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1 On systems 
 
System theory is about studying systems and make mathematical models for them. 
Some examples of systems are 
 
• The solar system 
• A bicycle 
• A population 
• A heart 
• Chemical reactions 
• Weather systems 
 
A general model of a system may be illustrated in the figure below. 

  
The system variables are denoted by , the input signal by , and the out 

signal by . They have not necessarily the same dimension.  describes the 
internal state of the system. 
 
1.1 Some kinds of systems 
  
The time t can be continuous. Often it is practical to let it be discrete, for instance in 
computer simulations or when it is the time between generations in a populations.  
In a static system we have  
  

Example 1.1. A simple system that follows Newton’s laws , with  and  
 is an example of a system where the system variables only depends on the 

input signal i.e. it is static. 
 
In a dynamic system the state of the system depends on what has happened earlier, 
that is the system has a memory. The change of the system thus depends also on its 
actual state. Many systems can be described by differential equations 

    

Some systems are described by differential-difference equations, like the development 
of a population with a specific fertility age T 

  

We can further classify systems in linear and non-linear systems. For linear systems 
we have powerful mathematical methods. This is in general not the case for non-
linear systems. By linearizing such systems around suitable state points we can often 
extract interesting information. 
 
Some system models are stokastic, that is we can only specify signals and system 
states with certain probabilities. If  does not depends explicitly on time t we 

Input OutputSystem
x(t) y(t)u(t)

External
influence

Response

  x t( )   u t( )
  y t( )   x t( )

  x t( ) = f u t( )( )
 F = ma  x = a

 u = F

   
dx
dt

= f x t( ) ,u t( ) ,t( )    y t( ) = g x t( ) ,u t( ) ,t( )

   
dx
dt

= f x t( ) ,x t −T( )u t( ) ,t( )

   f x,u,t( )
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have an autonomous system. The systems we will treat will almost always be such 
systems.   
 
We will often be interested in whether a system is stable or not. Often this is the only 
thing we are interested in. 
 

The  description  is despite its form (first order) a quite general 

description. 
 
Example 1.2. Consider Newton’s law 

  

If we introduce the system variables  and  we get the system 

  

that is a description of the type above. 
 
The choice of system variables is not unique.  In some cases we study systems 
without output signals and let the system variables themselves be output signals. One 
way to get such systems is to enlarge the system to contain also suitable parts of the 
environment. 
 
1.2 Linear autonomous systems 
 
Study the system 

  

As the system is linear, every linear combination of solutions is also a solution. A is 
called the system matrix. 
 
Put , where T is a scalar function of time and z a vector that is 
independent of time. Then 

  

As  is independent on time  is independent on time i.e. 

  

The second equation is an eigenvalue equation where  is the eigenvalue. We rewrite 
the equation as a homogeneous equation 
  
where  denotes the unit matrix. This equation has non-trivial solutions when 

    
!x = dx

dt
= f x,u,t( )

  
d2z
dt2 =

F z,t( )
m

= f z,t( )

  x1 = z    x2 = !z

   

!x1 = x2

!x2 = f x1 ,t( )
⎧
⎨
⎪

⎩⎪

    

!x = Ax x =
x1

...
xn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

A =
A11 ... A1n

... ... ...
An1 ... Ann

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  x t( ) = T t( )z

   
Az =

!T
T

z

 Az    !T/T = λ

   

!T = λT
Az = λz

⎧
⎨
⎩

⇒T t( ) = ceλt

λ

  A − λ·1( )z
 1
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This is an n degree equation in , the secular equation. We have a set of n roots 

 that is called the spectrum of the matrix A.  
 
Assume that all the roots are different. We can then insert the roots, one at a time, in 
the homogeneous equation and determine the corresponding eigenvectors . The 
general solution is then 
  

where the constants  are determined by the boundary conditions 

  

If two eigenvalues are equal, say , the contricution to the solution will be 
  
In general if m roots are equal we get a polynomial of degree m–1 in t 

  

 
Physical interpretation of the solution 
 
In most cases the matrix A is real. The eigenvalues then are real or complex conjugate 
pairs.  
• Eigenvalues with Re  > 0 give exponentially growing terms in the solution, i.e. we 
have instability. 
• Re  < 0 give exponentially decreasing solutions. If all the eigenvalues have 
negative real part the system is stable. 
• Im  ≠ 0 gives oscillatory solutions. 
 
Another method of solution 
 
Formally the equation , with boundary condition is solved by 

  

What is the meaning of ? We define this quantity as the series expansion 

  

It can be shown that the series converges and for many matrices A the number of 
terms in the series is finite. It is also easy to see the expression above is a solution 
(Exercise) 
 
Using the binomial theorem you can show that (Exercise)   
 
If we put s = –t we have  that is  is non-singular with inverse . 
 
We can now solve the inhomogeneous equation 
  

  det A − λ·1( ) = 0
λ

 λi{ }

  zi

  
x t( ) = cie

λitzi
i
∑

 ci

   
x 0( ) = cizi

i
∑

 λ1 = λ2 = λ

   c1z1 + t·c2z2( )eλt

   
ckt

k

k=0

m−1

∑ eλtzk

λ

λ

λ

  !x = Ax   x 0( ) = a

  x t( ) = eAta

  eAt

   
eAt = 1+ At + A2t2

2!
+ A3t3

3!
+ ...

   eAs·eAt = eA s+t( )

   e0 = 1 = eAt ·e−At   eAt   e−At

  !x = Ax +Bu
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Put   
The last equation is solved by 

  

giving 

  

 
1.3 Linearization 
 
Example 1.3 (Pendulum) Consider a mathematical pendulum with mass m and length 
L. Let the pivot point be freely movable along a horizontal line in a vertical plane. 
The pendulum oscillates in a vertical plane. Let the system variables be the angle of 
the pendulum with the vertical and the time derivative of this angle, . 
Let the acceleration of the pivot point (i.e. the external applied force) be the input 
signal, . Let the output signal be the angle of the pendulum. The system 
equations for this system can be derived by for instance Lagrange formalism and are 
(Exercise) 

  

If we study the system without external forces we have 

 , with system matrix  

The equilibrium points or fix-points are given by 
  
We have two fix-points 

  

Taylor expansion around the first point and only keeping first order terms gives 

 A =  

The matrix has eigenvalues  i.e. oscillatory solutions as expected. It is easy to 
show that the second fix-point gives unstable solutions. 
 
In general we have a system with fix-points given by . 

Linearization with  gives 

  i.e.   

 
1.4 Models for input and output signals – the black box model 
 

    x t( ) = eAtc t( ) ⇒ !c = e−At ·Bu

   
c t( ) = c 0( ) + e−As

0

t

∫ ·Bu s( )ds

   
x t( ) = eAta + e−A t−s( )

0

t

∫ ·Bu s( )ds

   x1 =ϕ , x1 = !ϕ

  u = !!z

   

!x1 = x2

!x2 = −sin x1 − !!zcosx1

⎧
⎨
⎩

   

!x1 = x2

!x2 = −sin x1

⎧
⎨
⎩   

0 1
−sin x1 0

⎛

⎝
⎜

⎞

⎠
⎟

   !x1 = 0, !x2 = 0⇒ x2 = 0, sin x1 = 0

  

x1 = 0
x2 = 0

⎧
⎨
⎩

x1 = π
x2 = 0

⎧
⎨
⎩

  

!ε1 = ε2

!ε2 = −ε1

⎧
⎨
⎩  

0 1
−1 0

⎛
⎝⎜

⎞
⎠⎟

 λ = ±i

  !x = f x( )   f x∗( ) = 0

 x = x∗ + ε

   
!ε i = ε j

j
∑

∂ fi x∗( )
∂xj   

Aij =
∂ fi x∗( )
∂xj



 5 

The number of system variables can be very large. In many cases we are only 
interested in a few of them. When you drive a car you need to know very little  of 
what happens in the car system. We will therefore study methods where wee 
concentrate on relations between input and output signals.  
 
When can we use such a description? The development of the system depends not 
only on the input signals but also on the state at the beginning. If we assume that we 
have a stable system (all the eigenvalues of the system matrix are less than zero) the 
system will, if we wait long enough, have been damped into a well-defined state. 
 
Example 1.4. A low-pass filter 
Consider the low-pass filter below. 

  
 
It is easy to show (Exercise) that the relation between the input and output signals is 
  
Assuming that the output signal is limited when  the solution is 

  

We see that the output signal at a certain time depends on the input signal for all 
earlier times! 
 
We now study linear (or linearized) systems. We assume that the system is 
autonomous, that the system matrix is explicitly independent on time. We also assume 
that . The general solution to the equations 

  

is then 

   

The solution for y is independent of the system variables. We realise this if we put 
where T is a diagonal matrix. We get 

  

  

It is easy to show that  (Exercise) giving 

 , independent of T. 

Assume for a moment that D = 0, that the input signal does not influence the output 
signal. The output signal is then a weighted average of the input signal in the interval 

. In out case the weight function (in general a matrix) is 

   !y = −y/RC + u/RC
 t →−∞

  
y t( ) = 1

RC
e− t−s( )/RC

−∞

t

∫ u s( )ds

  x t →−∞( ) = 0

  

!x = Ax +Bu
y = Cx +Du

⎧
⎨
⎩

  
x = eAta + eA t−s( )

−∞

t

∫ Buds
  
y = Du +C eA t−s( )

−∞

t

∫ Buds

 z = Tx

   !z = TAT−1z+ TBu

   
y = CT−1z+Du ⇒ y = Du +C T−1eTAT−1 t−s( )

−∞

t

∫ TBuds

   eTAT−1 t−s( ) = TeA t−s( )T−1

  
y = Du +C eA t−s( )

−∞

t

∫ Buds

  −∞,t( )
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 is the time from the arrival of the input signal that will be weighted. If D ≠ 0 we 

can define the weight function 
  

  

We can give the weight function a physical interpretation that also implies a practical 
method of measuring it for an arbitrary linear system. Let one of the input signals ui, 
be a  pulse at time  < t and study on of the output signals yj 

  

The weight function is the output signal that results from an input  pulse! The 
weight function is often called the impulse response. By using different input signals 
and study all the responses we can measure the weight function. 
 
So far we have only got the weight function for positive arguments of time. A natural 
generalisation is to put its value for negative arguments to zero (or the system would 
be able to produce an output signal before the input signal), we say that the weight 
function is causal. By this trick we can also extend the time integration over all times. 

  

We will now show that for a linear autonomous system there is a direct relation 
between the input and output signals that can be formulated using Laplace transforms. 
These transforms are also very handy to solve differential equations. 
 

  h τ( ) = Ce−AτB  τ ≥ 0
τ

   h τ( ) = Dδ τ( ) +Ce−AτB τ ≥ 0 ⇒

   
y t( ) = h t − s( )u s( )

−∞

t

∫ ds = h ′s( )u t − ′s( )
0

∞

∫ d ′s

δ ξ

 
yj t( ) = hji t − s( )δ s−ξ( )

−∞

t

∫ ds = hji t −ξ( )
δ

  
y t( ) = h t − s( )u s( )

−∞

∞

∫ ds
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2 The Laplace transform 
 
The Laplace transform L(f) =F(s) of a function f(t) is defined by  

 L(f)  F(s)  

where  is a suitably chosen such that the integral converges. We will denote the 
Laplace transforms by capital letters. The integral above defines the Laplace 
transform in a complex half-plane. If needed also other parts of the complex plane can 
be defined by analytical continuation. By the Laplace transform we can convert 
differential equations unto algebraical equations. It can be shown (Exercise) that 

  

We Laplace transform the system equations 

  

where X , Y, and U are Laplace transforms. We can immediately solve the equations 

  

If = 0 we have . 

 is called the transfer function. Very often we can assume that  = 0 if the 
system is stable and we wait long enough. 
 
Example 2.1 Pendulum continued. 
We return to the pendulum that we studied earlier.  

      

We solve the equation system using the inverse 

  

It is easily seen that this is the inverse by testing. We now get 

  

  
Make an inverse Laplace transformation to get 

  

Note that the transfer function has poles for s = , the eigenvalues that we found 
earlier for the system matrix. 
 
  

≡ ≡
  

dt e−st f t( )
0

∞

∫ , Re s ≥ s0

  s0

   
L df

dt
⎛
⎝⎜

⎞
⎠⎟
= sF s( )− f 0( )

    

!x = Ax +Bu
y = Cx +Du

⎧
⎨
⎩

→
sX − x 0( ) = AX +BU

Y = CX +DU

⎧
⎨
⎩⎪

   

X = s·1− A[ ]−1·x 0( ) + s·1− A[ ]−1·BU

Y = C s·1− A[ ]−1·x 0( ) + s·1− A[ ]−1·BU( ) +DU

  x 0( )    
Y = C s·1− A[ ]−1·B+D( )U ≡ GU

  G s( )   x 0( )

  
A = 0 1

−1 1
⎛
⎝⎜

⎞
⎠⎟   

B = 0
1

⎛
⎝⎜

⎞
⎠⎟   C = 1 0( )   D = 0

   
s·1− A[ ]−1 = s −1

1 s
⎛
⎝⎜

⎞
⎠⎟

−1

= 1
1+ s2

s 1
−1 s

⎛
⎝⎜

⎞
⎠⎟

   
G s( ) = C s·1− A[ ]−1·B+D = 1

1+ s2 1 0( ) s 1
−1 s

⎛
⎝⎜

⎞
⎠⎟

0
1

⎛
⎝⎜

⎞
⎠⎟
= 1

1+ s2

   Y = GU ⇒ 1+ s2( )Y = U

  
d2y
dt2 + y = u

 ± i
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Example 2.2 Heat conduction 
 We study the heat conduction in a rod. The temperature in the rod is described 
at location x, 0 ≤ x ≤ L and time t by the function T(x, t). Let the rod have density ρ, 
specific heat capacity c, and heat conduction coefficient k. Let u(t) = T(0, t) be the 
input signal and y(t) = T(L, t) be the output signal. The equation for heat conduction is 

  

Introduce the Laplace transform 

  

Assume that T(x, 0) = 0 and the Laplace transformed equation is 

  

In order that  be finite when x is large we put A = 0. We have 
    

Example 2.3. Feedback 
Consider the system illustrated in the following graph with transfer function G and 
thus Y = GU 
 

       
We now modify this system by adding a feedback system with transfer function H. 
The output signal is taken through this system and the subtracted from the input signal 
(negative feed-back) 

    
Starting at the output and passing thought H and then back to the output we have 

   or  

The feed-backed system has transfer function . 

Suppose now that the original system is unstable, for instance that  that has 

a real pole for s = 1 > 0. Suppose that H = 2s. The transfer function of the system with 
feed-back is then 

  

we have moved the pole and  it is now at s = –1 < 0 meaning that the system is now 
stable. Feedback is a very common method to improve the stability of a system. An 
example from the real world is when to want to grab a cup of coffee from a table. The 

  
∂2T
∂x2 −

1
a2

∂T
∂t

= 0 a2 = k/cρ

   
Θ s,x( ) = L T( ) = dt

0

∞

∫ e−stT x,t( )

  
∂2Θ
∂x2 − s

a2 Θ = 0 ⇒Θ s,x( ) = Aex s/a +Be−x s/a

Θ

  Θ s,0( ) =U s( )⇒Θ s,x( ) =U s( )e−x s/a

  

Y s,L( ) =U s( )e−L s/a ⇒G s( ) = e−L s/a

G iω( ) = e−L ω/2/a·e± iL ω/2/a

δ = L ω/2a2

± iL ω/2/a

 G U −HY( ) = Y
  
Y = G

1+GH
U

  
G

1+GH

   
G = 1

1− s

   

′G =

1
1− s

1+ 1
1− s

·2s
= 1

1− s+ 2s
= 1

1+ s
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feedback is the information you get from your eye and via the brain to your muscles. 
If the feedback loop is disturbed as for people with Parkinson’s it will be very hard to 
perform the task. 
 
2.1 An important theorem 
 
We will now show that the transfer function is the Laplace transform of the weight 
function. Generally we have 

  

Let the input signal be zero for t < 0 and let h be causal. 

  

Take the Laplace transform 

  

 
2.2 Partial fraction expansion 
 
The transfer function is often of the type  where N and D are 
polynomials with grad N < grad D. The fundamental theorem of algebra then says 

 

 

G s( ) = K
s− zi( )

i
∏

s− pj( )
j
∏

 

where  zi{ }  are the zeros of N and 
 

pj{ }  the zeros of D, i.e. the pole  of G. G is the 

uniquely determined by its poles and zeros and the value of the constant K. Assume 
that G has no double poles or double zeros. We then have  

 
 
G s( ) = Rj

s− pjj
∑  with the residue 

 
Rj →

s→sj

G pj( ) s− pj( )  because 

 

  

G s( ) s− pk( ) = K
s− zi( )

i
∏

s− pj( )
j≠k
∏

=
R1 s− pk( )

s− p1
+ ...Rk + ... →

s→sj

Rk  

A term in the expansion of type  corresponds in the inverse Laplace transform to 

a term . It the pole p is located in the right complex half-plane this will give rise to 
an exponentially growing signal. We formulate a general theorem: 
 

 
y t( ) = h t −τ( )

−∞

t

∫ u τ( )dτ

  
y t( ) = h t −τ( )

0

∞

∫ u τ( )dτ

  

Y s( ) = dte−st

0

∞

∫ h t −τ( )
0

∞

∫ u τ( )dτ = dt
0

∞

∫ e−s t−τ( )e−sτ h t −τ( )
0

∞

∫ u τ( )dτ =

dτ
0

∞

∫ e−sτ e−s t−τ( )h t −τ( )dt
0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥u τ( ) =

t−τ→ ′t

dτ
0

∞

∫ e−sτ e−s ′t h ′t( )d ′t
−τ

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥u τ( ) =

h causal

dτ
0

∞

∫ e−sτ e−s ′t h ′t( )d ′t
0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥u τ( ) = H s( ) dτ

0

∞

∫ e−sτu τ( ) = H s( )U s( )

  G s( ) = N s( )/D s( )

  

1
s− p

 ept
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  A stable system has a transfer function that has poles only in the left 
complex half-plane. 

 
2.3 Harmonic input signal 
  

Assume that 
  
u t( ) = u0e

iωt ⇒U s( ) = u0

s− iωt
 

Assume that we have a transfer function  G = G s( )  and that the system is stable, i.e. 
lacks poles in the right half-plane. We have 
  Y s( ) = G s( )U s( )  

Do a partial fraction expansion of  Y s( )  we have a pole at  s = iω  
Using the results of the previous section we can write 

  

 
The other terms will go to zero as time goes to infinity as the system is stable. So we 
neglect these terms and do an inverse Laplace transform 
  

In general  is complex and we write . 

Thus  is the amplitude amplification and the phase lag. 
 
Example 2.3 Low-pass filter continued. 
We return to our previous example 1.4. We have  
  

  

We now compute  

  

We see that the filter behaves correctly: as ,  and . 

When analysing circuits like this, we often make a log-log plot of  and . 
This is called a Bode plot. 
 
Example 2.4. Heat conduction continued 
We now use our new tool for the heat conduction problem, Example 2.2. We apply 
the result where the rod is a piece of ground, the rod stretching downwards in the 
ground. The transfer function is . Thus 

  

where we have used that  (Exercise: Show this!) 
Then  
 

 
 

  
Y s( ) = u0G iω( )

s− iω
+ other terms

  y t( ) = u0G iω( )eiωt

 G iω( )   y t( ) = u0 G iω( ) ei ωt+δ( )

 G iω( ) δ

   !y = −y/RC + u/RC

  
sY = −Y/RC +U/RC ⇒Y = 1

1+ sRC
U ⇒G s( ) = 1

1+ sRC

  
G iω( ) = 1

1+ iωRC
⇒ G iω( ) = 1

1+ω 2R2C2
tanδ = −ωRC

ω →∞
  G iω( ) → 0  δ → −π/2

 G iω( ) δ ω( )

  G s( ) = e−L s/a

  G iω( ) = e−L iω/a = e−L ω/2/a·e± iL ω/2/a

  i = 1± i( )/ 2

  G iω( ) = e−L ω/2/a



 11 

We see that oscillations in temperature on the surface will be damped as we go down 
in the ground. A typical damping depth will be , i.e. high frequencies 
will be more damped, the ground acts as a low-pass filter.  The phase will be given by 
  
At a certain death the oscillations will be in anti-phase, δ = π, with the ground 
oscillations. We want to build a cellar at this depth. Inserting reasonable numbers for 
k, c, and ρ we get m. 
 
We want to build a cellar at this depth. Inserting reasonable numbers for k, c, and ρ 
we get m. 
 
2.3 Stability and trajectories 
 
Look at the followings system 

  

By studying  we can get a picture of system trajectories in the phase plane. 
Equilibrium points are singular points (“0/0”) for g.  In the neighbourhood of the 
equilibrium points the system matrix will determine the kind of equilibrium we have. 
Below we enumerate the different cases. 

  
At the instable fix-points there is often a limit cycle when 
higher order terms are included. The picture illustrates a typical 
limit cycle. The full drawn circle is the limit cycle itself, points 
starting inside the circle will go away from the instable fix-point 
and approach the limit cycle. Starting from points outside the limit cycle, within a 
certain area, will approach the limit circle from the outside. 
 
The eigenvalues in two dimensions are determined by 

  

  LD = a 2/ω

  δ = L ω/2a2

  Lπ = 5

  Lπ = 5

  

dx1

dt
= f1 x1 ,x2( ) dx2

dt
= f2 x1 ,x2( )

dx1

dx2
=

f1 x1 ,x2( )
f2 x1 ,x2( ) = g x1 ,x2( )

  g x1 ,x2( )

   
A =

a11 a12

a21 a22

⎛

⎝
⎜

⎞

⎠
⎟ ⇒

a11 − λ a12

a21 a22 − λ
= 0
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The last expression can be associated to the 
properties of the equilibrium points, se the figure 
below. From the properties of the system matrix, 
we can determines the kinds of eigenvalues and 
establish if they give stabile or non-stabile fix-
points. According to the table above we have 
stability when and >0. The curve in 

the figure corresponds to . 
  
We can also draw trajectories that show how the system moves in phase-space with 
time. As an example we take the mathematical pendulum in Example 1.3. withs 
system variables . There are stable fix-points for and saddle 

points at , n = 1, 2 … In the figure below we show a sketch of some 
trajectories with different boundary conditions. 

  
 

  
⇒λ 2 − λ TrA + A = 0 ⇔λ = TrA

2
± Tr 2A

4
− A

  TrA < 0  A

  A = Tr 2A/4

   x1 ,x2( ) = ϕ , !ϕ( )   n·2π ,0( )
  π + n·2π ,0( )
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3 Continuous one-dimensional population models 
 
 
An example of a simple population model is 

  

The change in the number of individuals is proportional to the number of individuals 
with a proportionality constant that is determined by the difference between the 
fraction of born, f, and dead, d. This leads to either an exponentially decreasing or 
exponentially increasing population depending on the sign of r, in the long run both 
developments are unrealistic. The solution to the differential equation, , 
is called Malthus’ law and was stated in 1798. A more reasonable model was 
suggested by Verhulst in 1836: 

  

The equation is called the logistic equation and describes a logistic growth. The 
constant K is called carrying capacity and in principle tells of how much food there 
is. The solution is stable as . The two equilibrium points are easily found: 

  

gives the time scale for disturbances. We can solve the differential equation 
exactly 

   

Whether the fix-points are stable or not is determined by looking at , 
n << 1. Inserting this in the differential equation we get 

  

where . 

We have used that   f N∗( ) = 0  and skipped second order terms. If  we have 
obviously exponentially growing solutions for r > 0, i.e. the fix-point is unstable. For  

, the solution is stable, something already 
indicated by the exact solution. 
In general a nice method of finding the stability of 
the fix points is to plot the function  f N( ) . The fix-
points will be the zeros of this function. Where 

> 0, N will increase, where < 0, N will 
decrease.  
  
Fix-points where the arrows points will be stable otherwise instable.  
 
  

  
dN
dt

= fN − dN = rN , r = f − d

  N t( ) = N0e
rt

  
dN
dt

= rN 1− N
K

⎛
⎝⎜

⎞
⎠⎟

 t →∞

  
rN∗ 1− N∗

K
⎛
⎝⎜

⎞
⎠⎟
= 0 ⇔

N∗ = 0
N∗ = K

⎧
⎨
⎪

⎩⎪

  τ = 1/r

  
N t( ) = N0Kert

K + N0 1− ert( )→ K as t →∞

 N t( ) = N∗ + n t( )

 
dn
dt

≈ f N∗ + n( )

  
f N( ) = rN 1− N

K
⎛
⎝⎜

⎞
⎠⎟
= r N∗ + n( ) 1− N∗ + n

K
⎛
⎝⎜

⎞
⎠⎟
≈ rn 1− N∗

K
⎛
⎝⎜

⎞
⎠⎟
− rn N∗

K

  N∗ = 0

 N∗ = K

 f N( )  f N( )
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Example 3.1 Spruce budworm, Ludwig 1978. 
We study a model for the development of a spruce budworm population. They feed on 
spruce and are in turn eaten by birds and are modelled by 

  

N is the number of worms and the new term p(N) represents the birds. We simplify 
the problem by making it dimensionless: 
  
to get 

  

Not that we have reduced the number of parameters from four to two. The fix-pointa 
are determined by 

 
  
f u; r ,q( ) = 0 ⇔ ru 1− u

q
⎛
⎝⎜

⎞
⎠⎟
= u2

1+ u2  

Trivially we have the (instable) fix-point . If we divide 
the equation by u we get a third degree polynomial with 1 or 3 
real roots. If we draw the left and right members of the 
equation in the same graph we get the figure. 
 
The number of solutions depends on r and q. 
By looking at the condition for double roots, 
we can establish (Exercise) that the region 
with tree solutions is bordered by the 
parameterised curves 

 

  
r s( ) = 2s3

1+ s2( )2 q s( ) = 2s3

s2 −1
 

 
A plot of the curves is shown to the right in 
the region 1.01 < s < 30, s = 1 cannot be 
included because of the singularity there. In 
the next figure there is a plot of f(u) for some 
different values of r and q and you can see 
why there is sometimes only one solution. 
The curve with three solutions (except the u 
= 0 solution) has parameters  
(r, q) = (0.4, 15), violet curve. The curves 
with only one solution (except u = 0) have 
parameters (0.2, 10), red curve, and (0.7, 8), 
blue curve. Stable points are marked by a green dot. 
 
This simple model exhibits hysteresis. Changing r in a certain direction will force the 
system to jump from one stable fix-point to another when the first one disappears. 
When r is changed in the other direction the jump will occur for another value of r 
and some regions can only be reached by entering from one direction, this is what is 

  

dN
dt

= rBN 1− N
KB

⎛
⎝⎜

⎞
⎠⎟
− p N( ) , p N( ) = BN 2

A2 + N 2

  u = N /A, r = ArB /B, q = KB /A, τ = Bt/A

  

du
dτ

= ru 1− u
q

⎛
⎝⎜

⎞
⎠⎟
− u2

1+ u2 = f u; r ,q( )

  u∗ = 0
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called hysteresis. In the last figure we have also changed the value of q in order to get 
a reasonable scale for the curves.  
 
How should we fight the worm? Looking at the parameters a suggestion is 
 
• decrease r: rB small, A small or B large or 
• decrease q: KB small or A large 
 
Often it is possible to reduce the number of parameters by rescaling like we did here. 
This considerably makes the analysis of the system simpler. 
 
3.1 Time-lag models 
 
Generally we can describe a model with time-lag by 

 
  
dN t( )

dt
= f N t( ) ,N t −τ( ) ,t( ) τ > 0  

Example 3.2 Verhulst equation with time-lag 

 
  

dN t( )
dt

= rN t( ) 1− N t − Δ( )
K

⎛
⎝⎜

⎞
⎠⎟

 

Put   u = N /K τ = rt θ = rΔ  to get 

 
  
du τ( )

dτ
= u τ( ) 1− u τ −θ( )( )  

We have fix-points at   u∗ = 0 and   u∗ = 1 . We study the second fix-point. 
 
Put   u = 1+ ε , ε << 1  

 
  
dε τ( )

dτ
= 1+ ε τ( )( ) 1− ε τ −θ( )−1( ) ≈ −ε τ −θ( )  

Try the ansatz  ε τ( ) = ceλt  that implies  λ = −e−λθ . Put  λ = µ + iω  to get 

 
  
µ = −eµθ cosωθ
ω = eµθ sinωθ

 

Real solutions are given by  ω = 0 ,  µ = −eµθ . We 
show a graphical solution where we plot the two 
sides of the last equation. 
 
When θ = 0 we have two solutions µ = − 1 (stable) 
andµ = −∞ . As θ  becomes larger these solutions approach and when   θ = 1/e  the 
coincide at µ = −e . There are also an infinite set of damped oscillatory solutions. 
 
If   1/e <θ < π/2  there is an infinite set of damped oscillation. For larger θ  the 
solutions have  µ > 0 , i.e. they are instable oscillatory solutions. However, in the exact 
differential equation the non-linear terms will give rise to a limit cycle and the 
amplitude of the oscillations will be finite. 
 
As this example shows even a very simple time-lag model has a quite complicated 
behaviour. In general they have been to be handled with computer simulations. 
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3.2 Fishing and depletion fishing 
 
Example 3.3 Fishing with constant relative intensity 
A simple model can here be formulated 

 
  
dN
dt

= rN 1− N
K

⎛
⎝⎜

⎞
⎠⎟
−EN  

where E measures the intensity of the fishing. Fix-points are   N1
∗ = 0  (instable) and 

  N2
∗ = K 1−E/r( ) that is positive and stable if  E < r . The result of the fishing is 

   Y = EN = EK 1−E/r( )  
at the fix-point. The optimal profit will be when   E = r/2  i.e.   Ymax = rK/r that 
implies   N2

∗ = K/2 . 
 
We now study the system around the fix-point for two values of E, E = 0 and E ≠ 0. 
 
E = 0 : 

  N = K + n ,   n≪N ⇒
 
dn
dt

= −rn ⇒ n ∝ e−rt  

The typical damping time   T 0( ) = 1/r . 
 
E ≠ 0: 

 
  
N = K 1+E/r( ) + n ⇒ dn

dt
= − r −E( )n ⇒T E( ) = 1/ r −E( )  

At the optimal result we then have  T E = r/2( ) = 2/r that is disturbances dampen out 
twice as slow. 
 
Example 3.4 Fishing quotient 
Now assume that we fish with a constant result quotient   Y = Y0 . We then have 

 
  
dN
dt

= rN 1− N
K

⎛
⎝⎜

⎞
⎠⎟
−Y0 = f N( )  

We have two fix-points different from zero with the same stability properties, the 
smaller one is instable, the larger on stable. We plot f(N) for some values of Y0 
Assume that Y0 is set close to the 
optimum profit, the lowest curve. A small 
fluctuation can then takes us from the 
right stable fix-point, to just below the 
left instable fix-point. Then   N → 0  in a 
finite time. A system with fishing quota  
can lead very quickly to extermination if 
set close to the optimum profit. 
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3.3 Some other one-dimensional models. Bifurcations and hysteresis 
 
Example 3.5 The overdamped harmonic oscillator 
The overdamped harmonic oscillator is described by the following equation 
   m!!q + γ !q = F q( )  
where q is a position variable. Assume that m is small and γ large. 

 
  
!q ≈

F q( )
γ

= f q( )  

An ordinary harmonic overdamped oscillator would the be described by 
   !q = −kq  
This system has a stable fix-point at   q = 0 . We can also determine the potential 

 
  
f q( ) = − dV

dq
⇒V q( ) = 1

2 kq2  

From the graph of the potential we see that the particle will try to reach the bottom of 
the potential well. 

  
Now study an anharmonic oscillator    f q( ) = −kq − k1q

3 !q = −kq − k1q
3  

The potential is   V q( ) = 1
2 kq2 + 1

4 k1q
4  

The system has tree possible fix-points,   q = 0  and   q± = ± −k/k1 . If k > 0 only the 
first fix-point exists and is stable. If k < 0, the fix-point   q = 0 becomes instable and 

instead the fix- points   q± = ± −k/k1 will be stable as    q = q± + ε ⇒ !ε = −2 k ε . 

  
If we plot the fix-points as a function of k we have the 
graph, i.e. a so called bifurcation. Notice that although the 
potential is symmetric in q, the system will end up in one 
of the valleys. ´The state of the system is not symmetric. 
This is called spontaneous symmetry breaking and you 
will find it for instance in particle physics in the Higgs 
mechanism giving mass to particles. 
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Example 3.6 The tree 
Very simplified a tree can be described as a trunk without mass with all mass gathered 
in at the top. The roots, trying to keep the tree vertical can be assumed to have a 
torque that is proportional to the angle of the trunk with the vertical. Newton’s second 
law gives 
    I

!!θ = −kθ + mgLsinθ  
Define the system variables   x1 = θ  and    x2 = !θ . Then 

 

   

!x1 = x2

!x2 = − k
I

x1 +
mgL

I
sin x1

⎧
⎨
⎪

⎩⎪  
 
Fix-points are given by  x2 = 0  and   −kx1 + mgLsin x1 = 0 . The second equation can be 
solved by drawing a graph 

  
If   k/mgL > 1 or   m < k/gL we have one stable fix-point:  x1 = 0 . If   m > k/gL this fix-
point will be unstable and there will be additional two stable fix-points at   x1 = ±X . 
We have a bifurcation: 

  
 
Example 3.7 The bridge 
Consider the bridge consisting of two straight springs with a load P applied to the 
middle. 

  

The potential energy of the springs is 
  
U q( ) = 2·

1
2

k R
cosq0

− R
cosq

⎛
⎝⎜

⎞
⎠⎟

2

,   q0  is the angle 

when P = 0. 
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The deflection downwards is   δ q( ) = R tan q0 − tan q( )  
The total energy of the system is  V q( ) =U q( )− Pδ q( )  
In order to study this system we need some Taylor expansions: 
   tan q ≈ q + q2 /3  
   f q( ) = 1/cosq f 0( ) = 1  

   ′f q( ) = sin q/cos2 q ′f 0( ) = 0  

   ′′f q( ) = cosq/cos2 q + 2sin2 q/cos3 q ′′f 0( ) = 1  

   f
3( ) 0( ) = 0  

   f
4( ) 0( ) = A  

  
Thus 

 
  
V q( ) ≈ kR2 1+ q2

2
+ Aq4

24
−1− q0

2

2
−

Aq0
4

24
⎛
⎝⎜

⎞
⎠⎟

2

− P q + q3

3
− q0 −

q0
3

3
⎛
⎝⎜

⎞
⎠⎟

 

Saving terms up to order   q
4  we have 

 
  
V q( ) ≈ kR2

4
q4 + q0

4 − 2q2q0
2( )2

− P q + q3

3
− q0 −

q0
3

3
⎛
⎝⎜

⎞
⎠⎟

 

We compute  

 
  
f q( ) = − dV

dq
= −kR2 q3 − q0

2q( )− P 1+ q2( )  

Also in this example we have hysteresis. In the graph below we illustrate how it 
comes about. Assume that the system is in the the stable fix-points to the right when  
P = 0. Increase P that lowers the curve and moves the right stable fix-point left and 
the instable middle fix-point to the right. Finally the stable fix-point to the right will 
cease to exist and the system jumps to the other stable fix-point to the left. 

  
 
Example 3.8 Laser 
An equation for the number of photons in a laser is 
    !n = produced photons-lost photons = A – F  
The produced photons come from stimulated emission of excited atoms, assume the 
number of excites atoms is N. Then 
  A = GNn , G = constant 
The photons leak out at the two ends of the laser (required in order that we see a laser 
beam)  
   F = 2·κn  
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The number of excited atoms decrease when they are de-exited and send out photons. 
Assume that we with pumping the laser produce   N0  excited atoms. Also assume that 
the real number of excited atoms is smaller 
   N = N0 −αn  
with more photons in the laser we will have more de-excited atoms. This gives 
    !n = GNn− 2κn = GN0n− 2κn−Gαn2 = −kn− k1n

2  
   k = 2κ −GN0 k1 = Gα  

If   N0  is small (weak pumping), k > 0. Of the two fix-points   n = 0  and   n = −k/k1  
only the first one is stable and physical.  If   N0 > 2κ /G  then   k < 0  and we have two 
physical fix-points,   n = 0  is instable and   n = k /k1 is stable. There is a kind of phase 
transition. 
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4 Discrete one-dimensional population models 
 
All one-dimensional discrete population models can be gathered in a differential 
equation of the type 
   Nt+1 = f Nt( ) = NtF Nt( )  
A simple example is 

 
  
Nt+1 = rNt ⇒ Nt = rtN0 ⇒

r > 1 Nt →∞
r < 1 Nt → 0

⎧
⎨
⎩

 

but this like Malthus’ law leads to unrealistic descriptions. In more realistic models 

 f Nt( )  may graphically look like this 

  
A simple model is the discrete logistic model 

 
  
Nt+1 = rNt 1− Nt

K
⎛
⎝⎜

⎞
⎠⎟

, r > 0, K > 0  

Observe that if  Nt > K ,   Nt+1 < 0 that is unphysical, this is because the equation is 
quadratic and lacks the asymptotic shape illustrated in the figure above. A more 
realistic alternative is 
   Nt+1 = Nte

r 1−Nt/K( )  
 
4.1 Graphical solution 
 
As for the continuous models  f N( )  can be used to find fix-points but not in the same 

way as earlier; instead we look at the intersections between the curves   Nt+1 = f Nt( )  

and   Nt+1 = Nt , the last being the condition for a fix-point  N
∗ = f N∗( ) . 

  
By stepping from a point in the neighbourhood of the fix-point we can determine if it 
is stable or not, in the figure above the fix-point is stable as we approach the fix-point. 
In general the fix-point  N∗  is stable if 

  
0 < ′f N∗( ) < 1 . Some alternatives are shown 

in the figure below. 
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In general we have at a fix-point   Nt+1 = f Nt( )  or  N

∗ = f N∗( ) . We linearize around 
the fix-point: 

 
  

N∗ + ε t+1 = f N∗ + ε t( ) ≈ f N∗( ) + ′f N∗( )ε t ⇒

ε t+1 = ′f N∗( )ε t = λε t

 

 λ = ′f N∗( )  is called the eigenvalue, and we have 

 

  

0 < λ < 1, ε t → 0, stable
–1 < λ < 0, ε t → 0, stable, alternating
λ > 1 , instable

 

 
Example 4.1 Discrete logistic model 
 
We describe the system by 
   ut+1 = rut 1− ut( ) , r > 0  
Assume that   0 < u0 < 1 , such that   ut > 0 . The fix-points are 
   u1

∗ = 0 λ1 = ′f 0( ) = r  

   u2
∗ = r −1( )/r λ2 = ′f u2

∗( ) = 2− r  

If we first consider the case   0 < r < 1 , we have that   u1
∗  is stable and that   u2

∗  is 
instable. When   r = 1 we have a bifurcation:   u1

∗ becomes instable and   u2
∗  stable. 

 
Now study   ut+2 = rut+1 1− ut+1( ) = r rut 1− ut( )⎡⎣ ⎤⎦ 1− rut 1− ut( )⎡⎣ ⎤⎦ . Are there fix-points 

such that   u
∗ = ut+2 = ut ? We try 

 
  
u∗ = r ru∗ 1− u∗( )⎡⎣ ⎤⎦ 1− ru∗ 1− u∗( )⎡⎣ ⎤⎦  

We see directly that   u∗ = 0 still is a fix-point. Put   K = r 1− u∗( )  in the equation where 

we have divider out  u∗  
   1 = rK 1− K 1− K/r( )⎡⎣ ⎤⎦ = rK − rK 2 + K 3  
We see that K = 1 satisfies the equation 
   K

3 − rK 2 + rK −1 = K −1( ) K 2 + K 1− r( ) +1( ) = 0  

Inserting the expression for  u∗  we solve the second order equation 
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u∗ =

r +1± r +1( ) r − 3( )
2r

real and > 0  if   3 < r < 4  

If r > 3 we get two new stable fix-points A and B. It can be shown that   uA+1
∗ = uB

∗  and 

  uB+1
∗ = uA

∗ . We have a two-cycle. This continues such that for   r = r4 , we get a new 
bifurcation and   ut+4 = ut , for   r = r8  we have   ut+8 = ut  and so on. The difference 
between the r:s becomes less and less. For a certain  r = rc , we have instability for all 
cycles   2n . When this occurs we have a three-cycle   u

∗ = ut+3 = ut . Numerically 

  r = rc = 3.828...For  r > rc  the solutions are aperiodic or chaotic. 
 
Feigenbaum 1978 showed that generally for maps 
   ut+1 = f ut( )  
we have 

 
  n→∞
lim

r2 n+1( ) − r2n

r2 n+2( ) − r2 n+1( )
= δ ≈ 1.66920...  

where δ  is a universal constant. 
 
In the graph below we sketch the bifurcation behaviour for our example. As seen it 
has a fractal structure.  

  
We can define chaos using the correlation function 
 

  
C nt ,n ′t( ) = nt − nt( ) n ′t − n ′t( )  

If   C nt ,n ′t( ) = 0  when  t − ′t  is large we say that we have a chaotic system. 
 
4.2 A digression on ecology 
 
Example 4.2 
 
We study a model for population dynamics 
   Nt+1 = Nte

r 1−Nt/K( ) = f Nt( )  
The fix-points are   N∗ = 0  (instable if r > 0) and  N∗ = K  (stable if   0 < r < 2 ). We 
want to investigate the intervals within the population can vary. Graphically we have  
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We have that  Nm  is determined by 
  

df
dNt

= 0  or 

   e
r 1−Nt/K( ) 1− rNt /K( ) = 0⇒ Nm = K/r  

We then have 
   Nmax = f Nm( ) = Ker−1 /r  
From the graph we see that 
   Nmin = f Nmax( ) = Ke2r−1−er−1

/r  
If   Nmin < 1  the population disappears, as it cannot reproduce, i.e. for survival we 
require 
   Ke2r−1−er−1 /r > 1  
If we now study for instance   r = 3.5 , we have that K must be larger than about 1600, 
And   r = 5  implies that   K > 1020 . If   r = 3.5  we note that in the next to last population 
we have  
   N = Nmax = Ker−1 /r ≈ 3500  
we have a population collapse. 
 
Example 4.3 Allee effect 
Assume that  f Nt( )  looks as in the following graph. 

  
If  Nc gets below  Nc the,   Nt → 0  as  t →∞ . Thus we have a threshold when the 
population disappears (Alle effect). 
 
Example 4.4 Another model that has been used in population dynamics is 

 
  
Nt+1 = f Nt( ) = rNt

1+ aNt( )b b > 0  
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5 Interacting populations 
 
5.1 Lotka-Volterra 
 
The Lotka-Volterra equations is an early (1926) example of a continuous model for 
interacting populations. The model treats fishing in the Adriatic Sea and tries to 
explain periodic variations in the catch using an interaction between predator and prey 
fishes. The equations are 

 

 

dN
dt

= N a− bP( )
dP
dt

= P cN − d( )
 

where N is the number of predators and P the number of preys. All parameters a, b, c, 
and d are larger than zero. As usual we start by finding the fix-points 
   N∗ ,P∗( ) = 0,0( )  and   N∗ ,P∗( ) = d/c, a/b( )  
Introduce dimensionless units 
   τ = at u = cN /d v = bP/a α = d/a  
and get 

 

  

du
dτ

= u 1− v( ) = f u,v( )
dv
dτ

=αv u−1( ) = g u,v( )
 

reducing the number of parameters to one. The fix-points are 
   u∗ ,v∗( ) = 0,0( )  and   u∗ ,v∗( ) = 1,1( )  

The stability in the fix-points is given by the matrix (using the notation 
 
∂ f
∂u

= fu ) 

 
   
A =

fu fv

gu gv

⎛

⎝
⎜

⎞

⎠
⎟ =

1− u −u
αv α u−1( )

⎛

⎝
⎜

⎞

⎠
⎟  

Insert the fix-points 

 
  
0,0( ) : A = 1 0

0 −α
⎛
⎝⎜

⎞
⎠⎟

A = −α Tr A = 1−α ⇒ instable  

 
  
1,1( ) : A = 0 −1

α 0
⎛
⎝⎜

⎞
⎠⎟

A =α Tr A = 0⇒ stable oscillatory  

The trajectories around the second fix-point are sketched below 
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On of the problems with this model is that random variations can have the system 
jump between the trajectories. Sooner or later u or v will be zero and the system 
collapses. This can be remedied by adding a so called Verhulst term for the prey 
proportional to   −eN 2  resulting in stable spirals. 
 
The model has been tested on hares and lynxes in Canada. Below is a plot of the 
number of hare and lynx pelts collected (in thousands) between 1900 and 19201 that 
shows the expected oscillatory behaviour. In the bottom plot are the trajectories. We 
can see the oscillations around the fix-point and the random jumps between the 
trajectories. 

  
If we add a term representing fishing with intensity f in the Lotka-Volterra model we 
get the equations 

 

  

du
dτ

= u 1− v( )− βu β = fα/c

dv
dτ

=αv u−1( )−γ v γ = f /b
 

                                                
1 Data from http://www-rohan.sdsu.edu/~jmahaffy/courses/f00/math122/labs/labj/q3v1.htm 
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The second fix-point will move to  1+ γ /α ,1− β( )  
 
The consequences of the fishing is that the number of prey fishes increase due to the 
decrease of the number of predators. This can only happen up to a certain limit. When 
f becomes so large that β = 1, v = 0 and the system collapses. If f is increased further 

  u ∝ e 1−β( )t  and goes exponentially to zero. As before we can have random fluctuations 
around the fix-point that may cause v to be zero earlier. 
 
5.2 A model for competition 
 
We will now formulate a model for two competing populations, 

 

  

dN1

dt
= r1N1 1− N1

K1
− b12

N2

K2

⎛
⎝⎜

⎞
⎠⎟

dN2

dt
= r2N2 1− N2

K2
− b21

N1

K1

⎛
⎝⎜

⎞
⎠⎟

 

Introduce 
   u1 = N1 /K1 , u2 = N2 /K2 , ρ = r2 /r1 , τ = r1t, a12 = b12K2 /K1 , a21 = b21K1 /K2  
to get 

 

  

du1

dτ
= u1 1− u1 − a12u2( ) = f1 u1 ,u2( )

du2

dτ
= ρu2 1− u2 − a21u1( ) = f2 u1 ,u2( )

 

The fix-points are 

 

  

u1
∗ ,u2

∗( ) = 0,0( ) , u1
∗ ,u2

∗( ) = 1,0( ) , u1
∗ ,u2

∗( ) = 0,1( )

u1
∗ ,u2

∗( ) = 1− a12

1− a12a21
, 1− a21

1− a12a21

⎛
⎝⎜

⎞
⎠⎟

a12a21 ≠ 1
 

The system matrix is 

 

   
A =

fu fv

gu gv

⎛

⎝
⎜

⎞

⎠
⎟ =

1− 2u1 − a12u2 −a12u1

−ρa21u2 ρ 1− 2u2 − a21u1( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

We insert the fix-points and determine the eigenvalues of the matrix 

 
 
0,0( ) : −1− λ 0

0 ρ − λ
= 0 ⇒ λ1 = 1,λ2 = ρ instable  

 
  
1,0( ) : λ1 = −1,λ2 = ρ 1− a21( ) a21 > 1 stable

a21 < 1 instable
⎧
⎨
⎪

⎩⎪
 

 
  
0,1( ) : λ1 = 1− a12 ,λ2 = −ρ

a12 > 1 stable
a12 < 1 instable

⎧
⎨
⎪

⎩⎪
 

The last fix-point is more complicated. We first note that it is determined by the 
intersections of the lines  
   1− u1 − a12u2 = 0 and 1− u2 − a21u1 = 0  
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The first line intersects the fix-point (1, 0) the second one the fix-point (0, 1). We 
know the stability properties of these points depending on the size of   a12  and   a21 . By 
extrapolating the trajectories in the neighbourhood of these points we can get a picture 
of how the last fix-point behaves. In the figure below we show this. 

  
In the first case there is a possible way for the two populations to co-exist. In the 
second case one of them will disappear. 
 
Example 5.1 Symbiosis. 
We can remake the model for competition to a model with symbiosis by simply 
changing the signs of the competition terms  

 

  

dN1

dt
= r1N1 1− N1

K1
+ b12

N2

K2

⎛
⎝⎜

⎞
⎠⎟

dN2

dt
= r2N2 1− N2

K2
+ b21

N1

K1

⎛
⎝⎜

⎞
⎠⎟

 

The new fix-points are 

 

 

0,0( ) : instable node

1,0( ) : saddle point

0,1( ) : saddle point

 

 
  

1+ a12

1− a12a21
, 1+ a21

1− a12a21

⎛
⎝⎜

⎞
⎠⎟

stable if a12a21 < 1  

 
5.3 Discrete models 
 
The analytical treatment of discrete model easily gets complicated. We study here a 
model that is manageable but will turn out to be too simple to give reasonable results. 
 
Example 5.2 A discrete prey-predator model is 

 
  

Nt+1 = rNte
− aPt

Pt+1 = Nt 1− e− aPt( ) a > 0
 

The fix-points are 
   N∗ ,P∗( ) = 0,0( )  
and 

 

  

1 = re− aP∗ P∗ = N∗ 1− e− aP∗( )⇒
P∗ = 1

a
ln r N∗ = r

a r −1( )
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We investigate the stability by linearizing around the fix-points 

 
  

Nt = N∗ + nt nt /N∗ << 1

Pt = P∗ + pt pt /P∗ << 1
 

For the first fix-point we get 

 
  
nt+1 = rnt , pt+1 = 0 ⇒ nt , pt( )→

t→∞ 0,0( ) ; r < 1
∞,0( ) ; r > 1

⎧
⎨
⎪

⎩⎪
 

i.e. it is stable if r < 1. For the other fix-point we have 
   nt+1 = nt − aN∗pt , pt+1 = nt 1−1/r( ) + aN∗pt /r  

where we have used that   1 = re− aP∗

. We iterate the first equation once 

 

  

nt+2 = nt+1 − aN∗pt+1 = nt+1 − aN∗ nt 1−1/r( ) + aN∗pt /r( ) =
nt+1 − aN∗ nt 1−1/r( ) + nt − nt+1( )/r( ) =
1+ aN∗/r( )nt+1 + aN∗nt

 

Assume solutions of type  nt = Axt . The last equation becomes 

   x
2 − 1+ aN∗/r( )x + aN∗ = 0  

or 

 
  
x2 − 1+ 1

r −1
ln r⎛

⎝⎜
⎞
⎠⎟

x + r
r −1

ln r = 0  

The second order equation has solutions 

 

  
x1,2 =

1
2

1+ ln r
r −1

± r + ln r
r −1

⎛
⎝⎜

⎞
⎠⎟

2

− 4r ln r
r −1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

The general solution is   nt = A1x1
t + A2x2

t  and in the same way   pt = B1y1
t +B2y2

t . 

The stability in this fix-point depends on the modulus   x1,2  and   y1,2 . If all four are 

less than 1, the fix-point is stable. It can be shown that   x1 > 1 if r > 1, i.e. that the 
positive fix-point is instable with growing oscillations. The model is too simple a 
possible variant is 

 
  

Nt+1 = Nte
r 1−Nt/K−aPt( )

Pt+1 = Nt 1− e− aPt( ) a > 0
 

This can be handled in the same way 
as before but you get complicated 
equations that have to be solved 
numerically. In the figure below you 
see the result of 100 iterations with 
starting condition   n0 , p0( ) = 1.0,1.0( )  

(full curve) and  0.5,0.5( )  (hatched), 
the parameter values are   r = 1.2 , 
  a = 2 ,   K = 2 , it is evident that there 
is a limit cycle. 
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Example 5.3 Another model has been used for competition between two commercial 
variants of the same product 

 

  

Nt+1 =
rNt

1+αNt + APt

Pt+1 =
rPt

1+αPt

 

where A stands for advantage and denotes the advantage of one of the products. In 
New Scientist #1859, 6. February 1993, there are examples of different competing 
products that historically have followed this model. 
 
More generally we can study a linearization of the kind 

 
   

nt+1

pt+1

⎛

⎝
⎜

⎞

⎠
⎟ = A

nt

pt

⎛

⎝
⎜

⎞

⎠
⎟  

In example 5.2 above we have 

 
   
A = 1 −N∗a

1−1/r N∗a/r
⎛

⎝
⎜

⎞

⎠
⎟  

We again assume a solution of type  

 

   

nt

pt

⎛

⎝
⎜

⎞

⎠
⎟ = B 1

1
⎛
⎝⎜

⎞
⎠⎟

xt ⇒ A
nt

pt

⎛

⎝
⎜

⎞

⎠
⎟ = AB 1

1
⎛
⎝⎜

⎞
⎠⎟

xt ⇒
nt+1

pt+1

⎛

⎝
⎜

⎞

⎠
⎟ = AB 1

1
⎛
⎝⎜

⎞
⎠⎟

xt

⇒ B 1
1

⎛
⎝⎜

⎞
⎠⎟

xt+1 +1 = AB 1
1

⎛
⎝⎜

⎞
⎠⎟

xt ⇒ B 1
1

⎛
⎝⎜

⎞
⎠⎟

x = AB

 

i.e. 
   
B 1

1
⎛
⎝⎜

⎞
⎠⎟

x  is an eigenvalue of  A . 
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6 Magnetism and chemistry 
 
6.1 Landau’s model for ferromagnetism 
 
In a ferromagnet, the magnetism is due to that a number of atomic magnetic moments 
spontaneously direct themselves in the same direction. At a temperature larger than a 
critical temperature Tc (the Curie temperature) the magnetism disappears – the 
elementary magnets will be randomly oriented. If the temperature T is lowered below 
Tc the spontaneous magnetism will reappear. Further ferromagnets display different 
phenomena around the Curie temperature that are typical of a phase transition. So for 
instance is the heat capacity a discontinuous function of temperature. 
 
Assume that the ferromagnet contains elementary magnets with magnetic moment m 
that can point in two different directions, up and down. The magnetization q then is 
  q = N↑ − N↓( )m  
In general a thermodynamical system is in equilibrium when the free energy 

  F = F q,T( ) has a minimum. Close to the equilibrium point   q = 0  we can write 

 
  
F q,T( ) = F 0,T( ) + q ′F 0,T( ) + q2

2
′′F 0,T( ) +  

In the absence of an external magnetic field   F q,T( ) = F −q,T( )  and we have only 
even power terms in the expansion 

 
  
F q,T( ) = F 0,T( ) +α q2

2
+ β q4

4
 

Landau’s model assumes that   α = a T −Tc( ) , a > 0  and  β > 0 . A plot of   F q,T( )  when 

 T >Tc  looks like this, the point   q = 0 is stable. 

  
If  T <T  the factor in front of   q

2  is negative and the plot will look like this 

    
The point   q = 0 is now instable and we have got two stable points   ±q1 . There is a 
phase transition (bifurcation) into a system with non-zero magnetism. Also not there 
is a spontaneous symmetry breaking. 
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For  T <Tc  we have 
  

dF
dq

= qa T −Tc( ) + βq3 ⇒ q1 =
a
β

T −Tc  

From statistical mechanics we have that the entropy S is given by 
 
S = − ∂F

∂T
 and the 

heat capacity C by 
 
C = T ∂S

∂T
. 

 

For  T >T  we have (q = 0) 
  
S = −

∂F 0,T( )
∂T

= S0  

And for  T <Tc  

 

  

F q1 ,T( ) = F 0,T( ) + aq1
2

2
T −Tc( ) + βq1

4

4
=

F 0,T( )− a2

2β
T −Tc( )2

+ a2

4β
T −Tc( )2

= F 0,T( )− a2

4β
T −Tc( )2

 

The entropy is 

 
  
S = −

∂F 0,T( )
∂T

+ a2

2β
T −Tc( ) = S0 +

a2

2β
T −Tc( )  

The heat capacity is 

 
  
C = T ∂S

∂T
+ a2

2β
T = C0 +

a2

2β
T  

  
Thus we have a second order phase transition, there is a discontinuous derivative. 
 
In presence of an external magnetic field H we have an extra term in the free energy 
that is  γ qH  

 
  
F = F0 + γ qH + aq2

2
+ βq4

4
+ ...  

This extra term breaks the symmetry. We plot F for  T <Tc  

  
The system will exhibit hysteresis. 
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6.2 Chemical reactions 
 
We study the chemical reaction 

 
   
A+B!

k2

k1

C  

  k1  and   k2 determine the probabilities for the reaction. Let a, b, and c be the molar 
concentrations of A, B, and C respectively. We have then 

 

  

dc
dt

= k1ab− k2c

da
dt

= −k1ab+ k2c

db
dt

= −k1ab+ k2c

 

The fix-point is given by   k1ab− k2c = 0  or  

 
  

ab
c
=

k2

k1

= conctant depending on temperature  

This is Gullberg-Waage’s law or the law of mass action. 
 
Example 6.1 

 
   
A+ 2B!

k2

k1

C ⇒ dc
dt

= k1ab2 − k2c  

Example 6.2 Autocatalytic reaction 

 
   
A+ X!

′k1

k1

2X  

Further assume that X is transformed into a new molecule C under influence of 
molecule B. 

 
   
X +B!

′k2

k2

C  

For the first reaction we have    !x = k1ax − ′k1x
2  and for the second one    !x = −k2bx + ′k2c . 

 
Assume that A, B, and C are present in such large quantities that their concentrations 
can be taken as constant. After som rescaling (Exercise) we then have 
    !x = 1− β( )x − x2 + γ = f x( )  
If γ = 0 we have 
    !x = x 1− β − x( )  
Stable fix-points are given by 

 
  

x∗ = 0 β > 1
x∗ = 1− β β < 1

⎧
⎨
⎪

⎩⎪
 

We can plot  f x( )  for  γ ≠ 0  
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Example 6.3 The Beluzov-Zhabotinski reaction, a chemical clock. 
 
We mix in a container Ce(SO4)3, KBrO3, CH2(COOH)2, H2SO4 and some drops of 
ferrion (a redox indicator). After a short while the mixture displays periodic colour 
changes red (indicates surplus of Ce3+ ions) to blue (surplus of Ce4+ ions). You can 
also get spatial patterns like spirals with different colours. The reaction is often called 
the BZ reaction for short. A simplified model of the reaction is called the oregonator.  

 

  

A+Y → X
X +Y → B
A+ X → 2X + Z
2X →Q
Z→Y

 

with A =  BrO3
− , X = HBrO2 , Y = Br− , Z = 2Ce4+ , B = HOBr . Assuming that the 

concentrations of A and B are constant using suitable rescaling (Exercise) we can 
write the equations of the system 

 

   

!n1 = s n2 − n2n1 + n1 − qn1
2( )

!n2 = t −n2 − n2n1 + rn3( )
!n3 = w n1 − n3( )

 

where   n1 ,   n2 , and   n3 are proportional to the concentrations x, y, and z and s, t, q, r, 
and w are parameters. If you simulate this system on a computer you will see 
oscillations in the concentrations for suitable values of the parameters. 
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7 Systems with diffusion 
 
Introducing diffusion in systems gives rise to many interesting phenomena. Here we 
have collected some examples. 
 
7.1 Diffusion driven instability – the spots of the leopard 
 
Models that describe patterns on the furs of animals are founded on that there is a 
morphogenetic activator that generates pigment changes and that spreads by diffusion 
and that there is an inhibitor that limits the pigment changes and is activated by the 
activator. We start with a rather easy example of this. 
 
Example 7.1 Forest fires 
 
Forest fires appear spontaneously and spread slowly – the diffusion constant DA is 
small. The forest fires correspond to an activator. Firemen are aroused by the forest 
fires, attack it rapidly (DB large) and pour water over the fire front, extinguishing the 
fire. The firemen function as an inhibitor. The result is a forest with burnt patches. 
 
In 1952 Turing presented a model for diffusion driven pattern generation 

 
   
∂c
∂t

= f c( ) + D∇2c  

c is a vector of morphogen concentrations.  f c( )  represents the different reactions that 

can take place (the reaction kinetics) and    D∇2c  represents the diffusion. D is a 
diagonal matrix for the different diffusion constants. A two-dimensional model (two 
morphogens) looks like this 

 

  

∂A
∂t

= F A,B( ) + DA∇
2A

∂B
∂t

= G A,B( ) + DB∇
2B

 

where F and G as a rule are non-linear functions. In the absence of diffusion DA = DB 
= 0, the system has stable fix-points. Then under certain conditions can spatial 
inhomogeneous patterns can develop by diffusion driven instability if  DA ≠ DB . The 
forest fire above is such an example. 
 
We study a two-dimensional model in one spatial dimension. The model is given by 
Gierer-Meinhard in 1972. 

 
  

F A,B( ) = k1 − k2A+ k3A
2 /B

G A,B( ) = k4A2 − k5B
 

By suitable rescaling we can write 

 
  

∂t u = a− bu+ u2 /v + ∂x
2 u

∂t v = u2 − v + d∂x
2 v

 

We first study the fix-points without diffusion 

 
  

f u,v( ) = a− bu+ u2 /v
g u,v( ) = u2 − v
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Setting these functions to zero results in 

 

  

u∗ = 1+ a
b

v∗ = 1+ a
b

⎛
⎝⎜

⎞
⎠⎟

2

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

We determine the derivatives in the fix-point 

 
  

fu = −b+ 2u/v fv = −u2 /v2

gu = 2u gv = −1
 

If we linearize around the fix-point we get the system matrix 

 

   

A =

b 1− a( )
1+ a

− b2

1+ a( )2

2 1+ a( )
b

−1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 

If we choose a = b we have Tr A < 0 and det A > 0, the fix-point is stable. 
 
Let L be the linear size of the domain we are studying. Rescale  x → xL such that 
distances are measures with L as the unit. Introduce   γ = L2 . Then we have 

 
  

∂t u = γ a− bu+ u2 /v( ) + ∂x
2 u

∂t v = γ u2 − v( ) + d∂x
2 v

 

This does not change the sign of the trace or the determinant. Note that γ  is directly 
related to the linear size of the system and represents the relative strength between the 
reaction kinetics and the diffusion. 
 
We now study a general system of this type 

 
  

∂t u = γ f u,v( ) + ∂x
2 u

∂t v = γ g u,v( ) + d∂x
2 v

 

with a fix-point with   fu > 0 , Tr A < 0, and det A ≥0 and   ∇2u = 0  and   ∇2v = 0 . 
Further we require the boundary conditions  ∇u = ∇v = 0 for   x = 0  and   x = 1 . 
We assume that   u x,0( )  and   v x,0( )  are given. Other possible conditions are for 
instance periodic conditions. 
 
We linearize around fix-points without diffusion,   f u∗ ,v∗( ) = g u∗ ,v∗( ) = 0 . 

   u = u∗ + w1 v = v∗ + w2  
   
w =

w1

w2

⎛

⎝
⎜

⎞

⎠
⎟  

Still neglecting diffusion we have 

 

   

∂w
∂t

= γ Aw A =
fu fv

gu gv

⎛

⎝
⎜

⎞

⎠
⎟

u∗ ,v∗

 

Try   w ∝ eλt , this gives in the usual way stability if Tr A =   fu + gv < 0  and det A = 

  fugv − fv gu > 0 . We assume from our earlier example that   fu > 0  and   gv < 0 . 



 37 

The full system is 

 
   
∂w
∂t

= γ Aw + D∇2w = γ Aw + D
∂2 w
∂x2  

Assume solutions of type    w x,t( ) = W x( )T t( ) . Separation of variables gives 

   !T = λT  
    λW = γ AW + D∇2W  

The boundary condition says that 
   
dW
dx

= 0  at   x = 0  and   x = 1 . Finite solutions are 

then of the type 
    Wn ∝ cosnπx, n integer  
We write    Wn = cn cosnπx . Inserting gives 

 
   
λWn = γ AWn +D∇2Wn ⇒ γ A −D nπ( )2 − λ n( )·1( )Wn = 0  

that has a solution when and only when 
 

   
γ A −D nπ( )2 − λ n( )·1 = 0  

 
This will give us two  λ

n( ) :s (A is a two by two matrix)and the general solution is 

 
   
w x,t( ) = cn

n , j=1,2
∑ eλ j

n( )t cosnπx  

The secular equation is 

 
   

λ 2 + λ k2 1+ d( )−γ fu + gv( )⎡⎣ ⎤⎦ + h k2( ) = 0

h k2( ) = dk4 −γ dfu + gv( )k2 + γ 2 A , k = nπ
 

If   k2 = 0  we get back the system without diffusion with  Reλ < 0  if the system is 
stable. 
 
Introduce 

 

   
′A = γ A −Dk2 =

γ fu − k2 λ fv

γ gu γ gv − dk2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

The coefficient for the λ  term in the secular equation is the negative of trace of the 
new diffusion-related matrix. As  γ fu + gv( )> 0 and   k

2 1+ d( ) > 0 , this trace is always 
negative. We want to have instable solutions, i.e. that small disturbances will pull the 
system away from the spatially homogeneous state. Thus we require that 
    ′A = h k2( ) < 0  

for some value of k. A condition for this is that  γ dfu + gv( )>0. As  γ fu + gv( )>0 and 

  fu > 0  (  gv < 0 ) this implies that d > 1 (at least) that is the diffusion constant of the 
inhibitors must be larger than that of the activator. The condition  γ dfu + gv( )>0 is 

necessary but not enough. In order that   h k2( ) < 0  the minimum   hmin  must be 
negative. 
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dh
dk2 = 2dk2 −γ dfu + gv( ) = 0 ⇒

kmin
2 =

γ dfu + gv( )
2d

⇒

hmin = γ 2 A −
dfu + gv( )2

4d
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
< 0 ⇒

dfu + gv( )2

4d
> A

 

At the bifurcation   hmax = 0  and we have a critical  d = dc  given by 
   dc

2 fu
2 + 2 2 fv gu − fugv( )dc + gv

2 = 0  
and 

 
  
kc

2 =
γ dc fu + gv( )

2dc
= γ fugv − fv gu

dc

⎡

⎣
⎢

⎤

⎦
⎥

1/2

 

  
For large times the solution will be dominated by the exponentially growing terms 
with allowed wave numbers   k ∈ k1 ,k2( ) . It is easy to modify our method for periodic 
boundary conditions.  
  
The amplitudes of the exponentially growing regions will finally be limited buy non-
linear terms and we end up with periodic patterns with saturated activators and 
inhibitors respectively. For infinite domains all wave numbers   k ∈ k1 ,k2( )  are 
allowed. Normally patterns with wave number kc start to develop as soon as it is 
possible. That γ  is small means that the scale in length is small. 
 
In two dimensions more patterns are possible: stripes, spots, etc. With these 
mechanisms we can explain the spots of the leopard and the stripes of the zebra. Also 
note that out model predicts that small animals would be non-patterned (no pattern 
will fit) like you have for mice. Also large animals would be without patterns (all 
wave numbers are allowed). The result is similar to what you get with standing waves 
in plates, something that has been tested practically with interesting results. A good 
reading is the article of James Murray 
 (www.resnet.wm.edu/~jxshix/math490/murray.doc) 
 
7.2 Population model with diffusion 
 
Example 7.2 Fishing zones 
We consider the following system for fishing 
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Fishing is regulated in national waters but we assume that in international water the 
fishing is very intensive such that N = 0. The fish is spreading out into international 
waters by diffusion. We use the following equations: 

 
  
∂N
∂t

= rN 1− N /K( )−E·N + D
∂2 N
∂x2  

with boundary values   N x = L( ) = 0  and 
  
∂N x = 0( )

∂x
= 0 .  

If D = 0 we have a fix-point at N = 0. We linearize around this fix-point 

  
  
∂N
∂t

= rN −E·N + D
∂2 N
∂x2  

Assume a solution   N x,t( ) = T t( )W x( ) . This gives 

 
 
dT
dt

= λT ⇒T ∝ eλt  
  
λW = r −E( ) + D

d2W
dx2  

The boundary conditions tell us that 
  
W ∝ cos

nπx
2L

 and we get 

 
  
λ = r −E( ) + D π 2

4L2  

This fix-point is stable ( λ < 0 ), i.e. the population disappears if 

 
  
r −E( ) + D π 2

4L2 < 0  or 
  
L < π

2
D

r −E
 

 
7.3 Wave propagation in systems with diffusion 
 
A system with diffusion is generally described by 

 
  
∂u
∂t

= f u( ) + D∇2u  

In one spatial dimension this is 

 
  
∂u
∂t

= f u( ) + D
∂2 u
∂x2    u = u x,t( )  

In such system we can have waves with relatively high propagation speed. Below we 
show a specific example where we look at wave solutions, see also section 2 in the 
next chapter. 
 
Example 7.3 Logistic growth with diffusion 
 

Let   f u( ) = ru 1− u( ) . Rescale the system 
 
t ← rt x ← r

D
x  to get 
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∂u
∂t

= u 1− u( ) + ∂2 u
∂x2   

Without the diffusion we have fix-points in   u = 0  (instable) and in   u = 1  (stable). 
We search for solution in the form of waves that move without distortion (solitons) 
that have the form 
   u x,t( ) =U x − ct( ) ≡U z( ) , z = x − ct  
Insertion in the equation gives 

 
 
∂u
∂t

= ∂U
∂t

= −c ′U  
  
∂2 u
∂x2 = ′′U  ⇒    −c ′U =U 1−U( ) + ′′U  

Introduce  V = ′U  such that we can write the system as two first order differential 
equations 

 

  

dU
dz

=V = F U ,V( )
dV
dz

= −cV −U 1−U( ) = G U ,V( )
 

The fix-points are   U ,V( ) = 0,0( )  and   U ,V( ) = 1,0( ) . We investigate the stability 
using the system matrix 

 
   
A =

FU FV

GU GV

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 0 1

−1+ 2U −c
⎛
⎝⎜

⎞
⎠⎟

 

Fix-point  0,0( ) : 
   
A = 0 1

−1 −c
⎛
⎝⎜

⎞
⎠⎟

, Tr A = –c,   A = 1  (stable) 

Fix-point  1,0( ) : 
   
A = 0 1

1 −c
⎛
⎝⎜

⎞
⎠⎟

, Tr A = –c,   A = −1  (saddle point) 

The trajectories are plotted below for c = 0.5 in order that the spirals arer evident. It is 
also obvious that the second fix-point is a saddle point. 

  
Spirals around  0,0( )  means problems as   U < 0  at times, in many systems this is not 

allowed. This is also shown in the next graph of  U =U z( ) . 
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If we give up the requirement that the wave moves without distortion we have to 
solve the system numerically and we find that there are waves moving with exactly 
speed   cmin = 2 . In the figure below we plot a simulation with the updating rule 

  u x,t( )← u x,t( ) + Δt u x + Δx,t( )− 2u x,t( ) + u x − Δx,t( )( )/ Δx( )2 + u x,t( ) 1− u x,t( )( )
 
and   Δt = 0.1 and  Δx = 1 . The boundary condition is  

 
  

u x,0( ) = 1/ 1+ x2( ) 0 < x < 100
u 0,0( ) = u 100,0( ) = 0

 

In the beginning every 100 iteration is plotted in order to see the growth up to the fix-
point. Then   Δt = 0.01 , and every 500 iteration is plotted. In the figure the horizontal 
distance between two fronts is 10 length units, the distance in time is 5 time units, i.e. 
the speed of the wave front is 2 as expected. 
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The original system was 

 
  
∂u
∂t

= ru 1− u( ) + D
∂2 u
∂x2  

with fix-points   u = 0  and   u = u1 > 0 . The wave speed in the system is given by  

  c = cmin = 2 rD . In many systems D is small, say 10–6 m2 s–1 and    r ∼ 1 s–1. Then 

  c ≈ 10−3 ms–1 that is much larger than D, in this case by three orders of magnitude. 
Thus “information” spreads much faster in waves than by diffusion. This will be 
important in the description of epidemics in the next chapter. 
 
The appearance of the waves in the graph above is typical of a shock wave. 
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8 Models for epidemics 
 
Example 8.1 Measles 
 
In 1921 Martini presented a model of immunizing diseases (Berechnungen zur 
Epidemologie der Malaria) like measles, mumps, and rubella. The quantities he used 
were 
  I = fraction of the population infected and infective 
  S = fraction susceptible for infection 
  p = fraction infected/time 
  q = fraction cured/time 
  m = fraction losing their immunity/time 
 α = infectivity 
where   p =α/S . The model is 

 

  

dI
dt

=αIS− qI

dS
dt

= −αIS+ m 1−S( )
 

The fix-points are given by 

   I ,S( ) = 0,1( )  and 
  
I ,S( ) = m α − q( )

qα
, q
α

⎛
⎝⎜

⎞
⎠⎟

,   α > q  

The system matrix is 
  
A = αS− q αI

−αS −αI − m
⎛

⎝
⎜

⎞

⎠
⎟  

In the first fix-point we get 

 
   
A = α − q 0

−α −m
⎛

⎝
⎜

⎞

⎠
⎟ ⇒

A = −m α − q( )
Tr A =α − q − m

stable ifα < q  

In the second fix-point 

 

   

A =
0 m α − q( )

q

−q −mα
q

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⇒

A = m α − q( )
Tr A = −mα

q
stable ifα > q  

The behaviour of this point is determined by the function 

 
    
!f = Tr2 A

2
− A = m2α 2

4q2 − m α − q( ) = mα 2

q
m
4q

− q
α
+ q2

α 2
⎛
⎝⎜

⎞
⎠⎟

 

Put 
 
q
α

= β  and study 
  
f β( ) = β 2 − β + m

4q
 

We have 
  
f 0( ) = m

4q
> 0  and find minima by   ′f β( ) = 2β −1 = 0 ⇔β = 1/2 . Thus 

  fmin 1/2( ) = 1
4 m/q −1( ) . We will have oscillatory solutions when   m/q < 1 . This is 

quite common in reality. 
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8.1 SIR model for epidemics 
 
SIR models for epidemics is founded on the following three quantities: 
  S = the number of susceptible 
  I =  the number of infective and infected 
  R = the number not available for infection due to immunity or death 
 
Schematically the models can be described by  S → I → R  
 
Assume that the different classes are homogeneously mixed with equal probability of 
being in contact with each other. A simple model by Kermack-McKendrick in 1927 is 

 

 

dS
dt

= −rSI

dI
dt

= rSI − aI

dR
dt

= aI

  

where   1/a > 0 is the contagious time and   r > 0  is the infectivity. 
 
We have 

 
  
dS
dt

+ dI
dt

+ dR
dt

= 0⇒ S+ I + R = N , constant ,   0 < S,I ,R < N  

The starting conditions are given by   S 0( ) = S0 > 0, I 0( ) = I0 > 0, R 0( ) = 0 . 
and  

 
  

dI
dt t=0

= I0 rS0 − a( ) > 0 if So > a/r ≡ ρ
< 0 if So < ρ

⎧
⎨
⎩

 

We also have  

 
  

dS
dt t=0

< 0 S t + ε( ) < So  

i.e. if  So < ρ  then 
  
dI
dt

= I rS− a( ) ≤ 0 ∀t  

Thus the infection will die out if we start with too few susceptible, there is no 

epidemic. If  So > ρ , to begin with 
  
dI
dt

> 0  and we have an epidemic. We define an 

epidemic as a process with   I t( ) > I0  for some time t > 0. The critical parameter for an 
epidemic is ρ . 
 
We study trajectories using 

 
  
dI
dS

= −
rS− a( )I

rsI
= −1+ ρ/S  

This can be integrated 
   I = −S+ ρ lnS+ constant = −S+ ρ lnS+S0 − ρ lnS0 + I0  
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As   R 0( ) = 0 , all trajectories start at   I0 +S0 = N . The trajectories in the following 
graph are simulated using the system equations with a = 500 and r = 3 for different 
starting values. 

  
The intensity of the epidemic is determined by the maximum of the curve that occurs 
when  S = ρ . We have 
   Imax = N − ρ + ρ ln  
that is to be compared with   I0 . 
 
Example 8.2 Model of gonorrhoea. 
 
In models for venereal diseases we have to take into account that there are two 
different populations, women and men. We denote men by I, S and women by I*, S*.  
The relations between the different populations are described schematically below. 

  
In this example we study gonorrhoea that does not give immunity and chose the 
simper model to the right. 
 
We also assume that  I +S = N  and  I∗ +S∗ = N∗  are constants. We use the following 
model 

 

 

dS
dt

= −rSI∗ dS∗

dt
= −rS∗I + a∗I

dI
dt

= rSI∗ − aI dI∗

dt
= r∗S∗I − a∗I

 

This can be simplified if we introduce  N and N∗ : 

 
 
dI
dt

= rI∗ N − I( )− aI dI∗

dt
= r∗I N∗ − I( )− a∗I  

The fix-points are given by   I = I∗ = 0 and 
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I = NN∗ − ρρ∗

ρ + N∗ , I∗ = NN∗ − ρρ∗

ρ + N
, ρ = a/r , ρ∗ = a∗/r∗  

When  NN∗ > ρρ∗ , the second fix-point becomes physical. A stability analysis will 
show that if  NN∗ < ρρ∗  the first fix-point is stable and if  NN∗ > ρρ∗ , the second one 
is stable. Data from USA (1973) with   N ≈ N∗ ≈ 20 M  gives an estimation of 

  N /ρ ≈ 0.98 ,   N
∗/ρ∗ ≈ 1.15  such that   NN∗/ρρ∗ ≈ 1.127 . This results in  I ≈ 1.12M , 

   I∗ ≈ 1.21M  that fits well with the population data. 
 
8.2 Spatial spread of epidemics by waves and diffusion 
 
We will now give a model for spatial spreading of epidemics. 

 

  

∂S
∂t

= −rIS+ D∇2S

∂S
∂t

= rIS− aI + D∇2I
 

Interpret aI as the mortality intensity i.e. the number of dead per time. Assume that  
at the start have a spatially homogeneous system   S = S0 . We solve the equations in 
one dimension and rescale 
   I ← IS0 S ←SS0 x ← D/rS0 x t ← t/rS0 λ = a/rS0  
We then have 

 

  

∂S
∂t

= −IS+ ∂2S
∂x2

∂I
∂t

= IS− λI + ∂2 I
∂x2

 

We study solutions that have the form of propagating waves   I x,t( ) = I z( )  and 

  S x,t( ) = S z( )  with  z = x − ct , c is the wave speed. Insertion gives 

 
  
′′I + c ′I + I S− λ( ) = 0
′′S + c ′S − IS = 0

 

We want solutions such that  
   I −∞( ) = I ∞( ) = 0, 0 ≤ S −∞( ) < S ∞( ) = 1  
Study the leading part of the wave where   I ≈ 0  and   S ≈ 1 . Linearization gives 
   ′′I + c ′I + I 1− λ( ) = 0  
with solution 

 

  
I z( )∝exp

−c ± c2 − 4 1− λ( )
2

·z
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

As   I z( ) > 0  we cannot have oscillatory solutions, i.e.   c ≥ 2 1− λ , λ = a/rS0 < 1 , 
A more extensive (and very sophisticated) analysis shows that the wave under 
suitable conditions will propagate with the smaller speed. See the example in chapter 
7. In dimensional units we have 
   c = 2 rS0D 1− a/rS0( )  
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In order that there is a wave we require 
• We must have more than a critical population density   S0 = a/r . 
• Given  So there is a least critical infectivity   rc = a/So . 
• Given r and  So there is a mortality threshold  a < ac = rSo . A too high mortality or too 
rapid process will stop the epidemic. 
 
To stop the epidemic we can 
• Vaccinate ⇒   So  decreases 
• Use quarantine⇒  r decreases 
 
J. V Noble (Geographic and temporal development of plagues, Nature 250, p. 726-
729, 1974) studied the spread of the Black Death and used the parameters D = 104 
miles2/year, r = 0.4 miles2/year,  So =50 persons /miles2, a=15/year (two weeks) that 
gave a wave speed of 400 miles/year that is rather reasonable and fit data quite well.  
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