  to     

� 

T2 . To do this we have to 
perform work, either using thermal work (cooling or heating the system) or by 
using mechanical work (for instance by friction) or by adding chemical, 
electric, magnetic… energy, we neglect the last ones. The sum of all these 
works change the energy of the system and this change only depends on the 
start and end states of the system. We can retain the principle of energy 
conservation if we assume that the added energy is stored as internal energy, 
E, in the system: 
 
  ΔE = Q + W = thermal+ mechanical work  
 
This is the first law of thermodynamics.  
 
The internal energy is a function of state of the system. This means that it is, 
as a function, uniquely determined by a handful of macroscopic parameters.  
 
Notice that what often is called "heat" that is transfer of energy using a 
temperature difference here is given a special name, thermal work. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example: For a gas we have   E = E p,V ,T ,N( ) . (Besides for an ideal gas it turns 
out that the internal energy only depends on the temperature.) 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
BUT: W and Q that is mechanical and thermal work are not functions of state! 
Explain why? 
 
We rewrite the first law in terms of infinitesimal changes and also put in the 
specific expression for the mechanical work in case we have a gas:
  dE = dQ + dW = dQ − p ⋅dV  
 
The lines over the d:s mark that they are not "proper" differentials, that is do 
not correspond to changes in functions of state. Can you explain the minus 
sign in the formula?  
 
The first law is often written: 
  dQ = dE + p ⋅dV  
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1.5 Heat capacities 
 

We define the heat capacity C by 
  

� 

C =
dQ
dT

 that is the ratio of thermal work and 

temperature change. In most cases the heat capacity will be different if we 
measure it at constant pressure or at constant volume. We denote the heat 
capacity at constant volume or pressure by an index V and p respectively on 
C. It turns out that a physically more interesting quantity is the molar heat 
capacity, the heat capacity per mol. We denote molar heat capacities by a 
lower case c. 
 
Study the following table that shows molar heat capacities for a number of 
gases:  

  

    

� 

Gas cp cV cp −cV γ = cp /cV

He 20.9 12.6 8.3 1.66
Ar 20.9 12.5 8.4 1.67
Hg 20.9 12.5 8.4 1.67
O2 29.3 20.9 8.4 1.40
CO 29.3 21.0 8.3 1.40
Cl2 34.1 25.1 9.0 1.36

SO2 40.6 31.4 9.2 1.29
C2 H6 51.9 43.1 8.8 1.20

 

 
You can note several interesting facts in the table. The difference between heat 
capacities at constant pressure and volume is more or less constant. Further, 
the ration between these heat capacities in the last column is very close to 
rational numbers 5/3 ≈ 1.67, 7/5 =1.4, 9/7≈1.29. 
 
We will understand and explain these observations later on. 
  
Now study a gas at constant volume. 
  dQ = dE + p ⋅dV = dE   (dV = 0) 
This implies 

 
  
CV =

dQ
dT

⎛
⎝⎜

⎞
⎠⎟V

=
dE
dT

⎛
⎝⎜

⎞
⎠⎟V

⇒ cV =
1
n

dE
dT

⎛
⎝⎜

⎞
⎠⎟V

 

 
At constant pressure we have 
  dQ = dE + p ⋅dV  

 
Cp =

dQ
dT

⎛
⎝⎜

⎞
⎠⎟ p

=
dE
dT

⎛
⎝⎜

⎞
⎠⎟ p

+ p ⋅ dV
dT

 

For an ideal gas we have   

� 

pV = nRT . If the pressure p is constant this implies 

 
  

� 

p dV
dT

= nR  

Thus 
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Cp =

dE
dT

⎛
⎝⎜

⎞
⎠⎟ p

+ nR ⇒ cp =
1
n

dE
dT

⎛
⎝⎜

⎞
⎠⎟ p

+ R  

For an ideal gas the internal energy only depends on the temperature which 
means  

 
 

dE
dT

⎛
⎝⎜

⎞
⎠⎟ p

=
dE
dT

⎛
⎝⎜

⎞
⎠⎟V

 

or 
   

� 

cp = cV + R  
where R is the gas constant with value 8.3143 J/(mol·K). This agrees very well 
with the third column in the table above.  
 
Exercise: Explain why cp is larger than cV? 
 
1.6 Adiabatic process, ideal gas 
 
An adiabatic process is defined as a process in which the thermal work is zero 
(no "heat" is added or subtracted from the system) and if we consider 1 mol of 
gas we have  
  dE = −pdV = cVdT  
 
For 1 mol of an ideal gas we also have 
   

� 

pV = RT  
 
If we differentiate this equation we get  

 
  

� 

dpV + pdV = RdT = −
R
cV

pdV  

or 

 
    

� 

0 = dpV + pdV 1 +
R
cV

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = dpV + pdV cV + R

cV
= dpV + pdVγ  

or 

 
    

� 

0 =
dp
p

+ γ
dV
V

 

 
We integrate 
   const = ln p + γ lnV = ln pV γ( )  
or 
  pV γ = const  
 
1.7 Some terminology 
 
Certain macroscopic parameters like volume, mass, internal energy have the 
property that if we make a new system by uniting two systems, these 
parameters will simply be the sum of the parameters of the original systems. 
Such parameters are additive and are called extensive. Other parameters like 
pressure, temperature and density behave differently. Such parameters are 
called intensive. 
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Exercise problems. Chapter 1 
 
1. The gas law can be written in several different ways: 

 
pV = NkBT pV = nRT ρ =

Mp
RT

n =
N

NA

 

eher N is the number of particles, n number of mols, M mol mass, ρ density, 
and R the gas constant. NA is Avogadro’s constant. Show that these 
formulations are equivalent and express gas constant in more fundamental 
constants of nature. 
 
2. You compress air in a bicycle pump rapidly to 1/10 of the original volyme. 
What kind of process is this? What is the final temperature and pressure of 
the air? γ = 1.4. If you instead compress the air very slowly, what is the final 
pressure? Explain! Practical use? 
 
3. Newcomen’s steam engine worked like this: 
a) Steam of atmospheric pressure was let into the 

cylinder of the engine.  
b) A small amount of cold water was injected in 

the cylinder causing the steam to condensate. 
c) Steam takes up a volume that is about 1700 

times the volume of liquid water. This means 
that a vacuum was essentially created in the 
cylinder. The piston was pressed down by the 
atmospheric pressure. This was the work phase 
of the engine.  

d) The cycle was repeated from a). 
Problem: Compute the theoretical efficiency for 
this process. Hint: How much energy was needed 
to transform water of 100 ˚C to steam of 100 C˚? 
How large is the work done by the atmospheric pressure?
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2. About probabilities 
 
2.1 Introduction 
 
Before we enter statistical mechanics, we will repeat some concepts from 
probability science.  
 
For instance throwing a die is called an experiment. The result is called an 
event.  
 
We can enumerate the events with an index i. To each event i we connect a 
(real) number     Pi ∈ 0,1[ ]  that we call the probability of the event. We can plot the 
possible events as points in an abstract space. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example: Throwing a die 
 

 1 2 43 65  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example: Throwing two dice 

 1 2 3 4 5 6
1

2

3

4

5

6

 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
We can also study a complex event where we choose a group of points in the 
diagram above and say that the complex event occurs if any event occurs that 
belongs to the group of events. An example would be in the case of throwing 
two dice that the sum of the two dice is 5. 
 
We chose the probabilities such that 

    

� 

Pi
i
∑ = 1, normalization. 

 
2.2 Classical probability 
 

Choose   

� 

Pi  such that 
    

� 

Pi =
1
Ω

 where Ω is the total number of possible events. 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

• Example: Heads or tails.   

� 

Ω = 2 , 

� 

Pkrona = Pklave =
1
2

 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

• Example: Throwing one die.   

� 

Ω = 6 , 
    

� 

Pi =
1
6

, i = 1..6  
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

• Example: Throwing two dice.   

� 

Ω = 36 , 
    

� 

Pi =
1

36
, i = 1..36 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
In the real world it is not always true that the different probabilities are equal, 
a dice can be prepared. But if we don't have much information of a system the 
assumption of equal probability is reasonable if we want to explore the 
system.  
 
2.3 Statistical probability 
 
Make N experiments. If an event i occurs   

� 

ni  times, we define the statistical 
probability as the limit  

 
    

� 

Pi = lim
N →∞

ni

N
 

In practice we can of course not make an infinite number of experiments but 
have to be satisfied by "many". Another problem is that we cannot be sure 
that the limit exists.  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example: The value of a share on the stock market. 
 
2.4 Probability postulates 
 
1)     

� 

Pi ∈ 0,1[ ] , 
    

� 

Pi
i
∑ = 1 

2)     

� 

P i∨ j∨ k...( ) = Pi + Pj + Pk + …  if  i, j, k… are mutually exclusive events. 
3)     

� 

P i∧ j∧ k...( ) = Pi ⋅ Pj ⋅ Pk ⋅…  if i, j, k… are independent events.  
Mutually exclusive means that if one of the events occurs none of the other 
can occur. If you throw a die you can only get one of the events 1, 2, 3, 4, 5 or 
6. Independent events means that they cannon influence each other. If you 
throw two dice, the result of one die does not influence the result of the other 
die.  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
• Example: What is the probability of getting at least one six in three throws 
with a die?  
The throws are independent events. The probability of not getting any six is 

  

� 

5
6 ⋅

5
6 ⋅

5
6  (Postulate 3). The probability of not getting this result that is getting at 

least one six is then 

� 

1− 5
6 ⋅

5
6 ⋅

5
6 ≈ 0.42  (Postulate 1) 

 
2.5 Permutations 
 
A permutation of N different objects = the number of ways that you can order 
N different objects in a row. Some reflection tells us the number is
     

� 

N ⋅ N − 1( ) ⋅ N − 2( ) ⋅ N − 3( ) ⋅… ⋅ 1 = N! 

If n objects are identical we get 
    

� 

N!
n!

 permutations. We have to compensate for 

the    

� 

n!  permutations that are alike. 
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If we have several kinds of identical objects with    

� 

n1  of one kind,     

� 

n2  of another 
kind and so on, the number of permutations is 

 

    

� 

N!
n1 !⋅n2!⋅…

=
N!

ni !
i
∏  where 

  

� 

N = ni
i
∑  

Note that 0! = 1 by definition. 
 
2.6 Distributions 
 
Example: 
 

 
 

Count the number of pulses in the Geiger counter during a certain time, say 
10 seconds. Repeat many times. Denote the number of measured pulses in 
experiment i by   

� 

xi . Plot the result in a diagram that may look like this:

  
  

� 

ni  is the frequency that is the number of times we measured   

� 

xi  pulses. 
We now define the average (mean) number of pulses or the expectation value 
of the number of pulses as: 

 
  

� 

x =
nixi

i

∑
N

=
ni

N
xi

i

∑ = Pi
i

∑ xi   

where the last equality follows of the number of measurements, N, is large. 
 
Note that the expectation value in general is NOT the same as the most 
probable value, the number of pulses in the maximum bar in the diagram. 
 
We will often have a continuous distribution where  

� 

ρ x( )dx  is the 
probability of finding x in the interval     

� 

x ,x + dx[ ] . For this case it is natural 
to define  
 

 
x = xρ x( )∫ dx  

  

� 

ρ x( )  is called distribution in probability density. Evidently we have a 

normalization condition  ρ x( )∫ dx = 1  corresponding to 
    

� 

Pi
i
∑ = 1 in the 

discrete case. 
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Example. Quantum mechanics where   ρ x( ) = Ψ x( ) 2
with  Ψ x( )  = the wave 

function.  
 
An important statistical quantity is the standard deviation or scattering, 

� 

σ , 
defined by the variance 
 

    

� 

σ2 = Pi
i

∑ x − x( )2
 

 
Note! x can represent any physically interesting variable like position, 
speed, energy …  
 

Exercise problems. Chapter 2 
 
1. In how many ways can you permute 4 girls and 5 boys? 
 
2. What is the probability of getting either 7 or 6 by throwing two dice?  
 
3. Show that we can write     

� 

σ2 x( ) = x2 − x
2
. This is very useful as it simplifies 

the number of steps in the computation of the standard deviation.  
 
4. A neutron that moves in a piece of uranium-235 can hit an uranium nucleus 
and start a chain reaction. Assume that the probability for a neutron to hit a 
nucleus when it moves a distance dx is   

� 

p ⋅ dx . 
a) What is the probability the neutron does not hit a nucleus when it moves a 
distance dx? 
b) What is the probability that the neutron moves N steps dx without hitting a 
nucleus and then hits a nucleus in the next step?  
c) Assume that N steps correspond to a total distance x. Use the relation  

    

� 

lim
N →∞

1 +
z

N
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

= ez  to rewrite the expression you got in b) in a simpler way.  

d) Compute the average distance a neutron travels before it hits a nucleus.  
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3. Statistical mechanics 
 
We will now construct the statistical mechanics, which derives the classical 
thermodynamics from a few simple postulates.  
 
We assume that we study isolated systems with a large number, N, of 
identical, weakly interacting particles in a volume V. The particles have a 
total energy E. The assumption of weak interactions means that the total 
energy is the sum of one-particle energies.  
 
3.1 Macrostates and microstates 
 

  
 

A given macrostate can be realised by an enormous number of microstates, 
even worse, if we consider one mol of gas it changes microstate 1032 times each 
second! We can look at the air in this lecture hall that looks the same in spite 
of an enormous number of collisions each moment between the molecules 
that then change their velocities and by that the microstate. In principle we 
could describe the microstates if we knew the three-dimensional positions 
and velocities of every molecule. This is of course impossible in practice and 
we will see that we can manage quite well by using statistical methods to 
describe the microstates.  
 
We denote the number of accessible microstates by Ω. This number is of 
course very large. 
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Postulate: Every microstate is equally probable at thermodynamical  

equilibrium.  

 
How can we motivate this postulate? Simply by saying that it is the simplest 
assumption. We don’t know anything about these probabilities thus we 
assume they are the same. If we would assume they were different we would 
immediately have to face a more complicated problem: what then are they? 
Besides, it turns out that the thermodynamical laws that we get from this 
postulate agree very well with experiment.  
 
Our statistical methods have the following steps:  
 
1) Solve the one-particle problem. This means solving a quantum mechanical 
problem that gives us the energy levels εi , i = 1, 2, 3... and states of the 
particle. We assume that we have solved this problem.  
2) What distributions   {ni }  of particles can we have in the energy levels given 
the constraints

 
N = ni

i
∑ and 

 
E = ni

i
∑ ε i ? 

3) How many microstates   t{ni }  are there in each distribution? 
4) Determine the average distribution.  
 
 
3.2 Entropy, S 
 
We define the entropy of a system by 
     

� 

S = kB lnΩ  
 
where   

� 

kB  = 1.38·10–23 J/K, Boltzmann’s constant, determines the scale and 
dimension of the entropy. As you can see, the entropy is simply a measure of 
the number of accessible microstates for the system. We have once above used 
the word accessible. All microstates are not in general accessible to the system. 
For instance we demand that a gas should be confined in a certain volume 
which means that microstates where a molecule is outside the volume are 
forbidden. Further we want that the system shall have a certain internal 
energy that puts a constraint on the possible energies of the particles; the sum 
of their energies must have a fixed value.  
 
Why not having the entropy be just Ω? There are several evident advantages 
by using a logarithm. 
  
 1)  Ω is an ENORMOUS number! By using the logarithm of large numbers we 
get numbers that are more manageable.  
 
2) Consider two systems with   

� 

Ω1  and   

� 

Ω2  microstates respectively. The 
combined system has evidently   

� 

Ω = Ω1 ⋅ Ω2  microstates. But with our 
definition the entropy of the combined system is  
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� 

S = kB lnΩ = kB ln Ω1 ⋅ Ω2( ) = kB lnΩ1 + kB lnΩ2 = S1 + S2  
This is a very nice property; entropy is an additive or extensive quantity. As 
we will soon see the entropy has several other nice and useful properties.  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
•Example: Place N particles in a volume V. Divide V in a number of small 
“compartments” each with the fixed volume   

� 

ΔV . Place the particles randomly 

in the compartments. There are 
  

� 

V
ΔV

 compartments, thus the number of 

possible ways of placing the particles = the number of accessible microstates 
is  

 
  

� 

Ω =
V
ΔV

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

 

The entropy is 

 
    

� 

S = kB lnΩ = kB ln V
ΔV
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

= NkB ln V
ΔV

= NkB ln V − lnΔV( )  

It looks like we have a problem here. The value of the entropy depends on the 
volume of the compartments. Just now we can avoid this problem by saying 
that we normally are only interested in changes of the entropy and in such 
cases the offending term disappears. Later on we will see that using quantum 
mechanics we actually get a definite size of the compartments. But this was a 
problem for Boltzmann who lived at a time when quantum mechanics hadn’t 
been invented 
 
• Example: Detailed computation for a "Mickey Mouse system" with 4 
particles. We use our statistical method outlined above.  
 
Suppose that we have equidistant energy levels (again quantum mechanics!) 
0, ε, 2 ε, 3 ε … Suppose that the total energy of the system is 4ε. We also 
suppose that the particles are distinguishable, that is can be thought of as 
having labels A, B, C... such that we can tell them apart. We can then place the 
particles in the levels in five different ways (distributions) that all give the 
same given total energy: 

0

ε

2ε

3ε

4ε

 
 

We now count the number of permutations for each distribution. Particles in 
one level are not permuted. We get the following result:  
 

 
  

4!
3!1!

=4  
  

� 

4!
1!1!2!

=12 
  

� 

4!
1!2!1!

=12 
  

� 

4!
2!2!

=6   
  

� 

4!
4!

=1 



 15 

(In general you have 

  

N !
ni !

i
∏

 permutations.) 

 
In total we have Ω = 4 + 12 + 6 + 12 + 1 = 35 microstates. 
 
In this case the entropy is    

� 

S = kB ln 35 ≈ 3.56 ⋅ kB   
 
The probabilities of the respective distributions are 4/35, 12/35, 6/35, 12/35, 
1/35. Observe that certain, rather few distributions dominate the scene. The 
average number of particles in level 0 is  
     

� 

n0 = 3 ⋅ 4
35 + 2 ⋅ 12

35 + 1 ⋅ 6
35 + 2 ⋅ 12

35 + 0 ⋅ 1
35 ≈ 1.71 

 
For the other levels we easily calculate the corresponding averages
     

� 

n1 ≈ 1.14 n2 ≈ 0.69 n3 ≈ 0.34 n4 ≈ 0.11  
 
It is interesting to plot the result   

 543210
0

1

2

i

<ni>

 
The curve has some similarity with an exponentially decreasing function. We 
will return to this fact and see that our supposition is true.  
 
We divide the system in two subsystems A and B each with 2 particles and 
energies EA = 4ε and EB = 0. You easily show that ΩA = 5 and ΩB = 1, that is the 
total number of microstates is Ω  =  ΩA· ΩB = 5. If we bring the systems together 
and allow them to reach thermodynamical equilibrium we will have the 
situation we studied before: as we approach thermodynamical equilibrium 
the entropy increases.  
 
3.3 The second law. Use of the entropy 
 
Postulate: (Second law) At thermodynamical equilibrium the entropy of an 
isolated system takes its maximum value (given the constraints on the system 
like internal energy, volume, number of particles and so on).  

 
The postulate means that at thermodynamical equilibrium (TE) the system 
exploits all accessible microstates with the same probability. 
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This implies that at TE, S has a fixed value determined by the parameters E, V, 
N. This implies that S is a function of state.  
Finally this implies that for small changed in the parameters we have  

 
 
dS =

∂S
∂E

dE +
∂S
∂V

dV +
∂S
∂N

dN  

 
 
3.3.1 Definition of temperature 
 
Consider a system  

   
Only the internal energy   E1 and   E2  and of course the entropy can vary, all 
other parameters are fixed. 
At TE the entropy has a maximum which means that dS = 0 when we vary the 
internal energy: 

 
  
0 = dS =

∂S1

∂E1

dE1 +
∂S2

∂E2

dE2   

We use that the energy is conserved   dE2 = −dE1 and get 

  
0 =

∂S1

∂E1

−
∂S2

∂E2

⎛
⎝⎜

⎞
⎠⎟

dE1  
  
⇒

∂S1

∂E1

=
∂S2

∂E2

 

 
In this case we evidently have thermal equilibrium and the temperature must 
be the same in the two subsystems. The partial derivative has dimension 
inverse temperature. This leads us to define temperature by  

 
  
∂S
∂E

=
1
T

 

 
We have earlier seen that we can (at least in principle, just count the number 
of accessible microstates) compute the entropy of a system. Given the entropy 
S we can then compute the temperature T. It turns out that the temperature 
that we get in this way is identical with the one in classical thermodynamics 
that you get from the ideal gas thermometer.  
 
Now assume that the to subsystems are NOT in thermodynamical 
equilibrium but that     

� 

T1 > T2 . When we let the two systems exchange energy, 
the entropy will increase towards a maximum, with other words dS > 0. Then 
we have  

 
  
dS =

∂S1

∂E1

dE1 +
∂S2

∂E2

dE2 =
∂S1

∂E1

−
∂S2

∂E2

⎛
⎝⎜

⎞
⎠⎟

dE1 =
1
T1

−
1
T2

⎛
⎝⎜

⎞
⎠⎟

dE1 > 0  

 
The factor in front of   dE1  is less than zero, thus  dE1 < 0  which we interpret 
that system 1 is losing energy and system 2 is gaining energy, energy flows 
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spontaneously from a warmer system to a colder one. This is one of the 
alternative formulations of the second law and agrees with physical common 
sense.  
 
3.3.2. Definition of pressure 
 
We start again but now with a movable, diathermal wall between the 
subsystems.  

  
 
Here   E1 ,   E2 ,     

� 

V1 , and     

� 

V2  can vary. 
At TE the entropy has a maximum:  

  
0 = dS =

∂S1

∂V1

dV1 +
∂S2

∂V2

dV2 +
∂S1

∂E1

dE1 +
∂S2

∂E2

dE2   

We know that for thermal equilibrium the sum of the first two terms is zero, 
thus the sum of the last two terms must be zero. The total volume is constant 
or     

� 

dV2 = −dV1  which implies 

 
  

∂S1

∂V1

−
∂S2

∂V2

⎛
⎝⎜

⎞
⎠⎟

dV1 = 0  
    

� 

⇒
∂S1

∂V1
=
∂S2

∂V2
 

Now we have also mechanical equilibrium and again by dimensional 
reasoning it seem to be a good idea to define pressure, p, by 

 
  

� 

∂S
∂V

=
p
T

 

because if we use that we have thermal equilibrium and then the same 
temperature in the two subsystems we get  
     

� 

p1 = p2  
This is intuitively correct, in this kind of equilibrium both temperature and 
pressure are equal in the subsystems. 
 
In the same way as before we can now show that if we have thermal 
equilibrium but not mechanical equilibrium the subsystem with the higher 
pressure will expand at the expense of the volume of the other subsystem.  
 
*3.3.3. Chemical potential µ 
 
Finally we study a permeable wall that allows particles to pass, is diathermal 
and movable.  
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As a concrete example you can think of having a gas in 1 and a liquid in 2 and 
that the wall is the interface between liquid and gas.  
 
At TE the entropy is maximal: 

  
0 = dS =

∂S1

∂N1

dN1 +
∂S2

∂N2

dN2 +
∂S1

∂V1

dV1 +
∂S2

∂V2

dV2 +
∂S1

∂E1

dE1 +
∂S2

∂E2

dE2   

As we have thermal and mechanical equilibrium the sum of the first four 
terms is zero. In the same way as before, using that the total number of 
particles is conserved, we have  

 
    

� 

∂S1

∂N1
=
∂S2

∂N2
 

 
We then have chemical equilibrium and define the chemical potential, µ, by 

 
  

� 

∂S
∂N

= −
µ
T

 

 
The sign is chosen such that we later get consistent results. The chemical 
potential has dimension energy. Our procedures above are actually very 
general, the partial derivative of the entropy with respect to an extensive 
variable gives us an intensive parameter divided by temperature.  
 
In summary we give an alternative formulation of the second law: In an 
isolated system the change of the entropy is always larger than or equal to 
zero. (Either the system is at TE and the entropy has attained its maximum 
value or it is on its way to equilibrium and the entropy is increasing.)  
 
3.3.4 Rewards 
 
Earlier we had  

 
  
dS =

∂S
∂E

dE +
∂S
∂V

dV +
∂S
∂N

dN ≡
1
T

dE +
p
T

dV −
µ
T

dN  

 
We rewrite  
  dE = TdS − pdV + µdN  
 
This looks familiar! We rediscover the first law; actually not very exciting as 
we have used that the internal energy is conserved. The interesting thing is 
that the first term looks different. The first term evidently corresponds to 
thermal work, the second is mechanical work, the thirst “chemical” work, if 
we add particles to the system the carry some kind of chemical energy µ into 
the system. (Just now we are not interested in such processes but this term 
will be important when we study chemical processes or equilibrium problems 
for a liquid-gas interface.)  
 

Identifying the first term with thermal energy we have   

� 

dQ = TdS  or 
  

� 

dS =
dQ
T

. 

This is the original, historical definition of entropy. If we integrate between 
two (macro)states A and B we have 
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� 

ΔSAB =
dQ
TA

B

∫  

Further 

� 

dQ = C ⋅m ⋅ dT  

� 

⇒ ΔSAB =
C ⋅ m ⋅ dT

TT1

T2

∫  

We have found a simple macroscopic way of computing entropy changes 
when we heat a body! 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
•Example: What is   

� 

ΔS  when 1 kg water melts? 
The temperature is constant = 273 K. Thus     

� 

ΔS = Cm /273 = 334/273 kJ /K  
This shows how to compute the entropy change of a phase change. Note that 
the entropy increases, the molecules in the water can access many more 
microstates than they have in ice.  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
A further reward! 
 
We return to our volume that we divided in small compartments with fixed 
volume  
     

� 

S = NkB lnV − lnΔV( )  
We can now compute the pressure 

 
    

� 

p
T

≡
∂S
∂V

= NkB
1
V

  

� 

⇒    

� 

pV = NkBT  

  
We have in a very simple way derived the gas law for an ideal!  
This also shows that our temperature definition and the ideal gas 
thermometer temperature are equivalent. Note that we only have used our 
two simple postulates and out definitions of pressure and temperature. 
Statistical mechanics is an extremely powerful tool! 
 
3.4. We dig deeper and find the Boltzmann factor  
 
We will now make a more advanced calculation on a system that is more 
realistic than our earlier Mickey Mouse system. We assume that we have N 
particles where N is really large, of order 1023. We assume that we have a 
number of energy levels     

� 

εi ; i = 1, 2,…  not necessarily equidistant. Assume that 
we in one of the possible distributions have     

� 

ni ; i = 1,2,…  particles in the 
respective levels. Here we exploit an important fact. At TE the entropy is 
maximal. It then turns out (se below) that if the number of particles is large, 
only ONE distribution will dominate in probability over all the others. We 
saw this tendency already in the Mickey Mouse system. The number of 
microstates in this distribution will, if the number of particles is large, be 
almost the same as the total number of microstates. This means that we only 
have to study one distribution and in this distribution arrange the particles 
such that the entropy is maximised given the constraints that the total energy 
and number of particles is constant. The number of microstates in this 
distribution is  

 

    

� 

Ω * =
N!

ni !
i
∏  

and the entropy  
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� 

S = kB ln N!
ni !

i
∏  

When n is large we can use Stirling’s approximation: 

� 

lnn!≈ n lnn − n . 
This approximation is very good even for 
rather reasonable n. 
 
Example: Study a large number (N) of 
tosses of a penny. For each toss we can 
have either of two events thus we have 2N  
"microstates" in total, each with the same 
probability. In a distribution with n heads 

and m = N – n tails we have 
  
t = N !

n! N − n( )!  

microstates. This expression has evidently 
a maximum when   n = N /2  or 

  

tmax =
N !

N
2

⎛
⎝⎜

⎞
⎠⎟

!
N
2

⎛
⎝⎜

⎞
⎠⎟

!
 

 
If we use Sterling’s approximation we have 

 

  

ln tmax = N ln N − N − 2
N
2

ln
N
2
−

N
2

⎛
⎝⎜

⎞
⎠⎟
= N ln N − N ln

N
2
=

N ln N − N ln N + N ln 2 = N ln 2 = ln 2N

 

When N is large, the number of microstates in the most probable distribution 
approaches the total number of microstates.   
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
We return to our main problem. For the entropy we then have  

 

    

� 

S = kB ln N!− ln ni !
i
∏

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = kB ln N!− ln ni !

i
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

= kB N ln N − N − ni ln ni − ni( )
i
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

 

 
We now want to maximise S by varying the different  

� 

ni :s. This is a bit 
problematic as the   

� 

ni :s are not independent. We have two constraints on  

� 

ni : 
 

  

� 

N = ni
i
∑  and 

 
E = niε i

i
∑ , 

the number of particles and the internal energy are given and constant 
Mathematically we can handle such a situation by inserting the constraints via 
Lagrange multiplicators and instead maximise the function 

 
 
f = S

kB

+α N − ni
i
∑⎛

⎝⎜
⎞
⎠⎟
+ β E − niε i

i
∑⎛

⎝⎜
⎞
⎠⎟

 

 
Through this trick we can treat the  

� 

ni :s as if they were independent and get  

N   tmax
   ln 2N  

Relative 
error 
(%) 

2 0.69 1.39 50.00 
4 1.79 2.77 35.38 
6 3.00 4.16 27.97 
8 4.25 5.55 23.38 

10 5.53 6.93 20.23 
20 12.13 13.86 12.52 
30 18.86 20.79 9.30 
40 25.65 27.73 7.49 
50 32.47 34.66 6.31 

100 66.78 69.31 3.65 
200 135.75 138.63 2.07 
500 343.24 346.57 0.96 

1000 689.47 693.15 0.53 
10000 6926.64 6931.47 0.07 
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� 

0 =
∂f
∂ni

= − ln ni − 1+ 1 −α − βεi  

or 
   

� 

ni = e−α e−βε i  
 
We determine the first factor that contains α by the condition 

 
  

� 

ni = e−α e−βε i

i
∑

i
∑ = e−α e− βεi

i
∑ = N  

  

� 

⇒ e−α =
N
e− βε i

i
∑ ≡

N
Z

 

where we have defined 
  

� 

Z = e−βε i

i
∑ , the partition function that will soon prove 

very useful. 
 

The occupation number of each level is then given by 
  

� 

ni =
N
Z

e−βε i  

  

� 

e−βε i  is the so-called Boltzmann factor. We now see what we guessed in the case 
of the Mickey Mouse system, that the number of particles in the levels 
decrease exponentially as the energy increases.  
 
3.5 What is β? 
 
We plug in our result in the entropy  

 

  

S = kB N ln N − N − ni ln ni − ni( )
i
∑⎛

⎝⎜
⎞
⎠⎟
=

kBN ln N − kB ni ln ni( )
i
∑ = kBN ln N − kB

N
Z

e−βε i ln N
Z

e−βε i
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i

∑ =

kBN ln N − kB
N
Z

e−βε i ln N − ln Z − βε i( )( )
i
∑ =

kBN ln N − kB
N
Z

Z ln N − Z ln Z − β ε ie
−βε i

i
∑⎛

⎝⎜
⎞
⎠⎟
=

kBN ln Z + kBβ ε i
N
Z

e−βε i

i
∑ = kBN ln Z + kBβ ε ini

i
∑ = kBN ln Z + kBβE

 

To sum up we have:   S = kBN ln Z + kBβE  

Finally use the temperature definition 
  
∂S
∂E

=
1
T
= kBβ  or 

    

� 

β =
1

kBT
. 

We collect our results expressed in more familiar quantities, the positions of 
the energy levels, the temperature and the internal energy, all of them 
measurable or computable quantities: 

  

� 

ni =
N
Z

e−βε i  where 
  

� 

Z = e−βε i

i
∑  and 

    

� 

β =
1

kBT
 

  
S = kBN ln Z +

E
T
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Remember for the future that the probability to find a particle (or a system) in 

level i is 
    

� 

ni

N
=

1
Z

e−βε i ∝ e− βε i , the Boltzmann probability. 

 
3.6 Energy reservoir and subsystem 
 
Consider a subsystem in contact and in thermal equlibrium with an energy 
reservoir with temperature T. We assume that the subsystem is small and that 
the energy reservoir is large. The energy reservoir and the subsystem are 
isolated ffromthe environment and have the total (and constant) energy E. We 
want the probability pi that the subsystem  delsystemet  is in the state with Ei. 
The energy reservoir the has the energy  E − Ei . The entropy of the energy 
reservoir is a function of its energy and is  Si E − Ei( ) . The number of 

microstates of the energy reservoir then is   eSi E−Ei( )/kB . For the subsystem and 
the energy reservoir we then have in total   1·eSi E−Ei( )/kB  microstates. The 
probability that the subsystem is in a state with energy Ei is proportional to 
the number of mirostates in the combines system, thus we have  

  pi = AeSi E−Ei( )/kB  
As the energy reservoir is large we have  Ei << E  and can Taylor expand: 

 
Si E − Ei( ) = Si E( ) − Ei

∂Si

∂E
= Si E( ) − Ei

T
 

that implies 

   pi = Ae
Si E( )−Ei

T
⎛
⎝⎜

⎞
⎠⎟
/kB

= Ce−Ei /kBT  
As the sum of the probabilities of the subsystem has to be we have 
 

  
1 = pk

k
∑ = C e−Ek /kBT

k
∑ = CZ  

giving us 
 
pi =

e−Eiβ

Z
, 

a result that should look familiar. 
 
3.7 The useful Z, the partition function 
 
We have  

 
  
E = ε i

i
∑ ni =

N
Z

ε ie
−βε i

i
∑ = −N 1

Z
∂
∂β

e−βε i

i
∑ = −N 1

Z
∂Z
∂β

= −N ∂ ln Z
∂β

 

 
This is important. Once we know the energy levels of a system, a problem we 
solve in quantum mechanics, we know the partition function. We then can 
compute the internal energy in a simple way without having to use the maybe 
unfamiliar entropy. (If we want the entropy it can simply be computed from 

  
S = kBN ln Z +

E
T

.) Once we know the internal energy we can compute other 

measurable quantities like heat capacities.  
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In many systems the energy levels are degenerate that is there are several 
different states having the same energy. We must then in the partition 
function count the term that corresponds to a degenerate level as many times 
as the degeneracy (multiplicity). If we assume that the energy levels εi, i = 1, 2, 
3... have multiplicities gi we get a partition sum  
 

 
Z = gie

−βε i

i
∑  

More about this later.  
 
3.8 Energy fluctuations 
 
We now study a large number (N) of identical systems in contact with a heat 
bath with temperature T. As an example you can think of the atoms or 
molecules in a gas. Such a set of systems is called the canonical ensemble. Each 
system can be in one of its energy levels Er. The probability that this happens 
is according to what we have seen above  

 

  

pr =
e−Erβ

e−Eiβ

i
∑

=
e−Erβ

Z
, Z = e−Eiβ

i
∑  

The average energy of the systems then is 

 
  
E = pi

i
∑ Ei =

1
Z

Ei
i
∑ e−Eiβ  . 

The average of the square of the energy is  

 
  

E2 = pi
i
∑ Ei

2 =
1
Z

Ei
2

i
∑ e−Eiβ  

We are interested in the fluctuation in energy or the variance of the energy 
that is 

 
  
ΔE2 = E2 − E 2 =

1
Z

Ei
2

i
∑ e−Eiβ −

1
Z2 Ei

i
∑ e−Eiβ⎛

⎝⎜
⎞
⎠⎟

2

 (See the end of chapter 

2) 
We have 

 

  

ΔE2 =
1
Z

Ei
2

i
∑ e−Eiβ −

1
Z2 Ei

i
∑ e−Eiβ⎛

⎝⎜
⎞
⎠⎟

2

=

1
Z
∂2Z
∂β 2 −

1
Z2

∂Z
∂β

⎛
⎝⎜

⎞
⎠⎟

2

=
∂
∂β

1
Z
∂Z
∂β

⎛
⎝⎜

⎞
⎠⎟
=

−
∂ E
∂β

= −
∂ E
∂T

dT
∂β

 

Now 
  
β =

1
kBT

⇒T =
1

kBβ
⇒

dT
dβ

= −
1

kBβ
2 = −kBT

2  

This gives the total variance 

 
  
ΔEtotal

2 = NΔE2 =
∂N E
∂T

kBT
2 =

∂Etotal

∂T
kBT

2  
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Further 
 

∂Etotal

∂T
= nmolcV =

N
NA

cV , implies 
  
ΔEtotal

2 =
NkBT

2

NA

⇒ ΔEtotal ∝ N  

The relative fluctuation 
  

ΔEtotal

Etotal

∝
1
N

 can obviously be neglected if N is of 

order 1023. 
 
3.9 What is entropy intuitively? 
 
I think that you sometimes have heard entropy be described as a measure of 
disorder. This is only half of the truth though. If we add that entropy also is 
freedom we get a rather good intuitive description of the entropy concept. 
When the entropy is maximised it means that the system tries to gain access to 
all accessible microstates. This is the freedom. Each microstate is then 
occupied with the same probability. This is the disorder. Also be careful with 
the condition in the second law: The entropy increases (or is maximum) in a 
closed (isolated) system but it can decrease locally. Living creatures is an 
example of regions with very low local entropy and when we arrange bricks 
in very ordered patterns to build a house we create a very low entropy locally. 
This is possible because we have an easily accessible source of low entropy 
nearby, the Sun. If we include the Sun in our system we will have a good 
approximation of a closed system and the total entropy in this, larger system 
is increasing. Living creatures with low entropy do not violate the laws of 
physics or need some supernatural interaction! Finally, in our theory here we 
have focused on systems in thermodynamical equilibrium. Living creatures 
are very far from being in thermodynamical equilibrium, which is precisely 
one of the properties that make them living. In modern advanced 
thermodynamics you study systems that are not in thermodynamical 
equilibrium.  
 
3.10.1 The Boltzmann factor, Mount Everest, and the use of fridges 
 
Consider a flat earth with an atmosphere above.  
  

 

x

 
 
Assume that the atmosphere is isothermal that is the temperature is the same 
everywhere. The probability of finding an air molecule at height x then is 
   P x( )∝ e −βε x( )  
where   ε x( )  is the energy of the molecule. This energy is the sum of the kinetic 
and potential energy. The kinetic energy is on average the same everywhere 
as the temperature is the same, independent of the height. The potential 
energy is   Mgx  where M is the mass of the molecule. This gives 
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   P x( )∝ e −βε k e− βε p x( ) ∝ e− βMgx = e −
Mgx

k BT  
Now, the density of the air is evidently proportional to the probability of 
finding a molecule, and the pressure in turn is proportional to the density. 
This implies  
     p x( ) = p 0( )e −

Mgx

k BT  
where we have normalised the pressure with     p 0( ) , the ground pressure. This 
is the well-known barometric formula used by for instance aviators. Putting in 
numerical values we get  
     p x( ) = p 0( )e − x

8000[m]  
 
where 8000 m is the so-called scale height.  
 
Another application of the Boltzmann factor is connected with why we have 
fridges and freezers. Assume that we have some kind of foodstuff that has a 
probability 

� 

Prum to become stale during let us say a day in room temperature. 
To get stale means some kind of chemical change, in most cases caused by 
bacteria. Chemical changes typically deal with energy changes of order E ≈1 
eV. The probability of a change at room temperature then is proportional to 
the Boltzmann probability with this energy in the exponent: 

 

� 

Prum = C ⋅ e
−

E
kBTrum  where C is some constant. 

 
The probability in a fridge with temperature  

� 

Tkyl  then is 

 

� 

Pkyl = C ⋅ e
−

E
kBTkyl  

and in a freezer  

 

� 

Pfrys = C ⋅ e
−

E
kBTfrys . 

We then have 

 

� 

Pkyl /Prum = e
− E
kB

1
Tkyl

− 1
Trum

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 
 

 
If we use numerical values, say 

� 

Trum = 295  K and 

� 

Tkyl = 280  K we get 

� 

Pkyl /Prum = 0.12  which means that the foodstuff will remain fresh about 10 
times longer than in room temperature. If we use 

� 

Tfrys = 255 , freezer 
temperature, we instead get 

� 

Pfrys /Prum = 0.0014 , which means that the foodstuff 
will remain fresh about 700 times longer than at room temperature, i.e. for 
months! The very rapid change is the result of the Boltzmann factor being 
exponential.  
 
*3.10.2. The equipartition theorem. Derivation 
 
Suppose we have a system described by its (generalised) coordinates 
    qi ; i = 1, 2,…N  and (generalised) momenta     pi ; i = 1,2,…N . The energy of the 
system is a function of these variables.  
     E = E qi , pi( )  
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The probability that the coordinates of the system are in the interval 

    qi ,qi + dqi[ ]  and the momenta in     pi ,pi + dpi[ ] then is 
     C ⋅ dq1dq2…dqN ⋅ dp1dp2…dpN e− βE q i ,p i( )  
 
We have the normalisation condition  
     1 = … C ⋅ dq1dq2…dqN ⋅ dp1dp2…dpNe− βE q i , pi( )∫∫∫∫  
that determines the constant  

 
    
C =

1
… dq1dq2…dqN ⋅ dp1dp2…dpN e− βE q i ,p i( )∫∫∫∫

 

 
The average value (the expectation value) of the energy then is

 
  
E =

… dq1 dq2…dqN ⋅dp1 dp2…dpNE qi , pi( )e−βE qi ,pi( )∫∫∫∫
… dq1 dq2…dqN ⋅dp1 dp2…dpNe−βE qi ,pi( )∫∫∫∫

 

This looks quite nasty but we will use the same trick as we used for the 
internal energy and the partition function. We can rewrite the monster 
integral to something more palatable

 
  
E = −

∂
∂β

ln … dq1 dq2…dqN ⋅dp1 dp2…dpNe−βE qi ,pi( )∫∫∫∫  

 
We now assume that the energy is a quadratic function of the coordinates and 
the momenta. This is very often true: 
     E qi ,pi( ) = a1q1

2 + a2q2
2 +…b1p1

2 + b2p2
2 +…  

which means 
     e −βE = e −βa1q 1

2
⋅e −βa 2q 2

2
⋅… ⋅ e− βb1p1

2
⋅e −βb 2p2

2
⋅…  

We can now rewrite the integral more simply as 

 
  
E = −

∂
∂β

ln dqie
−βaiqi

2
⋅ dqie

−βbi pi
2

∫
i
∏∫

i
∏⎛⎝⎜

⎞
⎠⎟

 

or 

 
  
E = −

∂
∂β

ln dqie
−βaiqi

2
+ ln dqie

−βbi pi
2

∫∫( )
i
∑⎛⎝⎜

⎞
⎠⎟

 

All the terms in the sums have the same structure and we only consider one of 
them, say the first one  
 

    
dqie

− βa iq i
2

=
t= q1 βa1

∫ βa1( )−1/ 2 dte −t 2

∫ = βa1( )−1/2 D1  

The integration is over all allowable values of this coordinate and the 
remaining integral is just some number that we call     D1 .  All the other terms in 
the sum give similar contributions. Thus we have  

 

    

E = − ∂
∂β

ln D1a1
−1/2β−1/2( ) + ln D1a1

−1/2β−1/ 2( ) +…( ) =

−
∂
∂β

ln D1 −
1
2 ln a1 −

1
2 lnβ +…( ) = 1

2β
+

1
2β

+
1

2β
+…=

1
2 kBT + 1

2 kBT + 1
2 kBT +…

 

 
We get the extremely simple result:  
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Each quadratic term in the expression of the total energy of a particle system 
implies a contribution to the internal energy by     

1
2 kBT . 

 
This is the equipartition theorem. 
 
3.10.3. The equipartition theorem. Applications. 
 
Consider an ideal, monoatomic gas of N particles. Monoatomic means that the 
gas particles only can have translational movement; ideal means that there is 
no interaction between the particles. This is a fairly good model of a noble gas 
at normal pressure and temperature. The total energy of a particle then is  
     

1
2 Mvx

2 + 1
2 Mvy

2 + 1
2 Mvz

2  
 
We have 3 quadratic terms for each atom. Thus the internal energy is 
   E = N ⋅3 ⋅ 1

2 kBT = 3
2 NkBT = 3

2 nRT  
 
The molar heat capacity at constant volume then is  

 
  
cV =

1
n

dE
dT

= 3
2 R ≈ 12.5  J/(mol·K) 

We have explained the heat capacities of the noble gases that we studied in 
the table on page 4! 
 
Now consider a solid. We can model its atoms as a system where the atoms 
are connected by springs with spring constants k in a three dimensional grid:  

  
The energy of an atom is     

1
2 Mvx

2 + 1
2 Mvy

2 + 1
2 Mvz

2 + 1
2 kx2 + 1

2 ky2 + 1
2 kz2  

We have 6 quadratic terms per atom and the internal energy is
   E = N ⋅6 ⋅ 1

2 kBT = 3NkBT = 3nRT  
And the molar heat capacity 

 
  
cV =

1
n

dE
dT

= 3R ≈ 25  
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This is called Dulong-Petit’s law and it works very well for most solids, see the 
diagram below. There are two evident exceptions, graphite that has a heat 
capacity that is precisely 1/3 of what it should have and diamond that also 
have a value that is too low. We will later be able to explain this exception 
further on.  

A l Sb Be Pb Au Cd Ca Co C r Hg Mg Mo Na Ni Pt Ag Ta Sn U Bi Zn C1 C2 P Se S
0

1

2

3

4

So l i d

C / R

Diamond

Graphite

 
Encouraged by these results we try to apply our theory on diatomic gases like 
oxygen, nitrogen and hydrogen. A diatomic molecule has more possible ways 
of moving than just a translation in three dimensions. It can vibrate along the 
connection line between the atoms and it can rotate around two axes 
perpendicular to this line. We can easily write down the total energy for such 
a molecule  
     

1
2 Mvx

2 + 1
2 Mvy

2 + 1
2 Mvz

2 + 1
2 µv2 + 1

2 kx2 + 1
2 I1ω1

2 + 1
2 I2ω2

2  
 
The first three terms correspond to translational energy, the two following 
correspond to the vibration energy and the two last ones correspond to the 
rotational energies.  In total we have 7 quadratic terms that gives an internal 
energy  
   E = N ⋅7 ⋅ 1

2 kBT = 7
2 NkBT = 7

2 nRT  
 
that implies a molar heat capacity at constant volume  

 
  
cV =

1
n

dE
dT

= 7
2 R ≈ 29  

 
Unfortunately this does not agree at all with values that you get from 
experiment. These give a value close to     

5
2 R ≈ 21 . The physics of the 19th 

century could not explain this evident failure of classical thermodynamics.  
As we will se we will need quantum mechanics to solve the problem.  
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Also later, when the electron was discovered, there were problems. A very 
good model of a metal is that you have a gas of free electrons that can move in 
the lattice of the solid. For the solid itself we have as before  
     cV ,lattice = 3R  
 
Foe the electron gas we expect the result from a monoatomic gas 
     cV ,el =

3
2 R  

 
The total heat capacity is     cV ,el =

9
2 R , a metal should have a heat capacity that is 

50 % larger than for a non-metal. But experimentally you find that the molar 
heat capacities for metals and non-metals are essentially the same. Why?  
 
Finally we will point on a problem that also is connected with heat capacities 
and entropy. Earlier we saw that we had  

 

� 

ΔSAB =
dQ
TA

B

∫ =
C ⋅m ⋅ dT

T
= C ⋅m ⋅ lnT2

T1T1

T2

∫  

We can se that we have a problem when     T1 = 0 , the entropy change gets 
singular! One way of solving this would be if the heat capacity C goes to zero 
suitably fast when the temperature goes to zero. Why would this happen? It 
turns out that this also can be explained by quantum mechanics.  
 
We want to make this very clear: Simple an uncontroversial experimental 
measurements of heat capacities show that the classical (non-quantum 
mechanical) thermodynamics is WRONG! This was a great problem at he 
beginning of the 20th century. We will see that we need to use quantum 
mechanics to get results that agree with experiment. Besides quantum 
mechanics will turn out to describe the microcosmos in a new and exciting 
way.  
 
Exercise problems. Chapter 3 
 
1. We return to the Mickey Mouse system. Compute Ω for total internal 
energies E = 0, ε, 2ε, 3ε, 5ε, 6ε for the 4 particles. The compute     

� 

s = S/kB  
(renormalised entropy) and plot  s E( ) . Sketch a curve through the points and 
estimate relatively the temperature for different internal energies. 
Qualitatively sketch the relation E(T). Hint: There are respectively 1, 1, 2, 3, 5, 
6, and 9 different distributions. 
 
2. Compute   

� 

ΔS when 1 kg water of 100 ˚C  is transformed from liquid to 
steam. Then compute the change in entropy when you heat 1 kg water from 0 
˚C to 100 ˚C. Comments? 
 
3. 1 kg vatten of 0 ˚C is put in contact with a large heat source that can be 
assumed to have a constant temperature of 100 ˚C. What is the entropy 
change in the system water + heat source when the water has reached its final 
temperature? 
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4. We want to determine the extremum of the function   f x, y( ) = x2 + y2  given 
the constraint   x + y = 1 . Do this in two ways, 
a) By eliminating for instance y from the first function using the constraint. 
The result is a function of only one variable that can easily be handled.  
b) By adding the constraint using a Lagragian multiplier and then put 
derivatives to zero.  
Show that both methods give the same result.  
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