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4. Two-level systems 
 
4.1 Introduction 
 
Two-level systems, that is systems with essentially only two energy levels are 
important kind of systems, as at low enough temperatures, only the two 
lowest energy levels will be involved. Especially important are solids where 
each atom has two levels with different energies depending on whether the 
electron of the atom has spin up or down.  
 
We consider a set of N distinguishable ”atoms” each with two energy levels. 
The atoms in a solid are of course identical but we can distinguish them, as 
they are located in fixed places in the crystal lattice. The energy of these two 
levels are   

� 

ε0  and   

� 

ε1 . It is easy to write down the partition function for an atom  
 

� 

Z = e−ε0 / kBT + e−ε1 / kBT = e−ε 0 / kBT 1+ e−ε / kBT( ) = Z0 ⋅Zterm  
where 

� 

ε is the energy difference between the two levels. We have written the 
partition sum as a product of a zero-point factor and a “thermal” factor. This 
is handy as in most physical connections we will have the logarithm of the 
partition sum and we will then get a sum of two terms: one giving the zero-
point contribution, the other giving the thermal contribution.  
 
At thermal dynamical equilibrium we then have the occupation numbers in 
the two levels  

 

    

� 

n0 = N
Z

e−ε 0/kBT = N
1+ e−ε/k BT

n1 =
N
Z

e−ε 1 /k BT =
Ne−ε/k BT

1 + e−ε/k BT

 

We see that at very low temperatures almost all the particles are in the ground 
state while at high temperatures there is essentially the same number of 
particles in the two levels. The transition between these two extreme 
situations occurs very roughly when   

� 

kBT ≈ε  or     

� 

T ≈ θ = ε/kB , the so-called scale 
temperature 

� 

θ  that is an important quantity.  
 
In this case we can directly write down the internal energy  

 
  
E = n0ε0 + n1ε1 = N ε0e

−ε0 /kBT + ε1e
−ε1 /kBT

e−ε0 /kBT + e−ε1 /kBT = Nε0 +
Nεe−θ/T

1 + e−θ/T  

 
The internal energy is a monotonous 
increasing function of temperature that starts 
from   E 0( ) = Nε0  and asymptotically 
approaches   E 0( ) + Nε/2  at high 
temperatures.  
 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Exercise. Compute the internal energy by using the formula 
  
E = −N ∂ ln Z

∂β
 

and check that you get the same result as above.  
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
When we now know the internal energy as a function of temperature we can 
easily compute the heat capacity of the system as a function of temperature.  
 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Exercise: Use the graph above to make a sketch of how the heat capacity 
depends on temperature. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
We have  

 

  
c = dE

dT
= NkB

θ/T( )2 e−θ/T

1 + e−θ/T( )2  

The result is somewhat unexpected. The heat capacity has a maximum of 
order   

� 

NkB  at a temperature that is approximately the scale temperature (more 
precisely for 

� 

T ≈ 0.417 ⋅θ ). At low temperatures the heat capacity approaches 
zero quit fast, like     

� 

T−2e−θ/T . At high temperatures the heat capacity also goes 
to zero like     

� 

T−2 . This behaviour is typical for a 
two-level system and is called a Schottky 
anomaly. That the heat capacity goes to zero as 
the temperature goes to zero is universal for 
any system. As we have seen this is required 
unless the entropy becomes singular (infinite).  
 
We can understand the heat capacity curve by 
qualitative reasoning. At low temperatures the distance between the energy 
levels is so large that it is very difficult to excite thermally the particles from 
the ground state, this implies a small heat capacity. As the temperature then 
approaches the scale temperature it is easy to excite the particles and you get 
a large heat capacity. At higher temperatures we have essentially the same 
number of particles in the levels and that situation does not change very 
much as we increase the temperature. This means that the system does not 
increase very much its internal energy when the temperature increases: the 
heat capacity will be small again.  
 
We could now compute the entropy from  
   S = NkB ln Z + E/T  
but instead we will use another method that further on will be quite useful.  
 
Suppose that we study the internal energy   E = E S,V ,N( ) . For the differential 
we have  
  dE = TdS − pdV + µdN  
 
The internal energy is a function of the entropy, a quantity that is difficult to 
measure. We would like to change the functional dependence to for instance 
temperature T. We write  

 
  

dE = TdS + SdT − SdT − pdV + µdN =
d(TS) − SdT − pdV + µdN  

 
Move the TS-term to the left side 
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   d(E −TS) = −SdT − pdV + µdN  
 
Introduce a new function of state for energy, F = E −TS , for which we 
evidently have  
   

� 

dF = −SdT − pdV + µdN  
something that tells us that     

� 

F = F T ,V ,N( ) , all variables are now easily 
measurable quantities. The function F is called Helmholtz' free energy. 
 
But we have also 

 
  

� 

dF =
∂F
∂T

dT +
∂F
∂V

dV +
∂F
∂N

dN  

 
If we identify terms we get 

 
  

� 

∂F
∂T

= −S ∂F
∂V

= −p ∂F
∂N

= µ  

 
We can now rewrite 
   S = NkB ln Z + E/T    ⇒ F = E −TS = −NkBT ln Z  
 
Inserting the expression for Z we get 
     

� 

F = Nε0 + NkBT ln 1+ e−θ /T( )  
that after derivation with respect to temperature gives

 
    

� 

S = −
∂F
∂T

= NkB ln 1+ e−θ /T( ) +
θ/T( )e−θ/T

1+ e−θ /T

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  

 
The entropy goes to zero for small temperatures, as it should, at absolute zero 
the system has no degrees of freedom (only one possible microstate). At high 
temperatures the entropy approaches the     

� 

S = NkB ln 2  something that is easy 
to see is correct.  

 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Exercise. Why is this limit correct? 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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*4.2. Interlude 
 
In chemistry we are often interested in having a function of state for the 
energy that depends on pressure instead of volume. In chemical reactions the 
pressure is normally constant. This is easily fixed:   

 

  

� 

dF = −SdT − pdV + µdN =
− SdT − pdV −Vdp + Vdp + µdN =
− SdT − d pV( ) + Vdp + µdN

 

 
This gives 
   

� 

dG = d F + pV( ) = −SdT + Vdp + µdN  
with a new function of state  

  G = G T , p,N( ) = F + pV = E −TS + pV , Gibb’s energy.  For this function 
we have the partial derivatives  

 
  

� 

∂G
∂T

= −S ∂G
∂p

= V ∂G
∂N

= µ  

 
Another function of state that is used in chemistry is the enthalpy, H. We start 
from 

 
  

dE = TdS − pdV + µdN = TdS − pdV −Vdp +Vdp + µdN =
TdS − d(pV ) +Vdp + µdN  

This implies 
  dH = d E + pV( ) = TdS +Vdp + µdN  
with 

 
  

� 

∂H
∂S

= T
∂H
∂p

= V
∂H
∂N

= µ  

   H = H S, p,N( )  
 
These transformations to get a suitable function of state are called canonical 
transformations. 
 
4.3. Magnetic solids 
 
The electron has spin 1/2 that gives it a magnetic moment z-component µ . 
The electron behaves as a small magnet. You can also have a magnetic 
moment because of the orbital movement of the electron in the atom. Finally 
you can also have a magnetic moment due to a spinning nucleus. The electron 
spin and the orbital movement result in a magnetic moment of order the Bohr 
magneton 

 
      

� 

µB =
e!
2m

≈ 0.93 ⋅ 10−23J/T  

The magnetic moment of the nucleus is of order the nuclear magneton 

 
      

� 

µN =
e!

2Mp
≈ 5.05 ⋅ 10−27J/T  
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If we put an atom or nucleus that has a magnetic moment in a magnetic field 
in the z direction (or rather define the direction of the magnetic field as the z-
axis) one of the two (essentially degenerate) energy levels to be displaced 
upwards by   

� 

µB, the other one is displaced downwards by   

� 

µB. The energy 
difference between the levels is then     

� 

2µB . We use the results from our two-
level model. We want each atom to be essentially independent of the others 
such that it is not influence by the magnetic moment of its neighbours. We 
have this situation in paramagnetic solids.  
 
The scale temperature is   θ = 2µB/kB . We observe the following: 
 
1. The thermal properties only depend on the quantity     

� 

θ/T , or for a given 
magnetic field on the ratio     

� 

B/T .  
 
2. If we insert numerical values and assume that B ≈ 1 T , the scale 
temperature will be of order a few Kelvins for an electron-spin system and a 
few milliKelvin for nuclear-spin system. At these low temperatures the 
thermal properties of the system is almost entirely determined by the two-
level system.  
 
4.4 Cooling by adiabatic demagnetisation 
 
An interesting application that exploits the properties of a paramagnetic solid 
is cooling by adiabatic demagnetisation. We will now describe this process.  
 
The paramagnetic solid is put in good thermal contact wit a cooling medium, 
most often liquid helium. A strong magnetic field is applied. This increases 
the gap between the energy levels and forces the spins to line up in the 
direction of the magnetic field that means that the electrons occupy the 
ground state. This in turn means that the paramagnetic solid rids itself of 
energy that is taken up by the cooling medium. We now isolate thermally the 
paramagnetic solid and then let the magnetic field go to zero. We will then 
have a situation where the major part of the electrons occupy the lower 
energy level, the ground state. As we have now removed the magnetic field, 
the higher energy level is very close to the ground level but contains very few 
electrons. This corresponds to a very low temperature.  We can also interpret 
what is happening by studying how the entropy depends on temperature.  

       
 
The two curves describe precisely the same mathematical function but have 
different scale temperatures, as they are proportional to the strength of the 
magnetic field. The path from A to B corresponds to an increase in the 
strength of the magnetic field while keeping the temperature constant. The 
path B to C corresponds to an adiabatic decrease (no change in entropy dQ = 
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0) of the magnetic field but now with the system isolated from the outside 
world. This means that we change the scale temperature back to what it was 
before but move along a line parallel to the T axis. The entropy curves are 
universal functions meaning that  
     

� 

SC θC /TC( ) = SB θB /TB( ) ⇒θC /TC =θB /TB ⇒BC /TC = BB /TB  
or 

 
  

� 

TC = TB
BC

BB
 

The final temperature depends on how small the magnetic interaction   

� 

BC  is 
from neighbouring atoms. For electron-spin systems you can, using this 
method, reach temperatures as low as 1 mK, for nuclear-spin system the final 
temperature can reach 0.1 µK. 
 
4.5. The magnetisation 
 
The magnetisation M is the net sum of all magnetic moment. We have 

 

    

� 

M = n0 ⋅ µ + n1 ⋅ −µ( ) = µN e−ε 0 /k BT − e−ε 1 /k BT

e−ε 0/k BT + e−ε 1/kBT =

µN e µB/kBT − e− µB/k BT

eµB/k BT + e−µB /k BT = Nµtanh µB
kBT

 

 

For large values of 
  

� 

µB
kBT

, (B large or T 

small) the magnetisation saturates to 
  

� 

M = Nµ  when all magnetic moments 
have lined up along the external 

magnetic field. For small values of 
  

� 

µB
kBT

 

we can use a Taylor expansion of the 
hyperbolic function and get  

 
 
M ≈ Nµ µB

kBT
 

In this approximation the 
magnetisation is inversely proportional to 
temperature. This is Curie’s law that 
agrees very well with experiment, see 
the diagram.  

 
We can use measurements of the magnetisation as a thermometer! For 
electronic systems we can then measure temperatures down to about 10 mK 
when the magnetic field from internal interactions interfere and also the 
Taylor expansion requires more terms. Instead we can then use a nuclear-spin 
system and measure somewhat lower temperatures. For really low 
temperatures we can measure the energy split between the energy levels 
using the method of nuclear magnetic resonance (NMR). We then apply a 
radio frequency to the system with frequency f and use the resonance 
condition     

� 

hf = 2µB  to select the relevant energy levels. The strength of the 
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NMR signal will be proportional to the difference in occupation number of 
the levels, which in turn is proportional 1/T. 
 
4.6 Localised one-dimensional harmonic oscillators 
 
From quantum mechanics we have that the energy levels of a harmonic 
oscillator are given by  
       

� 

εn = n + 1
2( )!ω , n = 0,1,2…  

 
We can now easily write down the partition function  
 

  

� 

Z = e−εn / kBT
n
∑ = e− n+ 1

2( )!ω / kBT

n
∑ = e− n + 1

2( )θ /T

n
∑ = e−

1
2θ /T e− n +12( )θ /T

n
∑ = Z0 ⋅ Zterm  

where we have introduced the scale temperature       

� 

θ = !ω/kB. 
 
In this case we can explicitly sum the partition function, it is a geometrical 
series.  

 

    

� 

Z = e− n + 1
2( )θ /T

n
∑ = e−θ /2T e−nθ/T

n
∑ =

e−θ /2T 1+ e−θ /T + e−2θ /T + …( ) = e−θ/2T

1− e−θ/T = 1
eθ /T − 1

 

 
The internal energy is  
 

   
E = −N ∂ ln Z

∂β
= 1

2 N!ω +
N!ω

e!ω/kBT − 1
= 1

2 NkBθ +
NkBθ

eθ/T − 1
 
The first term is the zero-point energy. At high 
temperatures the internal energy is  
  E = NkBT  
a result that we derived in an earlier chapter by 
counting the number of quadratic terms in the expression for the total energy. 
However, the quantum mechanical model also gives the behaviour at low 
temperature.  

The heat capacity is 

  
C =

dE
dT

= NkB
θ/T( )2 eθ/T

eθ/T − 1( )2 . 

 
It starts from zero at T = 0 and saturates as 
expected for high temperatures at   

� 

NkB . Again 
quantum mechanics describes correctly the 
behaviour at low temperatures. We can see the 
need for a quantum mechanical description as for low temperatures both the 
internal energy and the heat capacity contain Planck’s constant.  
 

We can finally compute the entropy from 
  

� 

S = −
∂F
∂T

 where     

� 

F = −NkBT ln Z . 

 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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Exercise. Show that
    

� 

S = NkB ln eθ /T

eθ /T − 1
+

θ/T
eθ /T − 1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
Exercise. Show that     

� 

S→ 0  when     

� 

T → 0  and 
      

� 

S→NkB ln T
θ

= NkB ln kBT
!ω

 when 

  

� 

T →∞. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note that also in the high temperature limit the entropy contains Planck’s 
constant. Entropy is fundamentally a quantum mechanical quantity. On the 
other hand the energy and heat capacity can be described classically at high 
temperatures.  
 
Albert Einstein used the above model with one-dimensional harmonic 
oscillators in the so-called Einstein model to explain the properties of solids at 
low temperatures. The model is qualitatively correct but with closer 
comparison with experiment it has the wrong temperature dependence. 
Experiments show that the heat capacity at low temperatures must be 
proportional to     

� 

T3 . We will in a later chapter present the Debye model that has 
a correct T dependence. However, we can already now explain that small heat 
capacities of graphite and diamond. As we have seen, the scale temperature 
determines the transition between the quantum mechanical and classical 
regions in temperature, in this case       

� 

θ = !ω/kB. For a harmonic oscillator we 
have that the frequency     

� 

ω = k/m  where k is the spring constant of the force 
between the atoms in the solid. Diamond is a very hard solid, thus we can 
expect that the spring constants in diamond are very large. This implies that 
the scale temperature is high, about 500 K for diamond. This means that the 
heat capacity is quite far away from its asymptotic value at room temperature 
and that the heat capacity is much below the classical Dulong-Petit value. 
 
Even more interesting is the situation with graphite. The 
molecular structure of graphite is such that is consists of 
layers of carbon atoms with each layer being a very rigid 
hexagonal lattice. These layers are stacked on top of 
each other and quite loosely connected. This is one of the reasons for graphite 
being used in pencils; the layers are easily ripped off and get attached to the 
paper. This is also the reason for graphite being used as a lubricant, the 
different layers in the graphite can slide relative one another with little 
friction. This structure means that the chemical bindings (the spring 
constants) are strong in two dimensions, in the hexagonal layer, and weak 
between these layers. We then have two different scale temperatures, a high 
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one for vibrations in the layer and a low one for vibrations between the layers. 
Actually only the vibrations between the layers are activated at room 
temperature. When we count quadratic terms in the total energy we should 
only count these latter vibrations. This implies that the number of quadratic 
vibration terms only is 1/3 of the number in a solid where the vibrations can 
happen in three dimensions and the heat capacity thus only becomes 1/3 of 
the normal, something that agrees perfectly with experiment.  
 
4.7. A note about the partition function for systems with 
degenerate energy levels  
 
We have earlier noted that we should sum over all possible states in the 
partition function. This means that if an energy level is degenerate I has to be 
counted several times, as many times as the degeneracy or the multiplicity of 
the degeneration. Mathematically we write this  
 

    

� 

Z = gie
−ε i /k BT

i
∑  

where   

� 

gi  is the multiplicity of energy level i. We will use this way of writing 
very often when we in the next chapter will treat the statistical description of 
gases where we will use so-called group distributions.  
 
Exercise problems. Chapter 4 

1. Compute the internal energy of a two-level system using 
  
E = −N ∂ ln Z

∂β
 and 

check that you get the same result as we got in the lecture.  
 
2. Assume that we could have a stable equilibrium for a two-level system 
where we had more particles in the upper level than in the lower one. What 
can you say about the temperature of such a system? In reality such systems 
are not stable but can be realised quasi-stably in for instance a laser by 
pumping particles to the upper level using external energy. Such systems are 
said to have an inverted population.  
 
3. Compute the internal energy and heat capacity for a system with one non-
degenerate level with energi 0, two degenerate levels with energy ε and one 
nondegenerate level with energy 2ε. Hint: Chose a suitable zero-point energy. 
 
4. Below what temperature do you have deviations that are larger than 5% 
from Curie’s law in an ideal electronic spin 1/2 system? 
 
5. Magnetisation of Pt nuclei is often used as a thermometer for low 
temperatures. The external magnetic field is 10 mT and the magnetic moment 
of a Pt nucleus is 0.60 nuclear magnetons. Estimate the usable temperature 
interval  of the thermometer if we assume a) that a magnetisation less than 
1/10 000 of the maximal one cannot be measured with precision and b) that 
deviations from Curie’s law that are larger than 5% are unacceptable.  
Assume that we use NMR technique to detects the split in the energy levels. 
What is in this case the NMR frequency?  
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6. Experimental results from 
measurements of the specific 
heat capacity of gadolinium are 
shown in the figure. At low 
temperatures you see a bump in 
the curve caused by a few low 
lying energy levels. Explain this 
and estimate the distance 
between these levels. Give your 
answer in electron volts. You 
have to motivate your answer 
but you don’t have to make 
detailed computations.  
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5. The ideal gas 
 
5.1 Density of states 
 
To begin with we will consider gases with non-relativistic massive particles. 
We will need the density of state in energy. 
 
We now study bas particles in a “box” with dimensions LxLxL. 
If we solve the Schödinger equation for such a particle we get wave functions 
of the type  
   ϕ x, y, z( ) = Aeikx xeiky yeikz z  
We now use so-called periodic boundary conditions where we demand that  
 

  
ϕ x + nxL, y + nyL,z + nyL( ) = ϕ x, y,z( )  

This implies  

 
  
kx = nx

2π
L

, ky = ny

2π
L

, kz = nz

2π
L

 

In k-space, these k-values form a cubic lattice with a distance 
  
2π
L

 between the 

lattice points. Each lattice point corresponds to a state of the gas particle. In an 
elementary cube we then have exactly one state. The volume of an elementary 

cube is evidently 
  

2π
L

⎛
⎝⎜

⎞
⎠⎟

3

=
2π( )3

V
. The density of states in k-space is then 

 
  
1/

2π( )3

V
=

V
2π( )3  

 
You always start with the number of states in an infinitesimal cube in k-space 
and the transform step by step to ε-space: 

 

   

V
2π( )3 d3k =

V
2π( )3

1
!3 d3p =

spherical
symmetry

V
2π( )3

4π
!3 p2dp =

p2 =2mε V
2π( )3

4πm 2m( )1/2

!3 ⋅ ε1/2dε = g ε( )dε
 

where V is the normalisation volume. The factor   

� 

4π  comes from that we 
integrate over the uninteresting space angles. We have also exploited that the 
momentum  p = !k  and the relation (in this case) between energy and 

momentum 
  
ε =

p2

2m
. 

The relation between energy and momentum/wave vector is called a 
dispersion relation. 
 

This gives the density of states in energy 
  

� 

g ε( ) =
V
2π( )2

2m( )3 / 2
!3

ε1/ 2     



42 

 
This expression must be corrected with a spin factor, 2 for spin 1/2 particles 
and 3 for (massive) spin 1 particles. The density of states is such that  

 g ε( )dε is the number of states in the energy interval   ε ,ε + dε[ ] . 
  
Note 1. It is easy to realise that our box doesn’t have to be cubic. Actually out 
derivation works for a volume of arbitrary form, thermodynamical properties 
do not depend on the form of the container.  
 
Note 2. We could have used the usual condition when you solve the 
Schödinger equation in a box, namely that we have standing waves between 
the walls. This gives a final result that is identical to that we got here but the 
method with periodic boundary conditions often is simpler to use.  
 
 
5.2 Group distributions 
 
First we observe that the number of states in a gas in a macroscopic volume is 
enormous and that the energy levels are very close to each other. To handle 
this situation we introduce something called group distributions. See the figure! 

 
 
We group such that the number of levels within a group i,   

� 

gi , is very large, 
and such that the number of particles within the group,   

� 

ni , also is large, but 
such that the average distances 

� 

Δεi  between the levels in the different groups 
still is very small. In practice it turns out that you can   

� 

gi  of order 1010 and still 
have 

� 

Δεi ∝10
−9 ⋅ kBT . It also turns out that it is not critical for the final result 

how we do the grouping.  
 
5.3 Identical particles 
 
We now want to count the number of microstates in a certain distribution. We 
then have to take into account an important fact: particles in a gas are 
fundamentally identical, that is it is impossible to tell them apart. We cannot 
decide which particle occupies a certain state; we can only decide the number 
of particles in a certain state. The other important fact is that we have two 
kinds of particles in nature, fermions and bosons. Fermions follow the Pauli 
principle that says that two fermions cannot be in the same state. Fermions 
always have half integer spin; examples are electrons, protons, and neutrons. 
Bosons do not follow the Pauli principle; an arbitrary number of bosons can be 
in the same state. Bosons have integer spin; examples of bosons are photons, 
helium-4 atoms, and deuterons. This means that we have to count microstates 
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differently for fermions and bosons. For fermions we will get Fermi-Dirac 
(FD) statistics for bosons we will get Bose-Einstein (BE)-statistics. 
 
5.4.  Counting microstates for fermions 
 
Consider the level group i where we have   

� 

gi  possible states and  

� 

ni  particles to 
occupy these states. As we deal with fermions we can have at most one 
particle in each state. Consequently we have   

� 

gi − ni  empty states. We then can 
arrange filled and empty states in  

 
    

� 

gi !
ni ! gi − ni( )!  

ways. The total number of microstates for all levels then is  

    

� 

ΩFD =
gi !

ni ! gi − ni( )!i
∏  

 
5.5. Counting microstates for bosons 
 
Again consider level group i. We have   

� 

gi  possible states and   

� 

ni  particles to 
distribute in these states. We can now have several particles in each state 
something that complicates the counting. However, we can get around this 
problem using a trick. Consider the states as slots with walls in between. If 
there are   

� 

gi  states there are     

� 

gi −1  walls between them. Together with the   

� 

ni  
particles we now have     

� 

gi + ni −1  objects to handle,     

� 

gi −1 of one kind (the 
walls) and   

� 

ni  of the other kind (the particles) and we can arrange them in  

    

� 

gi + ni −1( )!
ni ! gi −1( )! ≈

gi + ni( )!
ni! gi !

 

ways. The total number of microstates for all level is then 
    

� 

ΩBE =
gi + ni( )!
ni ! gi !i

∏  

 
5.6. Dilute gases  
 
Now suppose that we have a dilute gas. By this we mean that   

� 

ni << gi  (but 
still     

� 

ni >> 1). This is a very common situation if we for instance consider air at 
normal temperature and pressure. In the fermion case we then can make the 
approximation  

 
    

� 

gi !
ni ! gi − ni( )! =

gi gi −1( )… gi − ni + 1( )
ni !

≈
gi

n i

ni !
 

 
In the boson case we have 

 
    

� 

gi + ni( )!
ni ! gi !

=
gi + ni( ) gi + ni − 1( )… gi + 1( )

ni !
≈

gi
n i

ni !
 

that is we get the same result. This “classical limit” gives us the so-called 
Maxwell-Boltzmann (MB) statistics where we have 

 
    

� 

ΩMB =
gi

n i

ni !i
∏  
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5.6. Distributions in thermodynamical equilibrium 
 
5.6.1. Fermions 
 
We now copy the procedure that we used for distinguishable particles in 
chapter 3. We define the entropy  
     

� 

S = kB lnΩ  
and try to maximise the entropy given the constraints  
 

  

� 

N = ni
i
∑  and 

 
E = ε ini

i
∑  

that is the number of particles and the internal energy are conserved.  
 
We maximise the function 

  
f = gi ln gi − ni ln ni − gi − ni( )ln gi − ni( )( )

i
∑ −α ni − N

i
∑⎛⎝⎜

⎞
⎠⎟
− β ε ini − E

i
∑⎛⎝⎜

⎞
⎠⎟

 

where we have used Stirling’s approximation and introduced Lagrangian 
multipliers. We compute all partial derivatives with respect to 

� 

ni  and put 
them to zero and get after some manipulation  

 
    

� 

ni =
gi

eα +βε i + 1
 

It is here useful to define the filling factor, the ratio between the number of 
particles and the number of accessible states in this level  

 
    

� 

fi =
ni

gi
=

1
eα+ βεi + 1

 

As the levels are very close we can id we want write this as a continuous 
distribution  

 
  
fFD ε( ) = 1

eα +βε + 1
 

 
5.6.2 Bosons 
 
We repeat the procedure for the boson case and get with a similar 
computation  

 
    

� 

fBE ε( ) =
1

eα+ βε − 1
 

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Exercise. Show this by doing the detailed calculations. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
5.6.3 Dilute gases  
 
Finally, for dilute gases we have  

 
    

� 

fMB ε( ) =
1

eα +βε  

Exercise. Show this. 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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5.7. Summary 
 
As before     

� 

β = 1/kBT . 

� 

α  can in principle be determined from the condition 

  

� 

ni
i
∑ = N  but it turns out that you can explicitly solve the resulting equation 

only in the MB case, we will return to this in the next chapter. If we for the 
moment introduce   

� 

eα = B, we can summarize our results in the following way  

 

    

� 

f ε( ) =

1
Beε/kBT + 1

(FD)

1
Beε/kBT + 0

(MB)

1
Beε/kBT − 1

(BE)

⎧ 

⎨ 

⎪ 
⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 

 

 
As we will see the different kinds of particle system will have very different 
physical properties. 
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6. Maxwell-Boltzmann gases 
 
6.1. The partition function 
 
We start by rewriting the filling factor  

 
    

� 

fi =
1

Beε i/k BT = Ae−ε i /kBT  

In this case we can easily compute A (i.e. implicitly the value of α). We have 
 

    

� 

N = ni
i
∑ = gi

i
∑ fi = A gie

i
∑ −ε/k BT

 

or 

 
    

� 

fi =
N
Z

e−ε i /kBT  

with 
 

    

� 

Z = gie
i
∑ −ε i /k BT

 

the partition function.  This is very similar to what we had before in chapter 3.  
  
We now consider a monoatomic gas where the gas atoms have spin zero as 
for instance in helium-4. The partition function can be written as an integral as 
the energy levels are close  

 
  

� 

Z = gie
i
∑ −ε i / kBT → g ε( )

0

∞

∫ dε ⋅ e−ε / kBT =
V
2π( )2

2m( )3/ 2
!3

ε1/ 2
0

∞

∫ dε ⋅ e−ε / kBT  

We put     

� 

x2 = ε/kBT  and get 

 
      

� 

Z =
V

2π 2

2m( )3/2

!3 kBT( )3/2
x2e−x 2

dx
0

∞

∫  

where we have “extracted the physics” from the integral that is now just a 
number. The integral has the numerical value   

� 

π 1/2 /4 and we have finally 

 
      

� 

Z =
V

2π 2

2m( )3/2

!3 kBT( )3/2 π1/2

4
 

We can now check if our gas can be considered as dilute when for instance the 
temperature is 5 K. If we insert physical values (at normal pressure we have 
that     

� 

N /V  is one mol of particles per 20 litres) we find     

� 

f ≈ N /Z ≈ 0.1 , still 
quite small. The quantity     

� 

N /Z is sometimes called the degeneracy parameter. 
At room temperature this parameter is extremely small which shows that we 
then safely can describe normal gases using MB statistics. For further use we 
can also note that   

� 

Z∝V . 
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6.2.  Velocity distributions 
 
In many cases in kinetic gas theory we are interested in the velocity 
distribution of the molecules of the gas. We then need the density of states in 
speed that we easily derive 

      

� 

V
2π( )3 d3 k = V

2π( )3
1
!3 d3 p =

V
2π( )3

1
!3 p2dp ⋅ 4π =

p=mv V
2π 2

1
!3 mv( )2 mdv

 

that gives 

 
      

� 

g v( ) =
V

2π 2
1
!3 mv( )2 m  

we then have  

 
    

� 

n v( )dv = g v( )dv ⋅ f v( ) = g v( )dv N
Z

e−ε v( ) /kBT  

If we insert our expression for the density of states and the earlier derived 
expression for the partition function we get  

 
    

� 

n v( )dv = 4πN m
2πkBT

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3/2

v2 e−mv 2 /2k BT dv , 

the number of particles with speed in the interval   v,v + dv[ ] . 
Maxwell derived this relation was by long before quantum mechanics was 
known. We also see that the result does not contain Planck’s constant that 
means that the result is “classical” and consequently be derived without using 
quantum mechanics. We also know that the result cannot be expected to be 
valid for very dense or cold gases when quantum phenomena start to appear. 
The distribution   

� 

n v( )  as a function of v, starts from zero, increases as the 
speed increases, has a maximum and then decreases exponentially. You can 
compute some interesting representative speed for the distribution:  
 
1. The speed for which  n v( )has a maximum. Maximum occurs when  

 
    

� 

vmax = 2
kBT
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2

≈ 1.4
kBT
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2

 

Exercise. Show this! 
 
2. The average speed is  

 

    

� 

v =
v

0

∞

∫ n v( )dv

n v( )dv
0

∞

∫
=

8
π

kBT
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2

≈ 1.6 kBT
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2

 

Exercise. Show this! 
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3. The RMS (root mean square) speed is 

 

    

� 

v2 =
v2

0

∞

∫ n v( )dv

n v( )dv
0

∞

∫

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ ⎟ 

1/2

= 3 kBT
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2

≈ 1.7 kBT
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2

 

 
From the last result we find that 

 
    

� 

ε =
1
2

m v2 =
3
2

kBT , 

a result that we got in chapter 3 using the equipartition theorem: a free 
particle has three quadratic terms in the total energy, each one corresponding 
to an (average) energy of     

� 

1
2 kBT . 

 
6.3. Internal energy and heat capacity 
 

We use 
  
E = −N ∂ ln Z

∂β
= 3

2 NkBT  

From which follows 
  
CV =

dE
dT

= 3
2 NkB   

Here, we could have used the result from the last section where we computed 
the average energy of one molecule.  
 
6.4. Entropy and free energy and more 
 
We use 

 

  

S = kB lnΩ = kB ln gi
ni

ni !i
∏ =

kB ni ln gi − ni ln ni + ni( )
i
∑ = kB ni ln gi /ni( )i + 1( )

i
∑ =

kB ni ln Z − ln N + ε i /kBT + 1( )
i
∑ =

NkB ln Z − NkB ln N + NkB + E/T = NkB ln Z − kB ln N !+ E/T

 

We note that this expression is similar to what we had before for 
distinguishable particles only we also have the term 

� 

kB lnN! . The extra term 
compensates for that we count to many permutations if we have 
distinguishable particles.  
 
For the free energy we now have 
   F = E −TS = −NkBT ln Z − ln N + 1( )  
 
Pressure is defined by  

 

� 

p = −
∂F
∂V

= NkBT
∂
∂V
lnZ = NkBT

∂
∂V
ln const ⋅V( ) = NkBT /V  

or 
 

� 

pV = NkBT  
We have derived the equation of state for an ideal gas!  
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Exercise problems. Chapter 6 
 
1. What is the RMS speed for air molecules at room temperature? Why doesn’t 
the moon have an atmosphere? 
 
2. Consider a model of a HCl molecule (chloric acid). You may assume that 
the molecule consists of two pointlike atoms at a fixed distance a from each 
other. The molecule can rotate around an axis perpendicular to the line 
connecting the atoms.  
a) Write down the partition function for the rotational states of this moelcule.  
b) Then estimate the contribution from the rotations to the heat capacity at low 
temperatures.  
c) Estimate what is meant by low temperatures if a = 0.12 nm. 
Hint: Do a suitable approximation in the partition function.  
 
3. Assume that the partition function is such that   

� 

Z∝V xT y  with certain 
numbers x and y. What is the pressure and heat capacity? 
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7. Diatomic gases 
 
In a diatomic gas you can have several kinds of energy levels. In general the 
energy of a molecule is a sum of four energy contributions:  
 

� 

ε =ε trans +εrot + εvib + εelektron  
 
The first term is the translational energy of the molecule that we have already 
treated in the previous chapter. The second term is the rotational energy; the 
molecule can rotate around the mass centre between the atoms. The third 
term is the vibrational energy; the two atoms can vibrate along the line 
connecting them. The last term is due to electronic excitations in the molecule. 
We expect, and assume in our description that there is very little interaction 
between the different energy modes. We write down the partition function  

 

� 

Z = e− β ε trans +εrot +ε vib +ε elec( )

all
states

∑ = e−βε trans
trans
∑ e−βε rot

rot
∑ e− βε vib

vib
∑ e− βε elec

elec
∑

= ZtransZrotZvibZelec

 

 
As the partition function appears everywhere in thermodynamical quantities 
in the form of   ln Z , the different energy modes will be additive and we can 
handle then one by one.  
 
7.1 Heat capacity 
 
7.1.1 Contribution from the translational energy  
 
We have already shown that this gives a contribution  
     

� 

CV ,trans = 3
2 NkB  

 
7.1.2 Contribution from the electronic excitations 
 
Typical excitation energies in a molecule are of order eV that corresponds to a 
scale temperature of some 10 000 K. This means that we can normally neglect 
these contributions to the heat capacity at room temperature. The only 
exception is NO where we have a Schottky anomaly around 75 K caused by 
two close energy levels. We will neglect electronic contribution in what 
follows.  
  
7.1.3 Contribution from the vibrational energy 
 
We have already treated this. The atoms in a diatomic molecule can vibrate 
along the line connecting the atoms; this is a one-dimensional harmonic 
oscillator. This gives a contribution to the heat capacity the increases from 
zero at low temperatures and starts to be important at the scale temperature 
and becomes   

� 

NkB  at high temperatures. The scale temperature is of order 
some thousands of Kelvins for ordinary gases. This means that we can in most 
cases ignore the vibrational contribution to the heat capacity.  
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7.1.3 Contribution from the rotational energy 
 
Our molecule can rotate around an axis through the mass centre, 
perpendicular to the line connecting the atoms. From quantum mechanics you 
can show that the quantum mechanical rotator has energy eigenvalues given 
by  

 
      

� 

εℓ =
"2

2I
ℓ ℓ+ 1( ) = kBℓ ℓ + 1( )θ  

where    θ = !2 /2IkB  is the scale temperature. I is the moment of inertia with 
respect to the rotation axis. For O2 the scale temperature is 2 K, far below the 
boiling point, for oxygen in gas form, lots of rotational modes are excited and 
give contribution the heat capacity. For H2 the scale temperature is 85 K, 
which means that the rotational contributions for H2 give a contribution at a 
temperature substantially above the boiling point 20 K. 
 
The eigenfunctions of the rotator are the spherical harmonics   

� 

Yℓ
m  that have a 

degeneracy of     

� 

2ℓ + 1  given   

� 

ℓ . We can now write down the partition function 
for the rotator  

 
      

� 

Zrot = 2ℓ + 1( )e−ℓ ℓ+1( )θ /T

ℓ= 0

∞

∑  

If we exclude hydrogen, room temperature is much larger than the scale 
temperature. This means that there are many excited states and we can 
replace the sum by an integral. Set       

� 

y = ℓ ℓ+ 1( )θ/T . Then 

  

� 

dy = 2ℓ+1( )θ /T ⋅ dl = 2ℓ +1( )θ /T ⋅1. Note that 

� 

θ << T  we can consider dy as 
infinitesimal and get 

 
      

� 

Zrot = 2ℓ + 1( )e−ℓ ℓ+1( )θ /T

ℓ= 0

∞

∑ =
T
θ

dy ⋅ e−y

0

∞

∫ =
T
θ

 

Thus 

 
  
Erot = −N

∂ ln Zrot

∂β
= NkBT  

and 
     

� 

CV ,rot = NkB  
 
The total heat capacity at room temperature then is  
     

� 

CV = CV ,trans + CV ,rot = 3
2 NkB + NkB = 5

2 NkB  
in complete agreement with experiment. Before quantum mechanics people 
couldn’t understand why the vibrational contributions shouldn’t be included.  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Exercise. Why do we neglect rotations along the connection line between the 
atoms?  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Exercise. Compute the contribution to internal energy and heat capacity at a 
temperature that it much below the scale temperature. Hint: Only consider the 
first terms in the partition function. (Why?) 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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8. Fermi-Dirac gases, metals, white dwarves, 
neutron stars and black holes 
 
If we look at a FD gas at low temperature, the particles are stacked on top of 
each other, one in each state (actually two because we have spin 1/2 particles) 
from the lowest energy and upwards due to the Pauli principle. This implies 
that we have a rather high zero-point energy, typically of order some eV. 
Then what do we mean by low temperature? Looking at a MB gas the 
degeneracy parameter 
     

� 

A = N /Z 
 
In which situations is this parameter large enough that we cannot treat the FD 
gas as a MB gas? In nature we have essentially three such situations, one 
every day situation and two more exotic:  
 
1. The conduction electrons in a metal have to be treated as a FD gas at all 
reasonable temperatures. Also for some semiconductors we need to use FD 
statistics. 
 
2. Liquid -3 at low temperatures (some Kelvins). 
 
3. Electrons in white dwarf stars and neutrons in neutron stars. 
  
8.1 The Fermi-Dirac distribution 
 
We can write 

 
    

� 

fFD ε( ) =
1

e ε−µ( )/kBT + 1
 

 
where we have defined the parameter     

� 

B = e−µ /k BT . 
 
In principle we could determine 

� 

µ , the chemical potential, by the normalisation 

  

� 

N = ni∑ but do that we have to solve an implicit equation for 

� 

µ  that is quite 
complicated. Without solving the equation we can see that 

� 

µ  has to depend 
on the temperature (why?) but 

� 

µ  is a very slowly varying function of 
temperature. We can make a graph of the distribution 

 

1 ab
c

 
 
Curve a) shows the distribution when T = 0. It is a step function with all levels 
below 

� 

µ(0) occupied and all levels above empty.  
Curve b) shows the distribution at a higher temperature and c) at very high 
temperature. It is easy to see that µ is the energy value for which the filling 
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factor is exactly 1/2. The value of µ moves very slowly towards lower 
energies as the temperature increases. 
 
We will now compute 

� 

µ  for low temperatures (in reality for T = 0). We 
assume that we have spin 1/2 fermions. There are two ways of doing this 
computation:  
 
1) We first determine the density of states in energy. We have already done 
this earlier; the only modification will be to multiply with the spin factor 2 
due to the two possible spin states. We get

 
      

� 

g ε( ) = 2 ⋅ V
2π( )2

2m( )3/2

!3 ε1/2 =
V

2π 2

2m( )3/2

!3 ε1/2  

The number of particles is given by 

 
    

� 

N = gini∑ → g ε( )dε 1
e ε− µ( )/k BT + 10

∞

∫  

If T = 0, the distribution is a step function and we get  

 
      

� 

N = g ε( )dε ⋅ 1
0

µ 0( )

∫ =
V
π 2

2m( )3/2

!3 ε1/2

0

µ 0( )

∫ dε =
V

2π 2

2m( )3/2

!3
2
3

µ3/2 0( )  

After some manipulation we get  

 
      

� 

µ 0( ) =
!2

2m
3π 2N

V
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2/3

≡εF   the Fermi energy. 

2) If we instead think of k-space at absolute zero temperature, the particles 
will be packed as a sphere around the origin with a certain radius   

� 

kF . We 
know the density of states in k-space and can then easily compute the number 
of particles in the sphere 

 
    

� 

N = 2 ⋅ V
2π( )3 ⋅

4πkF
3

3
=

V
π 2

kF
3

3
 

We use 

 
  

� 

εF =
pF2

2m
=
kF2!2

2m
 

and immediately get 

 
      

� 

µ 0( ) ≡ εF =
!2 kF

2

2m
=
!2

2m
3π 2N

V
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2/3

 

We now can define the Fermi temperature as  
     

� 

TF = εF /kB  
 
If we insert typical values, for instance for metallic sodium where we have 
one conduction electron per atom, we find that the Fermi temperature is 
about 70 000 K. Room temperature is VERY much less than this and in most 
situations we then can pretend that room temperature correspond to zero 
temperature. The electron gas in a metal is extremely quantum mechanical, we 
cannot understand or describe a metal without quantum mechanics.  
Exercise. Compute the Fermi temperature of sodium.  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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8.2 Zero-point energy and heat capacity  
 
We have 

 
  
E = εg ε( )dε ⋅ fFD ε( )

0

∞

∫  

For the zero-point energy, the distribution function is a step function and we 
have  

 
  
E 0( ) = εg ε( )dε

0

µ 0( )

∫  

 
This gives after simple integration  
   E 0( ) = 3

5 Nµ 0( )  
 
In order to compute the heat capacity we need to know the temperature 
dependence of the internal energy. This is hard to compute. Instead we will 
use a more hand-waving argument. At “low” temperatures the energy 
interval where the distribution function changes from1 to 0 is of order   

� 

kBT . 
Only electrons in this region can be excited, electrons in lower levels are 
locked by those electrons that occupy in the levels above them. Thus, only a 
number of electrons of order   

� 

g µ ≈ εF( )kBT  can absorb thermal energy and 
contribute to the heat capacity. They then absorb typical energies of order 
  

� 

kBT . We then have 

 
  
Ethermal ≈ g εF( ) kBT( )2 =

3
2

NkBT
kBT
εF

 

where we have used 

 
    

� 

N = g εF( ) 2
3
εF . 

´With these approximations we get 

 
  
Celectron =

dEthermal

dT
= 3NkB

T
TF

 

(The correct result is 
    

� 

Celectron =
π 2

2
NkB

T
TF

, see below in section 8.3) 

We can note several interesting facts on the expression. Firstly, we have the 
factor     

� 

T /TF  that at room temperature is of order 0.5%. The electronic heat 
capacity is very small at room temperature. This explains why metals and 
non-metals have essentially the same heat capacity at room temperature. 
Secondly, we see that the electronic heat capacity is a linear function of 
temperature. We can check that experimentally. At low temperatures the heat 
capacity for the vibrating mother atoms in the lattice is proportional to     

� 

T3  
which we will show at the end of next chapter. The total heat capacity of a 
metal at low temperature will then be 
     

� 

C T( ) = Clattice + Celectron = AT3 + BT  
with known constants A and B. 
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If we rewrite this 

 
    

� 

C T( )
T

= AT2 + B 

we see that if we plot experimental values of the quantity 

� 

C T( )
T

 against     

� 

T2  , 

we expect the measured values to lie on a straight line and we can 
experimentally check the theoretically known values of the constants A and B. 
The graph below shows such a plot and is a nice confirmation of the theory.  
 

 
 

*8.3 Detailed computation of the heat capacity  
 
We use 

 
  
Cel =

dE
dT

= dε ⋅ ε
0

∞

∫ g ε( )∂ f
∂T

 

and 

 
  
0 = εF

dN
dT

= dε ⋅ εF g ε( )
0

∞

∫
∂ f
∂T

 

Subtract the equations  

 
    

� 

Cel = dε ⋅ ε −εF( )
0

∞

∫ g ε( ) ∂f
∂T

≈ g εF( ) dε ⋅ ε −εF( )
0

∞

∫ ∂f
∂T

 

where we have used that at temperatures that are small compared to the 
Fermi temperature, the derivative of  

� 

f  is large only in a surrounding of   

� 

ε =εF . 
In   

� 

f  we exchange to first order the chemical potential to the Fermi energy, 

    

� 

µ T( ) ≈ µ 0( ) = εF . We get 

    

� 

∂f
∂T

=
ε−εF

kBT 2
e
ε−ε F
k BT

e
ε−ε F
k BT + 1

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

2  

Let 

 
  

� 

x =
ε−εF

kBT
 

that gives 

    

� 

Cel = g εF( ) kB
2T( ) dx ⋅

−ε F /kBT

∞

∫ x2 ex

ex + 1( )2 ≈ g εF( ) kB
2T( ) dx ⋅

−∞

∞

∫ x2 ex

ex + 1( )2 = g εF( ) kB
2T( ) π

2

3
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and finally we use 
    

� 

g εF( ) =
3N
2εF

 and get the result  

 
    

� 

Cel =
π 2

2
NkB

kBT
εF

=
π 2

2
NkB

T
TF

 

 
 
*8.2. Dwarf stars, neutron stars and black holes 
 
When a star has used up its nuclear fuel, it will collapse under influence of the 
gravitation and shrink. The star contains mainly protons and electrons. As the 
star shrinks, its density and thereby also the electron density and Fermi 
temperature increases. It becomes that high, that in spite of the star having a 
temperature of order 107 K, we can describe it as if it was at absolute zero in 
comparison with the Fermi temperature. There are now two kinds of energy 
in the star: the potential energy of the gravitation and the zero-point energy of 
the electrons. For the gravitational energy we have  

 
  
Eg ∝ −

M2

R
 

where M is the mass of the star and R its radius. 
 
The electronic zero-point energy is, as we have seen,

 
  
Ee ≈ N ⋅µ 0( )∝ N N

V
⎛
⎝⎜

⎞
⎠⎟

2/3

∝
N 5/3

R2 ∝
M5/3

R2  

Where we have used that     

� 

V ∝R3  and   

� 

N ∝M . The total energy then is  

 
  
E = Eg + Ee = −A M2

R
+ B M5/3

R2  

with certain known constants A and B. If we sketch the total energy as a 
function of the radius of the star (do it!) we find that the energy has a 
minimum; we have a stable equilibrium radius. We can easily determine the 
equilibrium radius by putting the derivative of the total energy to zero. We 
then get  
   Requilib ∝ M−1/3  
The larger the mass of the star is, the smaller is the equilibrium radius. If we 
insert numerical values of the constants A and B, a dwarf star with the mass of 
the Sun will have an equilibrium radius of about the radius of the Earth.  
 
However, if the mass of the star is large, larger than about 1.4 solar masses, 
the so-called Chandrasekhar mass, the zero-point energy of the electrons will 
get very high and some of the electrons become extreme-relativistic. For 
extreme-relativistic electrons the Fermi energy is not proportional to     

� 

V−2/3  but 
to     

� 

V−1/3  that implies that the zero-point energy will be proportional to 1/R. 
We now do not any more have an equilibrium radius but an instable situation; 
the star collapses and the electrons react with the protons, forming neutrons 
via the process  
   

� 

e− + p→ n + νe  
The neutral neutrinos (  

� 

νe ) that are created disappear from the star, the process 
is irreversible and we have now a very compact star object, a neutron star.  
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The neutrons, like the electrons are fermions and we can treat the neutron star 
as a FD gas. The only difference is that the neutron mass in the expression for 
the Fermi energy is about 2000 times heavier than the electron mass. We will 
again have a balance between negative gravitational energy and positive 
neutron zero-point energy. Again we get an equilibrium radius   Requilib ∝ M−1/3  
but now much smaller due to the larger neutron mass. For a neutron star with 
a solar mass, the equilibrium radius will be about 10 km. Neutron star have 
been observed. They often rotate rapidly, typically with a rotation period of 
order a millisecond and often emit a rotating beam of electromagnetic 
radiation that we can observe on Earth as a "blip" when it happens to be 
directed towards us. Such neutron starts are called pulsars.  
Exercise. Show that the equatorial speed of a typical pulsar is of order the 
speed of light!  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
In spite of the rapid rotation the pulsar is, due to its large mass and enormous 
density, almost perfectly spherical.  
 
If a neutron star is very heavy, also the neutrons become relativistic and the 
star collapses, this time to a black hole. Normally, black holes are not created in 
this relatively non-dramatic way but are created in supernovas where the 
violent explosion compresses the central parts of the star into a black hole. 
The radius of a black hole is uniquely determined by its mass 

 
    

� 

R = 2G M
c 2  

where G is the gravitational constant. The radius of a black hole with the mass 
of the Sun is about 1 km. 
 
Exercise problems. Chapter 8 
 
1. Compute numerically the Fermi energy and Fermi temperature of copper. 
Assume one conduction electron per atom. 
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9. Bose-Einstein gases 
 
The Bose-Einstein distribution is  

  
    

� 

fBE ε( ) =
1

Beε/kBT − 1
 

where   

� 

B = eα . 
 
We will start with the simplest case and assume that our bosons are photons. 
This will lead us to a derivation of the important Planck’s law. 
 
9.1. Photons and Planck’s law 
 
Photons are massless bosons with spin 1. The fact that they are massless 
means that we must treat them relativistically but also that we get a very 
simple relation between momentum and energy (the dispersion relation) 
     

� 

p =ε/c  
 
We begin by deriving the density of state in energy and start as usual with the 
density of states in k-space:  

 

   

V
2π( )3 d3k =

V
2π( )3

1
!3 d3p =

spherical
symmetry V

2π( )3
1
!3 p2dp ⋅ 4π =

p=ε/c

V
2π 2

1
!3

1
c3 ε

2dε

 

Thus 

 
      

� 

g ε( ) = 2 ⋅ V
2π 2

1
!3

1
c3 ε

2 =
V
π 2

1
!3

1
c 3 ε

2  

where the factor of 2 is due to that the photon can have two independent 
polarisation directions.  
 
The second simplification with photons is that they are massless: the number 
of photons in a photon gas is not conserved. We take this into account by 
skipping that constraint in the computation of the entropy, most simply by 
making   

� 

α = 0 that implies     

� 

B = 1. For photons the BE distribution then is  

 
    

� 

f ε( ) =
1

eε/k BT −1
 

 
The number of photons in an infinitesimal energy interval  

� 

dε  then is 
   

� 

n ε( )dε = g ε( )dε ⋅ f ε( ) 
and the distribution in energy is  

 
      

� 

u ε( )dε = ε ⋅ g ε( )dε ⋅ f ε( ) =
V
π 2

1
!3c 3

ε3

eε/k BT − 1
dε  

 
This is the famous Planck’s law 
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Exercise. Show that the number density     

� 

N /V of photons is proportional to     

� 

T3 . 
Hint: Integrate one of the expressions above.  
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
  
Normally what we mean by Planck’s law or the blackbody radiation law is 
the energy that every second leaves a small hole with area A from an oven 
with T. We will now derive this formula. We consider a box that contains a 
photon gas at temperature T.  
There is a small hole with area A in the 
box. During one second all photons 
within a half-sphere with radius c will 
have a possibility to exit through the 
hole. We look at the photons in an 
infinitesimal volume dV at distance r 
from the hole and investigate the 
probability that they pass through the 
hole. The hole, as seen from this volume 
occupies a solid angle of  

 
    

� 

ΩA =
Acosθ

r2  

were the cosine factor takes into account that the hole is seen from an oblique 
angle. The solid angle for all directions is   

� 

4π , that is the probability of exiting 
through the hole is   

 
    

� 

ΩA

4π
=

Acosθ
4πr2  

The number of particles in the energy interval     

� 

ε,ε+ dε[ ]  that exit the hole 
during one second from the infinitesimal volume dV is then  

 
    

� 

n ε( )dε
V

dV ⋅
Acosθ
4πr2 =

n ε( )dε
V

Acosθ
4πr2 r2dr ⋅ sinθdθdϕ  

and the energy in the interval     

� 

ε,ε+ dε[ ]  leaving the hole per second is  

 
    

� 

εdε
n ε( )
V

Acosθ
4πr2 r2 dr ⋅ sinθdθdϕ =

u ε( )dε
V

Acosθ
4πr2 r2 dr ⋅ sinθdθdϕ  

We integrate this over the entire half-sphere  

 
    

� 

u ε( )dε
V

A
4π

dr
0

c

∫ dθ
0

π/2

∫ sinθ cosθ dϕ
0

2π

∫ =
u ε( )dε

V
Ac
4

 

 
If we insert the Planck distribution that we derived earlier, we get the power 
(energy/time) that is emitted from the hole in the energy interval   

� 

dε  

 
      

� 

P ε( )dε = A 1
4π 2!3c2

ε3

eε/ kBT − 1
dε  

 
The formula us usually rewritten in frequency units using  

      

� 

ε = !ω = 2π!f = hf  
 

Thus 

 
    

� 

P f( )df = A 2πh
c 2

f 3

ehf /k BT −1
df  

A
c
θ

r
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We get the totally emitted power by integrating over all frequencies  

 

    

� 

P = P f( )df
0

∞

∫ = A
2πh
c 2

f 3

ehf /kBT − 1
df

0

∞

∫ =
x= hf /kBT

A
2πh
c2

kBT
h

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

4
x3

ex − 1
dx

0

∞

∫
 

It can be shown that the integral has the numerical value   

� 

π 4 /15 and we 
finally have  

 
    

� 

P = A 2π 5kB
4

15c2 h3 T 4 = AσSBT
4  

This is Stefan-Boltzmann’s law. If we insert numerical values of the constants 
we can compute the value of Stefan-Boltzmann’s constant 

 
    

� 

σSB =
2π 5kB

4

15c 2h3 ≈ 5.67 ⋅ 10−8 Wm−2K−4  

in perfect agreement with the experimental value.  
 
It is also interesting to compute the maximum of the Planck distribution, the 
most probable frequency. We then search for the maximum of the function  

 
    

� 

F f( ) =
f 3

ehf /k BT −1
 

 
We set the derivative to zero  
     

� 

0 = 3 f 2 ehf /k BT −1( ) − f 3 ehf /k BT ⋅ h/kBT  
or after having divided out the uninteresting solution f = 0 and defined 
    

� 

x = hf /kBT  we get 
     

� 

3 − x( )ex = 3  
This is a transcendental equation that we can solve easily numerically for 
instance on a calculator using the updating scheme     

� 

x← 3 1 − e−x( )  and starting 
the iteration with a preliminary x = 1. The iterations converge very quickly 
and give  
     

� 

xmax≈ 2.82144…  
Thus 

 
    

� 

fmax =
xmaxkB

h
T ≈ 5.88 ⋅ 1010 Hz/K[ ] ⋅T  

that is the frequency of the maximum increases linearly with temperature. 
This is Wien’s law.  It expresses the everyday experience that if you heat a 
piece of iron it first becomes dark red (low frequencies), then red, then orange, 
white, and finally bluish white (high frequencies). Actually it is possible to 
determine the temperature of a piece of iron by looking at its colour. 
Astronomers determine the temperature of distant stars by observing their 
colour.  
 
Due to the exponent 4 in Stefan-Boltzmann’s law a blue super-giant star, with 
a surface temperature of maybe 60 000 K and a radius that is about 4 times the 
radius of the Sun, will emit a much larger power that the Sun that has a 
surface temperature of about 6 000 K. The mass of the blue giant is about 100 
times that of the Sun. As the emitted power comes from a transformation of 
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the mass of the star to energy, a simple calculation shows that the blue giant 
will have a lifetime of order 1/1 000 of that of the Sun or about 5 million years 
that is a very short time in the cosmic time scale.  
 
If we look out in the universe in any direction we will see the photons that 
once were created in the Big Bang. It is an almost perfect Planck radiation 
with a temperature of 2.726 K. 

 
 
9.2. Phonons and the Debye model 
 
We will now study lattice vibrations in a solid (crystal). We know that we can 
represent the harmonic oscillator with energy quanta with energy   

� 

!ω . We can 
interpret these quantas as massless particles or phonons or sound waves in the 
crystal. We can now by analogy with the photons exploit the theory we have 
developed for photons with some minor changes:  
 
1) Sound waves in a solid can be transversal waves with two possible 
polarisation directions or longitudinal waves.  The two types of waves can 
have different propagation speeds   

� 

cT  and   

� 

cL .  
 
2) The dispersion relation is different. For small values of the wave number 

    

� 

k =
2π
λ

 (long wavelengths) we have       

� 

ε = !ω = !c T , L( )k  

This is however not correct for larger wave numbers (short wavelengths). 
 
We will anyhow use the linear approximation for the dispersion relation and 
then have a density of state in energy  

 
      

� 

g ε( ) =
V

2π 2
1
!3

2
cT

3 +
1
cL

3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ε

2  

We introduce an average speed of sound and three polarisations (two 
transversal and one longitudinal) by 

 
    

� 

3
cS

3 ≡
2
cT

3 +
1
cL

3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

We then can write the density of states on a form that is very similar to the 
one we had for photons except that the spin factor 2 now is 3 and the speed of 
light is now the average speed of sound 

� 

cS . 

      

� 

g ε( ) =
V

2π 2
1
!3

3
cS

3 ε
2  
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3) There are only a finite number of phonon modes in a solid. The solid 
consists of N atoms that can each vibrate in 3 directions. If we had used the 
correct dispersion relation this would have been taken into account 
automatically. In the Debye model, we simulate this by saying that we only 
integrate up to a suitable "cut-off" frequency   

� 

ωD , the Debye frequency defined 
by  

 
      

� 

3N = g ε( )
0

!ωD

∫ dε =
V

2π 2
1
!3

3
cS

3 ε2 dε =
0

!ωD

∫ V
2π 2

ωD
3

cS
3  

that gives the correct number of phonon modes. 
 
For the total internal energy we have 

   
E = g ε( )

0

!ωD

∫
ε 3

eε/kBT − 1
dε = V

2π 2
1
!3

3
cS

3 kBT( )4 x3dx
ex − 10

!ωD /kBT

∫ = 9N
kBT( )4

!ωD( )3
x3dx
ex − 10

!ωD /kBT

∫  

In the last step we have used the definition of the Debye frequency. There are 
two interesting special cases where we can compute the integral explicitly:  
 
1) Low temperatures. We then replace the upper limit in the integral by infinity 
and the integral then has a definite numerical value (  

� 

π 4 /15). We see that  
   E ∝T 4 ⇒ CV ∝T3  
The heat capacity is proportional to the third power of the temperature 
something that we have used earlier and that agrees extremely well with 
experiment.  
 
2) High temperatures. The upper integration limit the approaches zero. We can 
Taylor expand the denominator in the integrand:  

    

� 

ex −1 = 1 + x + … −1 ≈ x . 
The total integrand then becomes simply     

� 

x2  and we can perform the 
integration that gives  

 
   
E = 9N

kBT( )
!ωD( )3

4

x2 dx
0

!ωD /kBT

∫ = 9N
kBT( )
!ωD( )3

4 1
3
!ωD

kBT
⎛
⎝⎜

⎞
⎠⎟

3

 

 
Cancelling common factors gives us the well-known high temperature result  
   E = 3NkBT ⇒ CV = 3NkB  
or Dulong-Petit’s law. 
 
It is worth noting that the scale temperature in the model is the Debye 

temperature 
  

� 

TD =
!ωD

kB
 

 
*9.3 The Bose-Einstein condensation 
 
We close by studying a gas of massive, non-relativistic bosons at such low 
temperature that it has to be described by the BE distribution. To simplify we 
study bosons with spin 0, in the real world we could use helium-4. 
 
The density of states in this case is  
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� 

g ε( ) =
V

2π( )2

2m( )3/2

!3 ε1/2  

 
As the particles are massive we have to use the full BE distribution 

 
    

� 

fBE ε( ) =
1

Beε/kBT − 1
 

 
The number of particles in the gas is  

 

      

� 

N = ni
i
∑ = gi

i
∑ fi → dεg ε( )

0

∞

∫ f ε( ) =

V
2π( )2

2m( )3/2

!3 dε ε1/2

Beε/k BT −10

∞

∫
 

 
As usual we extract the physics from the integral by the variable substitution 

    

� 

y2 =ε/kBT  or     

� 

ε = y2 ⋅ kBT . We then get 
  

 
      

� 

N =
V

2π 2

2m( )3/2

!3 kBT( )3/2 π1/2

4
⋅

4
π1/2 dy y2

Bey 2
− 10

∞

∫   (**) 

 
If we look back on page 42, we see that the factor in the beginning of the 
expression is precisely the classical partition function and we can write  
   

� 

N = ZF B( )  
with 

 
    

� 

F B( ) =
4

π1/2 dy y2

Bey2
−10

∞

∫  

 
Given N, T, and V, this determines the value of B. At high temperature or low 
density (N/V) that value of B is large, we then can neglect the term –1 in the 
denominator of the integral and get back the MB result. 
 
However, at low temperatures (or high particle densities) we get a paradox. 
The smallest possible value of B is 1 and the function F has a finite value for B 
= 1. Explicitly     

� 

F 1( ) = 2.612…  This means that for fixed N and V there is a 
smallest value of the temperature,   

� 

TB , for which we can have the relation (**) 

 
      

� 

N =
V

2π 2

2m( )3/2

!3 kBTB( )3/2 π 1/2

4
⋅ 2.612  

or 

 
      

� 

TB =
N
V

1
2.612

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2/3 2π!2

kBm
 

It seems as if we cannot have a lower temperature than   

� 

TB  that is evidently 
nonsense. 
 
The reason for our problem is that in our approximation, the density of states 
goes to zero as the energy goes to zero. We have no particles in the ground 
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stat! On the other hand we see that the filling factor is very large when the 
temperature     

� 

T → 0 and     

� 

B → 1. We can resolve the problem by separating out 
  

� 

ε = 0 , the ground state, and treat all the other levels as before with the density 
of states. Assume that the number of particles in the ground state is     

� 

N0 . We 
then have for temperatures less than 

� 

TB   

 
      

� 

N = N0 +
V

2π 2

2m( )3/2

!3 kBT( )3/2 π1/2

4
⋅F 1( )  

      

� 

= N0 + T
TB

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3/2
V

2π 2

2m( )3/2

!3 kBTB( )3/2 π1/2

4
⋅F 1( ) =

N0 + N T
TB

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3/2  

or 

 
    

� 

N0 = N 1 − T
TB

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3/2⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  

 
At     

� 

T = 0 all the particles are in the ground state. But also at a slightly higher 
temperature a large fraction of the particles are in the ground state. This is 
called a Bose-Einstein condensation. These particles do not contribute to the 
internal energy and heat capacity. For temperatures above   

� 

TB , the Bose-
Einstein temperature, there are a negligible number of particles in the ground 
state. Earlier the BE condensation was considered as a quantum mechanical 
curiosity but in later years people have succeeded in creating and study quite 
large Bose-Einstein condensates and there are some expectations that such 
system could be used in the quantum computer of the future.  
 

 
 

Velocity-distribution data of a gas of 
rubidium atoms, confirming the 
discovery of a new phase of matter, 
the Bose–Einstein condensate. 
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Exercise problems. Chapter 9 
 
1. Compute numerically the Fermi energy and Fermi temperature of copper. 
Assume one conduction electron per atom.  
 
2. If you use the computation on page 52 with particles with speed v , you can 
show that the number of particles that per second passes a hole with area A is 

    

� 

nvA
4

 where n is the particle density. Assume you have a bicycle tyre with an 

excess pressure of two times normal atmospheric pressure. Assume that you 
have a small circular hole on the tyre with diameter 10 µm. How long do you 
have to wait until the pressure in the tyre has been halved?  
 
3. A keratin thread in wool can be described as a chain of oblong molecules as 
shown in the figure.  

........
d dA B  

Each molecule can have one of two possible orientations: along the chain or 
perpendicular to it. A molecule that is oriented along the chain has energy EA 
and length dA. A molecule that is oriented perpendicular to the chain has 
energy EB and width dB. Determine the average length of a keratin thread that 
consists of N molecules at temperature T.  
Describe what happens with the length at high and low temperatures. 

Assume that   

� 

EA < EB . 
 
4. A very simplified model of the way the double helix in a DNA molecule 
opens up at different temperatures is the following. A ”zipper ” consists of N 
pairs of links (see figure). N is a large 
number. A closed link represents an 

energy of 0, an open link the energy ε > 0. 
The zipper can only be opened from the 
left, that is to open the link # i, all link 
pairs 1, 2 .. i –1 must be open. Each open 
link pair can be in G different positions/states (due to that the free links can 
rotate), this means that the degeneracy when i link pairs are open is Gi. We 
assume that the last link pair cannot be opened (the chain then falls apart) . 

länkpar
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a) Write down the partition function of the system and compute the sum.  

Hint: Introduce the variable x = Ge −ε / kT . 
b) Compute the average number of open link pairs as a function of 
temperature and as a function x. 
c) Make a rough sketch showing how the average number of open links varies 
as a function of x or better the temperature.  
Hint: Computations are simpler if you let 

� 

N →∞. 
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Answers:  
 
1.2. Temperature of order 500˚C, pressure about 25 times normal pressure. In 
the second process the pressure is about 10 normal pressure. 
 
2.1. 156 
 
2.2. 11/36 ≈ 0.3 
 
2.4. a)     

� 

1 − p ⋅ dx  b)     

� 

1− p ⋅ dx( )N
p ⋅ dx   c)   

� 

e−pxp ⋅ dx   d)     

� 

x = 1/p  
 
3.2. 6.1 kJ/K, 1.3 kJ/K 
 
3.3. 0.18 kJ/K 
 

4.4. 2.6 
  

� 

µB
kB

 

4.5. 5.7 µK to 22 mK; 91 kHz 
 
4.6. ≈ 0.3 meV 
 
6.1. ≈ 500 m/s 
 
6.2. c) <<100 K 
 

6.3. 
  

� 

p =
xNkBT

V
   

� 

c = yNkB  

 
8.1. 7 eV; 80 000 K 
 
9.1. Some days. 
 

9.2. L = N dAe
−EA / kT + dBe

−EB / kT

e−EA / kT + e−EB / kT
 

 
9.3. 

    

� 

nopen =
x

1− x   
; x << 1 (T small) ⇒ nopen ∝ x; x → 1 (T large) ⇒ nopen → N  
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STATISTICAL MECHANICS REPETITION QUESTIONS Autumn 2009 
 
1. Explain what is meant by thermodynamical equilibrium? 
2. Formulate the first law. What is the meaning of the different terms ? 
3. Give examples of intensive and extensive parameters. 
4. Define macrostate och microstate. 
5. Define entropy. Give some reasons for defining entropy in this way. 
6. Formulate  the second law (any of the formulations). Motivate why the 
entropy is maximum at thermodynamical equilibrium. 
7. Define temperature using the entropy. Motivate  the definition by showing 
that it implies that energy flows spontaneously from a warm to a cold object. 
8. Derive the historic-classical definition of entropy. 
9. Why do we need a quantum mechanical description of the world in order 
to get a correct theory of statistical mechanics. 
10. Study a system of N distinguishable particles and total energy E with non-
degenerate energy levels. Determine the occupation numbers at 
thermodynamical equilibrium. Define the Boltzmann factor and the partition 
function. What is the entropy? 
11. Express the energy E using the partition function Z. 
12. What is the implication of the equipartition theorem? Give some simple 
applications. 
13. Compute energy, heat capacity and entropy for a two-level system. 
14. Define Helmholtz’ free energy and indicate how the entropy can be 
computed using it. 
15. Describe qualitatively cooling by adiabatic demagnetisation. 
16. Compute energy, heat capacity, and entropy for a system of N one-
dimensional harmonic oscillators. 
17. Explain the small heat capacity of diamond och graphite. 
18. Derive the density of states in energy for an ideal gas of spinless, massive 
and non-relativistic atoms. 
19. Give the filling factor of respectively FD, MB, and BE gases. 
20. Start with Helmholtz’ free energy for an ideal MB gas and derive the gas 
law. 
21. What extra contributions to the heat capacity do you get for an ideal 
diatomic gas? What contributions can be negleced and why? 
22. Give the properties of a FD gas. Why is the electronic heat capacity of such 
a gas very small?  
23. Sketch a derivation of Planck’s law. 

24. Plancks law can be formulated 
    

� 

P f( )df = A 2πh
c 2

f 3

ehf /k BT −1
df . Indicate how 

you derive Stefan-Boltzmann’s T4 law and Wien’s law from this expression.  
 
25. Give a qualitative description of the Debeye modell and its results. 


